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Abstract. Holonomy is well-known in the continuous context in studying parallel trans-
port maps, yet here we explore its discrete analogue in "rolling" polyhedra in loops over
combinatorial symmetrical surfaces. Extending previous research conducted at Duke Uni-
versity initially introducing "combinatorial holonomy" in terms of the tetrahedron rolled on
triangulated surfaces, we apply their approach to the holonomy of the cube on cubulated
surfaces. Further, we recognize parameters of surfaces for the holonomy of the cube as
contained within the alternating group A4 and discover small subgroups outside of A4 but
contained in S4. Our generalizations allow us to formally categorize families of cubulated
annuli and further, families of cubulated tori as having holonomy isomorphic to either A4

or S4.

1. Introduction

1.1. The Combinatorial Approach. We begin with a review on the holonomy of com-
binatorial surfaces and the combinatorial holonomy group, as defined by previous research
at Duke University. While the holonomy of continuous surfaces is a well-explored theme
throughout mathematics, it is not until recently that the consequence has been studied dis-
cretely. Via parallel transport maps, traditional holonomy is often studied in "sliding" a
basis along a Riemannian manifold. Here we "roll" our highly symmetrical structures (i.e.
polyhedra) in loops on its combinatorial surface counterpart to realize symmetries as induced
by the holonomy of the connection. Specifically, we use the combinatorial fundamental group
and local contributions to compute the holonomy group of surfaces. Previous research con-
sidered the tetrahedron as rolled on triangulated surfaces, and we hope to generalize these
results to the cube on cubulated surfaces throughout this paper.

1.2. Conclusions and Future Directions. Combinatorial holonomy offers a novel, dis-
crete perspective to the study of holonomy formerly only pursued in the continuous context.
Advancing previous research, we have extrapolated combinatorial holonomy as initially con-
sidered in the tetrahedral case to the cube on various cubulated surfaces. Further, we
succeeded in classifying cubulated annuli and built upon this discovery to categorize fami-
lies of cubulated tori as having A4 or S4 holonomy. As we found that it is relatively easy
to find A4 or S4 holonomy, yet difficult to find subgroups outside of A4 and still in S4, a
natural next step may be to attempt to uncover such subgroups on other surfaces. Further,
we would like to approach the question of shortest loops for given symmetries of surfaces in
understanding elements of the holonomy group. As all previous research in combinatorial
holonomy has studied tori in some respect, it would be of particular interest to investigate
higher genus surfaces and the possible families of surfaces or symmetries which may arise
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there. Alternatively, one could define rolling and consider symmetries of higher dimensional
n-cubes to continue research with cubulated surfaces.

Acknowledgements. This research was made possible via the support of NSF grant DMS-
2051032, which we gratefully acknowledge. We would also like to acknowledge the Indiana
University Department of Mathematics for hosting the REU program and our mentor Seppo
Niemi-Colvin for believing in us and supporting our success throughout this project.

2. Symmetries of the Cube and Cubulated Symmetrical Surfaces

2.1. Symmetry Group of the Cube. We begin then with an overview of the symme-
try group of the cube, with n-fold axes of rotational symmetry through opposite vertices,
opposite edges, and opposite faces forming respective conjugacy classes. Consider first the
identity element in its own conjugacy class, as well as the four 4-fold axes through opposite
vertices containing 8 symmetries order 3. Further, there are the three 4-fold axes through
opposite centroids, giving 9 elements of symmetry (3 of order 2 and 6 of order 4) and the
six 2-fold axes through edges giving 6 elements of order 2. Hence we have a total of 24 ro-
tational isometry-preserving symmetries of our cube C as isomorphic to S4. The symmetric
group S4 on four elements can be seen as a group permuting the four diagonals of the cube.
Note in particular S4 as all possible orientation-preserving symmetries of the cube and A4

as its maximal normal subgroup, as it is within these two subgroups that we will most often
discover symmetries[Goo15].

2.2. Cubulated Surfaces. Many of the following definitions are abstracted from the pre-
vious work and revised to define rolling cubes C on cubulated surfaces S as will be explored
throughout this paper.

Definition 2.1. (Cubulated surface.) We define a cubulated surface S = (V, E, F) as
nonempty sets:

• V of vertices v.
• E of edges e = {v1, v2} such that v1, v2 are distinct elements of V .
• F of square faces f of form f = {v1, v2, v3, v4} such that all vertices and all edges

are contained in a face f each with 4 distinct vertices and 4 distinct edges forming a
four cycle graph.

We also require that:
• Every edge e is contained in either 1 or 2 faces f ∈ F .
• Every vertex v is contained in a face f ∈ F .
• Every 2 faces are disjoint or intersect at a single edge e.
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Definition 2.2. (Adjacency of faces) A single edge e which is contained in 2 faces f1 and
f2 asserts that e is an interior edge by which f1 and f2 are adjacent. If e is not an interior
edge, then it is a boundary edge. Note that if f1 ∩ f2 ̸= e for any edge e, then f1 and f2 are
not adjacent.

Further, the set of faces f ∈ F containing a vertex v can be arranged in a sequence
f1, f2, ...fδ such that fi and fδ are adjacent for 1 ≤ i < δ.

Definition 2.3. (Interior Vertex) If δ ̸= 2 and fδ is adjacent to f1 by an interior edge e,
then the vertex v is said to be interior.

Remark. Should all edges of a surface be interior, then so are all vertices and we have a
surface S without boundary. Boundary edges are constructed purely of boundary vertices.

Definition 2.4. (Connectedness) A cubulated surface S = (V,E, F ) is face-connected if for
any f, f ′ ∈ F there is a sequence of S-faces S(f) = (f1, f2, ..., fδ) such that fi is adjacent to
fi+1 for 1 ≤ i < δ for a connected surface S. [LMN21]

Remark. This notion of combinatorial connectedness agrees with the traditional topological
definition.

Definition 2.5. (Automorphism Group) A bijection α : V −→ V is an automorphism of
S = (V,E, F ) when {v1, v2, v3, v4} ∈ F if and only if {α(v1), α(v2), α(v3), α(v4)} ∈ F and α
similarly respects edges. Under composition, the set of automorphisms form a group Aut(S)
[LMN21].

The automorphisms under our considerations may be assumed to be orientation-preserving.

Definition 2.6. (Maximally Symmetric) A cubulated surface S = (V,E, F ) such that |Aut(S)| =
8|F | is maximally symmetric, as a fixed face of a cubulated surface S can be mapped to S’ in
at most 8 ways.

3. The Combinatorial Fundamental Group

Just as we explore the discrete/combinatorial analogue of holonomy, we utilize the com-
binatorial analogue of the fundamental group in our methods.

3.1. Discrete Analogues of the Fundamental Group.

Definition 3.1. (Path) A path along S is a sequence of faces fi ∈ F, 1 ≤ i ≤ n such that
each fiis adjacent to both faces fi − 1 and fi + 1.

Definition 3.2. (Loop) A loop is a path on S crossing a sequence of adjacent faces fi ∈ F
for 1 ≤ i ≤ n such that f1 = fn that starts and ends at the same face.

Definition 3.3. (Loop Group) We define the loop group Lf (S) by classes of loops sharing
backtracking equivalence under the operation of concatenation ⋆.

Definition 3.4. (Backtracking Equivalence) We consider loops l ≃ l′ if and only if one can
be obtained from the other by replacing some portion (of l in this case) of form
(fi, fi+1, fi+2, ...fi+k, f(i+k)−1, ...fi+2, fi+1, fi) with fi.
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Figure 1. Lasso around an interior vertex

To illustrate, we would consider loops:

l = (f1, f2, f3, f4, f3, f5, f1)

and
l′ = (f1, f2, f3, f5, f1)

equivalent (assuming adjacency of listed faces), where fi = f3 in this particular example.
The group operation is well-defined on equivalence classes of loops.

Remark. Backtracking allows for inverses, satisfying the requirement of inverse elements
for the group Lf (S).

Theorem 3.1. Assuming our surface S is path-connected, then Lf (S) is independent of the
base face up to isomorphism.

Proof. This proof follows that of the prior work. [LMN21] □

Definition 3.5. (Lasso) If h is a path from f1 to fn with vn ∈ fn as an interior vertex, and
l is the loop around v beginning and ending at fn whose existence is guaranteed by Definition
2.3, then we have h−1 ⋆ l ⋆ h as a lasso based at f1.

Definition 3.6. (Nullhomotopic Loop Group) The subgroup group Cf (S) of Lf (S) generated
by the set of all lassos based at f in Lf (S) is the nullhomotopic loop group based at f under



CUBULATED HOLONOMY 5

concatenation of loops. As C(S) is preserved under the isomorphism of 3.1, we choose to
omit the base face and reference C(S) as our nullhomotopic loop group.

Remark. This definition of nullhomotopy agrees with the standard definition of nullhomo-
topic loops in a continuous sense; a combinatorial loop on S is nullhomotopic if and only if
the same loop, considered instead as a continuous loop in the underlying topological space of
S, is nullhomotopic. Similarly, we consider two loops homotopic if their continuous analogues
in the underlying topological space are also homotopic.

Theorem 3.2. C(S) is a normal subgroup of L(S).

Proof. Suppose c ∈ C(S) and l ∈ L(S). Then lcl−1 is homotopic to l1l which is equal to the
identity 1 ∈ C(S). Thus lcl−1 is nullhomotopic, so lcl−1 ∈ C(S). [LMN21] □

Definition 3.7. (Combinatorial Fundamental Group) We define the fundamental group of
a combinatorial symmetric surface S as π1(S) := L(S)/C(S).

Remark. This definition agrees with the traditional notion of a fundamental group in that
the fundamental group of a surface is isomorphic to the fundamental group of the surface’s
underlying topological space.

For further details please reference the appendix.

4. The Combinatorial Holonomy Group

Rolling our cube C in loops on the surface S not only induces the holonomy of surface and
realizes symmetries of C, but also gives rise to the combinatorial holonomy group we define
in this section. First we provide the definitions necessary to describe rolling the cube C on
S.

Definition 4.1. (Orientation) Given a face f = {v1, v2, v3, v4} ∈ F of a cubulated surface
S, an orientation of f is an ordering of the vertices of f (i.e. clockwise or counterclockwise).
This ordering depends only on the relative positions of the vertices in the ordering, not on
the specific order in which they are listed; that is, the orderings (v1, v2, v3, v4), (v2, v3, v4, v1),
(v3, v4, v1, v2), (v4, v1, v2, v3) are all equivalent and can be denoted [v1, v2, v3, v4]. Similarly,
an orientation of an edge e = {v1, v2} of S is an ordering of the two vertices of e. For each
edge, there are two possible orientations [v1, v2] and [v2, v1].

Remark. The orientation of S = (V,E, F ) is a choice of orientation for each face f ∈ F
such that whenever 2 faces share an edge, the two faces f and f’ induce opposite orientations.

All of surfaces described throughout this paper are be assumed to be orientable.

Definition 4.2. (Position) Given a cube C = (V ′, E ′, F ′) and a cubulated surface S =
(V,E, F ), we define a position

p = {(v′i, v1), (v′i+1, v2), (v
′
i+2, v3), (v

′
i+3, v4)}.

as a map from some face f ′ of C to some face f of S that preserves the structure as cyclic
graphs. The set of all possible positions given a pair of surfaces C, S is then P (C, S).
Definition 4.3. (Face Projections) There exists natural face projections ϕ′ : P (S ′, S) −→ F
and ϕ : P (S ′, S) −→ F ′ which map a position to the face of S or S ′ (respectively) which
positively aligns with the other surface.
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Definition 4.4. (Connected by single roll) Consider the position

p = {(v′1, v1), (v′2, v2), (v′3, v3), (v′4, v4)}
assuming {v1, v2}, {v′1, v′2} are internal edges of S, S ′ (respectively). In other words, there
exist faces f = {v1, v2, v5, v6} ∈ F , f ′ = {v′1, v′2, v′5, v′6} ∈ F ′ such that the position

p̃ = {(v′1, v1), (v′2, v2), (v′5, v5), (v′6, v6)}
is said to be connected to p by a single roll.

The choice of p̃ is determined by p and the internal edge e = {v1, v2}.
Theorem 4.1. Let S = (V,E,F) be a connected, maximally symmetric triangulated surface
without boundary, S’= (V’,E’,F’) a connected symmetric surface, and f ′ ∈ F a face of S’.
Then each p ∈ P (S ′, S)f ′ gives a unique holonomy homomorphism hp : L′

f (S
′) −→ Aut(S).

Moreover, hβ(p) = β ◦ hp ◦ β−1 for all β ∈ Aut(S).
Proof. The inductive proof follows similarly to that of prior work. [LMN21] □

We now describe the structure of the combinatorial holonomy group and its usefulness in
computation of holonomy.
Definition 4.5. (Combinatorial Holonomy Group) For a maximally symmetric surface S
without boundary and another symmetric surface S ′ without boundary, then let p ∈ P (S ′, S)′f
be a position of S ′ over S based face f of S. We define the holonomy group of S ′ over S
based at p as the image Holp(S ′, S) := hp(Lf (S)) ⊂ Aut(S ′).
Definition 4.6. (Restricted Holonomy Group) Then the restricted holonomy group is the
image Holp0(S, S ′) := hp(Lf (S))⊴ Holp(S ′, S).

The initial position p will often be suppressed in the notation.
Theorem 4.2. As Hol0(S ′, S)⊴Hol(S ′, S), then for the quotient Q = Hol(S ′S)/Hol0(S ′, S),
there exists a unique surjective homorphism ψ : π1(S

′) −→ Q.

0 C(S ′) L(S ′) π1(S
′) 0

0 Hol0(S, S
′) Hol(S, S ′) Q 0

i1

h|C(S′) h

q1

ψ

i2 q2

Proof. We see in the diagram above that the top and bottom rows are short exact sequences
with i1, i2 as inclusion homomorphisms and q1, q2 as quotient homomoprhisms. The remain-
der of this proof is detailed in the prior work. [LMN21] □

Theorem 4.3. Let S be a connected, maximally symmetric surface without boundary, and
S’ a connected, symmetric surface. If both S and S’ are orientable, then Hol(S,S’) contains
only orientation-preserving automorphisms of S.
Proof. This proof is detailed in the prior work. [LMN21] □

4.1. Computing Holonomy. After computing the restricted holonomy Hol0(S ′, S) gener-
ated by the set of all lassos, we can pick a representative loop γ from each holonomy class
[γ] ∈ π1(S) and compute the coset h(γ)Hol0(S ′, S) such that we have decomposed the ho-
lonomy group into the restricted holonomy group Hol0(S ′, S) and the cosets as created by
nontrivial homotopy classes of the fundamental group. We can then study holonomy by the
restricted holonomy and "fundamental group holonomy".
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5. The Cube on Cubulated Surfaces

We are now prepared to direct our focus to computing holonomy of the cube on cubulated
surfaces, beginning with a description of effective methods of computation.

Theorem 5.1. As we assume S to be maximally symmetric, every vertex v of S has the
same order. Now suppose every vertex v of S has degree n and let l be a lasso on S around
a vertex v. Then |h(l)| = n/gcd(n, δ(v′)).

Proof. This proof is detailed in the prior work. [LMN21] □

The above result of the prior work effectively speeds up the process of computing holonomy,
as does the new approach we developed as detailed below.

Definition 5.1. (Face-Adjacent Group) We define a face-adjacent group F ′(S ′) of a symmet-
ric surface S ′ as the set of adjacent faces f ′ ∈ F ′ of S ′ with face projection ϕ : P (S ′, S) −→ F
such that p = {f ′

p, fp} with ϕ′(p) = f ′
p ∈ F ′ and ϕ(p) = fp ∈ F . The action of rolling S ′

on S then induces a chain of adjacent S ′-faces f ′
p1, f

′
p2, ...f

′
pδ ∈ F ′ of the polyhedra S ′ rolled

on the surface S with which we can "trace" the face positions fp ∈ F (S ′) on S in order to
realize the symmetry induced.

Lemma 5.2. There is a canonical isomorphism F ′ −→ Z/Zn′ such that rolling S ′ around a
vertex v on S acts as an equivalence class [n].

Proof. Let the holonomy of S ′ on S be a subgroup F ′ −→ Z/n′Z for n′ = |v′| be a canonical
isomorphism sending a face f ′

p ∈ F ′(S ′) to the position of another adjacent face fpδ ∈ F ′

such that a Z/n′Z symmetry is induced. Starting with initial position p matching v′ to v,
then Z as generated by lassos acts on S ′ such that f ′

p1, f
′
p2, ...f

′
pδ ∈ F ′ of S ′ is a chain of

relevant adjacent faces rolled on S in a preferred clockwise lasso c once around v and across
n′ edges as the preferred positive generator of isometry-preserving rotational symmetries.

Then we have a single lasso around a fixed interior vertex v on S such that f1 = fn in S
and f ′

p1 is sent to f ′
pδ in F ′(S ′) for a Z/n′Z symmetry of equivalence class [n′].

□

Remark. For every lasso c, we roll across n′ edges to return to the identity element and
only for n′ | n where n′ = |v′| and n = |v| does a trivial holonomy exist by loops on S. Note
that if n′ ∤ n only nontrivial holonomy exists for Z acting on F ′(S ′).

Combinatorial holonomy, while previously studied via the lens of the tetrahedron, has
potential to be generalized to the cube and further polyhedra. Let us consider the case then
of rolling any polyhedra on itself.

Theorem 5.3. Any polyhedra rolled in a lasso on itself always results in trivial restricted
holonomy.

Proof. For any polyhedra S ′ rolled on itself S around any vertex v of S, note n′ = n and
hence n′|n with v′ fixed to v such that a single lasso c in the preferred clockwise direction
always rolls around n′ edges sending f ′

p1 ∈ F ′(S ′) back to f ′
p1 ∈ F ′(S ′) by the isomorphism

of 5.2 such that the full holonomy induced by lassos c is trivial. By 4.2, note that the
fundamental group of the surface is trivial, so this completes the proof. □

Remark. This fact is clearly true for the cube C rolled on itself S, where S is also a cubulated
surface.
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v1 v2

v3 v4

Figure 2. Infinite grid

Fixed v Cycles for h(c) Cycles for h(c−1)

v1 (2,3,4)(1) (2,4,3)(1)
v2 (3,4,1)(2) (3,1,4)(2)
v3 (4,1,2)(3) (4,2,1)(3)
v4 (1,2,3)(4) (1,3,2)(4)

Figure 3. Lassos on a cubulated surface S

Cycles for h(l) Lasso Concatenation
(1,2)(3,4), (1,3)(2,4), (1,4)(2,3) h(c) ∗ h(c′), h(c−1) ∗ h(c′−1)
e = (1)(2)(3)(4) h(c) ∗ h(c′) ∗ h(c′′), h(c−1) ∗ h(c′−1) ∗ h(c′′−1)

Figure 4. Loops on a cubulated surface S

Theorem 5.4. The holonomy group of the cube C on the infinite square grid S is isomorphic
to A4.

Proof. Recall that any plane in R2 has a trivial fundamental group with a single homotopy
class. Then the class of nullhomotopic loops on the infinite square grid S generated by lassos
c consists of all loops on the surface, with all loops having a possible decomposition as lassos.
Let the holonomy induced by a lasso c around a fixed vertex v of the cube C on the infinite
grid S be h(c) and that of the inverse lasso path be h(c−1). Observe then that the holonomy
induced by lassos on S yield 3-cycles by 5.2 all of which are contained in A4. Additionally,
Table 3 shows that all 3-cycles are actually achieved. As any An is generated by 3-cycles
and A4 is contained in S4 as the group of even permutations, then it is evident that the
holonomy of the cube on the infinite square grid is closed under and isomorphic to A4 such
that the holonomy Hol(C, S) ≤ A4 for the cube C on any infinitely gridded surface S ′. Please
see tables 3 and 4 for all elements of A4 as generated by lassos on S. □

Remark. Assume h(c) and h(c−1) are lasso paths of minimum length such that they each
go around 1 vertex and cover 4 faces. For any nontrivial h(l) of minimum length, note that
its two distinct consecutive lassos c and c′ must be adjacent to one another, share the same
directional path, and loop initial/ending faces such that l(f1) = c(f1) = c(fn) = c′(f1) =
c′(fn) = l(fn).

This observation of the shortest possible loop on the infinite grid S is useful in considering
the below theorem on the smallest grid needed to realize A4 ≤ Hol(C, S).
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Theorem 5.5. A cubulated surface S has A4 ≤ Hol(C, S) if it contains at least a 2 × 3
gridded subsurface.

Proof. The proof follows similarly to that of 5.4. □

Propositon 5.6. The restricted holonomy Hol0(C, S) ≤ A4 for the cube C on any cubulated
surface S.

Proof. The proof follows similarly to that of 5.4. □

As the above examples attempt to illustrate, it is relatively easy to find A4 ≤ Hol(C, S).
As A4 is a maximal normal subgroup of S4, our challenge then is to find subgroups outside of
A4 yet within S4. We now turn our attention to annuli in our attempt to realize parameters
of surfaces for the holonomy subgroups of interest.

6. Holonomy on Annuli

Definition 6.1. (Annular Strip). Let a cubulated annular strip A be an m×1 annulus where
|m| = |f | ∈ F for a surface A = (V,E, F ) be cut such that the cut ends are now identified
with each other without boundary. Then we have a connected surface S for which we can
only roll in two possible directions (i.e. clockwise or counterclockwise) to form loops under
backtracking equivalence.

Propositon 6.1. For the cube C rolled on any m × 1 annular strip A; there is a trivial,
disjoint 2-cycle, or 4-cycle holonomy isomorphic to A.

Proof. Let C be a cube on an annular strip A of length m and let f ′
1 denote the face of C

initially touching the surface of A. A single roll on this surface fixes two faces and yields a
symmetry about the corresponding four-fold axis of symmetry (this subgroup is generated
by a 4-cycle, which we can choose to be a single turn in the direction of rolling). As every
fourth roll results in f ′

1 touching the surface, the symmetry that results after one loop will
be this 4-cycle to the power of m (mod 4). For m ∈ [0] we get the identity and m ∈ [2] a pair
of disjoint 2-cycles. If m ∈ [1] or [3], we get at 4-cycle . The holonomy of C on an annular
strip A can be summarized as in figure 6.

□

Definition 6.2. (L-shaped annular strip). Let a cubulated L-shaped annular strip be a
surface A with a width of n faces and a height of m faces with the extreme faces identified
(as shown in figure 5).

Theorem 6.2. The symmetry resulting from rolling a cube on an L-shaped annulus is even
if the parity of m and n− 1 match.

Proof. Consider an L-shaped annulus A with a width n and height m. The clockwise loop
realized on this surface consists first of n − 1 rolls to the left, then m rolls upward. The
holonomy of our surface A is equivalent to that of two perpendicular annuli, as shown in
figure 5, so we find the resultant permutation (or symmetry) of a loop on the (horizontal)
annular strip of length n − 1 and the same for the (vertical) annular strip of length m.
Traveling along the horizontal annular strip yields the same permutation as the one you get
after one loop along n − 1 (mod 4). The same applies for traveling on the vertical annular
strip, for an annulus of length m (mod 4). Composing these permutations provides the parity
of the permutation on the L-shaped annulus. Since an even permutation results only from
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Figure 5. L-shaped annulus on the left, alongside an annulus with equivalent
holonomy.

Number of rows (mod 4) Holonomy
0 Trivial
1 or 3 Z/4Z
2 Z/2Z

Figure 6. Summary of holonomy groups for families of straight annuli

the composition of two even permutations or two odd permutations, the parity of n− 1 and
m must match in order to produce an even permutation for the L-shaped annulus. □

7. Holonomy on Tori

Motivated to study the torus like our previous counterparts, we sought to explore if given
a certain m × n torus with turning number, we could predict a certain holonomy. Beyond
computing holonomy groups for particular surfaces, we also generalize the holonomy for fam-
ilies of cubulated T 2 tori as will follow.

7.1. Parity of the m×n Torus. We begin with the example of the 3× 3 cubulated torus.

Propositon 7.1. The holonomy of the cube C on the 3 x 3 cubulated torus T is isomorphic
to S4.

Proof. Deconstructing or "ungluing/unfolding" our torus under homotopy, we have a 3 x 3
cubulated square plane with opposite pairs of edges identified with each other. Referencing
5.5 which proves the minimum grid needed to realize the restricted holonomy, then the
holonomy of our cubulated torus with 9 faces has Hol0(S ′, S) ≤ A4. As a straight-pathed
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Figure 7. Flat torus with turning number λ = 1. The loop depicted is a
longitude.

loop around the torus results in Z/4Z holonomy outside of A4, we know by 5.4 that the
holonomy of the cube S ′ on our 3× 3 torus T must be isomorphic to S4. □

Remark. We have an m×n cubulated torus isomorphic to S4 where m and n are both odd.

We will soon understand the general reasoning behind this, as detailed in 7.2.

For any cubulated torus T , we denote the longitudes (traveling along columns) as vertical
chains of adjacent cube faces along T and meridians (traveling along rows) as chains of
horizontal adjacent cube faces perpendicular to any longitude on T . To illustrate that we
can use longitudes and meridians in describing any m× n cubulated tori T , note then that
we would have 5 longitudes and 4 meridians for the 5× 4 torus T (for example).

A quick computation using representative loops from these homotopy classes allows us to
generalize beyond the holonomy of this initial example.

Theorem 7.2. Let T be a cubulated m × n torus with at least a 2 × 3 subsurface. Then
T has holonomy isomorphic to A4 if and only if m and n are of even parity and holonomy
isomorphic to S4 if either m or n are odd.

Proof. First, assume m and n are even. As we know by 5.5 that the restricted holonomy is
at least A4, we now pick a representative loop from the homotopy classes of the longitude as
one of the generators of the fundamental group in computing full holonomy. (The argument
for the classes of the meridian is analogous, so we only consider longitude henceforth.)
We roll in a straight line along the column until it reaches the initial face such that the
representative loop is equivalent to following an annular strip of length n. As n is even,
the resulting symmetry is either a pair of disjoint 2-cycles or the identity and is (clearly)
contained within A4. As a generator for the fundamental group, this representative implies
that all other homotopy classes will be also be contained within A4. If the cube takes loops
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Figure 8. Flat torus with turning number λ = 1, alongside the L-shaped an-
nulus corresponding with the generating loop of the fundamental group shown.

going perpendicular to the rows (to compute the other homotopy classes), this reasoning
holds as well since the number of rows is also even.

Now assume T has holonomy isomorphic to A4. Assume also (toward a contradiction)
that either m or n is odd. Then take a loop equivalent to an annular strip perpendicular to
the rows (if n is odd) or along the row (if m is odd). Since this path is odd, the resulting
symmetry is a 4-cycle, which means the torus has S4 holonomy, a contradiction. This also
shows that if m or n is odd, then T has S4 holonomy. □

7.2. Parity and Turning Numbers. We discovered that the parity of both the number of
rows and the length of the rows determines the holonomy for any torus. The it was natural
to explore the effect of a turning number on holonomy. In this way, we developed predictions
for holonomy on m× n cubulated tori.

We prove that the parity of turning number, along with the parity of the row and row-
length, provides a general theory for the holonomy of cubulated tori.

Definition 7.1. (Turning Number) Let the turning number of an m × n surface S be a
shift in the identification of the sides of the torus. The turning number µ denotes how many
times the edges on the right side of the torus are shifted downward, while λ denotes how
many times the edges on the bottom of the torus are shifted to the right. Additionally, µ and
λ are non-negative integers.

Theorem 7.3. Let T be an m× n cubulated torus with turning numbers µ and λ. Then T
has A4 holonomy if the number of rows is of the same parity as λ and the number of columns
is of the same parity as µ.
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Proof. As was the case in the proof for Theorem 7.2, we know the restricted holonomy is
A4, so we must find the permutation resulting from traveling on loops which generate the
fundamental group of T . We choose one such generator to be the loop l1 which begins at
face f1 ∈ T , rolls to the left λ times (to counteract the turning effect), and then rolls upward
m times. The permutation π resulting from this loop is equivalent to that resulting from an
L-shaped annulus with height m and width λ+1. According to the proof of Theorem 6.2, π
is even if the parity of m and (λ+ 1)− 1 = λ match. Thus, if the parity of m and λ match,
then the permutation resulting from l is even. The same reasoning holds for the generator of
the fundamental group traveling along the meridians - the chosen loop l2 travels downward
µ times and then to the right n times (this is the other generator of the fundamental group).
As the parity of µ and n match, the permutation resulting from l2 is also even. As both l1
and l2 result in even permutations, the holonomy of the cube on T is A4. □
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Note: This appendix was written by Dr. Seppo Niemi-Colvin as a previous contribution to
the research conducted at Duke University, but is included here as it has not been published
elsewhere. As the Seifert-Van-Kampen theorem is often used to describe the fundamental
group of a space X via two open path-connected subspaces which cover X, here we apply
the theorem to describe the structure of our combinatorial fundamental group. Hence this
proves the compatibility of the traditional and combinatorial formulations of the fundamental
group.

8. Appendix

Let S = (V, F ) be a combinatorial surface without boundary with vertices V and faces F .
We will now describe the dual surface to S which we will represent as S̃ = (Ṽ , F̃ ). While it
is not necessarily a triangulated surface it can be described as a polygonal surface, whereby
each face is a polygon. The vertices of S̃ are made up of the faces of S, so Ṽ = F . Two
vertices in Ṽ are connected by an edge, if those faces shared an edge in S. The faces in S̃
correspond to the vertices in S, and thus each face will have the number of sides equal to
the degree of the corresponding veretex in S.

8.1. Realizing the dual surface as a triangulation. While S̃ is not a priori a trian-
gulated surface (and the decomposition above will be most useful for our work), it can be
naturally triangulated in a way which illustrates that it’s geometric realization |S̃| is home-
omorphic to |S|. This triangulation will give the barrycentric subdivision sdS for S which
we will discuss now before associating each face of S̃ with a collection of faces in sdS. This
is not necessary to understand the fundamental group calculation beyond confirming that
π1(|S̃|, ∗) ∼= π1(|S|).

The vertices sdV of sdS correspond to V ∪ E ∪ F where E is the set of edges in S. One
can think of the vertex coming from an edge as representing the midpoint of that edge,
and the vertex coming from a face to represent the center of that face. We call the new
vertices associated to edges and faces, their barrycenters. The faces sdF of sdS are chains
v ⊂ e ⊂ f where v ∈ E, e ∈ E, f ∈ F . Taking the barrycentric subdivision does not change
the homeomorphism type of |S|.

For each face of S̃ we have a corresponding vertex u in S, which is also a vertex in sdS.
One can then take the star stu in sdS, which is the union of all the faces (and edges) of
sdS, which contain u. We will consider the star closed and thus it contains any edges and
vertices that are in faces of stu even if those edges and vertices do not contain u themselves.

For an edge e of S̃ is determined by an edge e′ of S connecting two faces f1 and f2, which
share two vertices v1 and v2 in S. We can then associate to e the intersection of st v1 and
st v2. This is an edge from the barryenter of f1 to the barrycenter of e′ to the barrycenter of
f2.

Finally we can associate to a vertex v ∈ S̃ a face f in S and thus three vertices v1, v2, v3
in S, and in sdS this becomes st v1 ∩ st v2 ∩ st v3, which will be just the barrycenter of f .

8.2. The graph of the dual surface. Before we compute the fundamental group of the
entire surface, let us compute the fundamental group of the graph of S̃, by which I mean the
union of the vertices and edges of S̃ but no faces attached. I will denote the graph as K1.

Theorem 8.1. The group π1(|K1|, v0) is isomorphic to the group L given by considering
combinatorial loops in K1 up to adding and subtracting backtracking.
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Figure 9. The start of the infinite trivalent graph. These branches continue
indifinitely and once branched no two vertices get identified. It is a covering
space for every connected trivalent graph

Proof. The elements of L are lists of vertices of S̃ (and thus faces of S)

v0, v1, v2, . . . , vn−1, vn = v0,

where consecutive vertices must be related by an edge in |K1| Multiplication is given by con-
catenation where the duplicate vertex is given by concatenation with the doubled vertex v0 in
the middle reduced to a singleton. Concatination is naturally associative and the identity is
given by the singleton v0.. Equivalence under backtracking means that given a configuration
. . . , vi−1, vi, vi+1, vi, vi+2, . . . we can replace it with a configuration . . . , vi−1, vi, vi+2, . . . and
vice versa. Under this equivalence, the inverse of a loop v0, v1, . . . , vn−1, vn, v0 is v0, vn, vn−1, . . . , v1, v0.
Let φ : L → π1(|K1|, v0) take a combinatorial loop v0, v1, . . . , vn = v0 to the class [γl] where
γl : [0, 1] → |K1| is defined to be [ i−1

n
, i
n
] to the edge connecting vi−1 and vi. Note that the

backtracking equivalence can be given by a homotopy so this map is well defined.
Meanwhile given some loop γ based at v0, homotopy can cut out partial excursions onto

edges and reparamaterize the rest to achieve a path γ′ of the form above.
Now assume that there is some loop l such that φ(l) = e, and suppose that we can write

l as v0, v1, . . . , vn = v0. The universal covering space of |K1| will be an infinite trivalent tree
T (see Figure 9), and γl lifts to a loop in T based at a particular lift v′0 of v0. However,
note that T is contractible via a contraction that, providing a metric on T , has every points
distance to the base point decreasing. This provides a specific homotopy of γl that can be
acheived via repeated uses of backtracking.. □
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Note that a rooted trivalent tree (T, v0) can be thought of as three rooted binary trees,
whose roots are all connected to the base root v0. This coincides with our discussion that
once we decide an initial direction to move, a path is subsequently determined by a series
of choices of left and right. This provides a proof that our intuition about rolling up to
backtracking coincides with the fundamental group. We will now compute the fundamental
group of |K1|. The

Theorem 8.2. Let n := |Ẽ| − |Ṽ |+ 1, where Ṽ and Ẽ are resectively the set of verties and
edges for S̃. Then, π1(|K1|, v0) ∼= ∗nZ

Proof. Let T (not the same as in the proof of 8.1) be a spanning tree for K0, i.e. a subgraph
that contains all the vertices and no cycles. Note that the number of edges in T must be
|V | − 1. As such the number of edges not in T is n, and denote the set of such edges as E ′.
The rest of the proof follows similarly to example 1.22 in Hatcher. □

8.3. The fundamental group of the dual surface. We now show that the subgroup
generated by lassos in L is the subgroup of contractible loops, i.e. the kernel of the map
L→ π1(|S̃|, v0).

Definition 8.1. A lasso l is a loop in L that consists of a path γ from v0 to a particular
vertex v ∈ Ṽ , then doing a loop λ around one of the faces f incident to v, before returning
along γ−1 to v0. We will write this as γ−1 · λ · γ. Here · is concatenation on paths written in
the order of function composition. The loop above is specifically a lasso around f.

The following two lemmas will be helpful in identifying the subgroup generated by lassos
as the kernel of the map i : π1(|K1|, v0) → π1(S̃, v0), since the Seifert-van Kampen theorem
will present it to us in a particular way. As an intermediate step we will need similar results
about the subgroup generated by lassos around a particular face.

Lemma 8.3. Let l be a lasso around a face f and let Nl be the smallest normal subgroup
of L containing l. Then Nl is generated by all the lassos going around f . Furthermore the
smallest normal subgroup N containing all lassos is the subgroup generated by those lassos.

Proof. Let Hf be the subgroup generated by all of lassos going around f . First, we will show
that Hf is normal and therefore Nl ⊆ Hl. First note that for an individual lasso h around
f , and an element g ∈ L, we have that ghg−1 is a lasso around f since we can let γ′ = γ · g
be the path from v0 to v. As such ghg−1 ∈ Hf .

Now, given a general element h ∈ Hf we know that h = h1 · h2 · · ·hn where each hi is a
lasso around f . Given g ∈ L we have that

ghg−1 = g (h1 · h2 · · ·hn) g−1

= (gh1g
−1) · (gh2g−1) · · · (ghng−1) ∈ Hf ,

as needed to show that Hf is normal.
Now let h1 and h2 be loops around the face f . We will show that h2 is conjugate to h1 and

thus is in Nh1 Then each hi can be constructed using a path γi to some vertex vi incident to
f and a path λi traveling once around f starting and ending at vi.

Because we are ultimately trying to show that h2 ∈ Nh1 can assume without loss of
generality that both λi induce the same orientation on f , and consider λ′ to be the path
connecting v1 to v2 in this direction. If these were oriented in opposite directions, we can
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Figure 10. A figure representing some of the paths that occur in 8.3. Here
orange is γ1 and purple is γ2. The red can represent λ1 or λ2 depending on
which vertex is considered the starting and ending point. The blue represents
λ′.

show that h−1
2 , which will induce the same orientation on f is conjugate to h1, which will

force h−1
2 ∈ Nh1 and thus h2 ∈ Nh1 . Note that λ2 = λ′ · λ2 · λ′−1. Let g := γ−1

2 · λ′ · γ1. Then,

gh1g
−1 =(γ−1

2 · λ′ · γ1) · (γ−1
1 · λ1 · γ1) · (γ−1

1 · λ′−1 · γ2)
= γ−1

2 · λ′ · λ1 · λ′−1 · γ2
= γ−1

2 · λ2 · γ2
= h2,

as needed.
To show that N is generated by the lassos, we merely need to show that the subgroup

H generated by all the lassos is normal. The proof follows similarly to above in that the
conjugate of a lasso is a lasso. □

Theorem 8.4. Let S represent a polyhedral surface and S̃ it’s dual with 1-skeleton K1.
Then, the kernel of the map induced by inclusion i : π1(|K1|, v0) → π1(|S̃|, v0) is the subgroup
N generated by loops around the faces of S̃, i.e. around the vertices of S. Furthermore this
map is surjective.

Proof. The proof will proceed in two parts. For a given face f ∈ S̃, we first show that
π1(|K1| ∪ f, v0) ∼= π1(|K1|, v0)/Nf with the inclusion from |K1| to |K1| ∪ f inducing the
canonical projection. To see this let U1 be |K1| union the face f sans a single point on the
interior, and let U2 be an open neighborhood of the new face f union a path γ from f to v0.
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We can set it up so that U1 retracts onto |K1|, U2 retracts onto f with the path to v0 and
U1 ∩U2 tracts onto the image of the lasso around f defined using γ. As such, combining the
Seifert-van Kampen theorem and Lemma 8.3 gets the desired result.

Now for the second part, for each face f ∈ S̃ let Uf be a neighborhood of |K1| ∪ f in S̃.
In particular, letting pf be a point in face f , we can set Uf = S̃ − ∪f ′ ̸=fpf ′ . In this way we
have the Uf deformation retracts onto |K1| ∪ f . Furthermore for any collection of faces A
containing more than one eleemnt, we have that ∩f∈AUf = S̃ − ∪f∈F̃pf which deformation
retracts onto |K1|. So in particular double and tripple intersections are path connected.

This allows us to use the Seifert-van Kampen theorem to write π1(S̃, v0) as the free amal-
gamation of the π1(|K1| ∪ f, v0) along π1(|K1|, v0). Note that the free amalgamation has the
universal property of the pushout. In particular, what this means is that given a group
P and maps jf : π1(|K1| ∪ f, v0) → P , where given any collection of homomorphisms
ψf : π1(|K1| ∪ f, v0) → G such that the diagram below commutes there exists a unique
ψ : P → G commuting as below, then there exists a canonical isomoprhism between P and
π1(S̃, v0). Note that the diagram only contains the maps for two faces to prevent it from
getting too crowded.

π1(|K1| ∪ f1, v0)

π1(|K1|, v0)
... P G

π1(|K1| ∪ fn, v0)

if1

ifn

jf1

jfn

ψ

ψf1

ψfn

Now let P := π1(|K1|, v0)/N , which is possible because by 8.3, N is normal. Because
Nf ⊴ N , there exists canonical projections jf : π1(|K1| ∪ f, v0) → π1(|K1|, v0)/N . These
commute with the inclusion maps from if : π1(|K1|, v0) → π1(|K1| ∪ f, v0), since those maps
canonically identify π1(|K1|∪f, v0) with π1(|K1|, v0)/Nf . Furthermore, assume we have some
collection of maps ψf : π1(|K1| ∪ f, v0) → G for some group G that commute as above.

The fact that the diagram commutes as above means that there is a single homomorphism
ψ̃ : π1(|K1|, v0) → G such that ψf ◦ if = ψ̃ for all faces . Furthermore, ψ̃ must have N in
its kernel. We can see this because each ιf has Nf in its kernel thus forcing Nf to be in the
kernel of ψ̃ = ψf ◦ ιf Therefore, the smallest normal subgroup containing the Nf , which is
N , must be in the kernel of ψ̃.

As such, by the universal property of the quotient we have that ψ̃ = ψ ◦ j where j is the
projection from π1(|K1|, v0) → P and a unique map ψ : P → G. That this commutes with
the rest of the diagram, comes down to j factoring as jf ◦ if for any face f .

As such, we have shown that P satisfies the same universal property as π1(S̃, v0) and thus
they must be canonically isomorphic. □

From this theorem we get the following corollary.
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Corollary 8.5. The combinatorial fundamental group given by L/N is isomorphic to π1(S̃, v0) ∼=
π1(S, v0)

Proof. Combine Theorem 8.1 with Theorem 8.4. The isomorphism in Theorem 8.1 between
L and π1(|K1|, v0) identifies combinatorial lassos with continuous lassos as needed. The
identification of π1(S̃, v0) with π1(S, v0) comes from them representing homeormorphic spaces
and in fact are equivalent after subdivision. □

I didn’t end up needing this lemma but I’m keeping it here for your reference.

Lemma 8.6. Let G be a group. For a collection of subsets {A1, A2, . . . , An} ⊂ G, let Ni be
the smallest normal subgroup of G containing Ai and let N be the smallest normal subgroup
containing ∪iAi. Then N is the smallest normal subgroup containing all the Ni.

Proof. Note that the smallest normal subgroup NA containing a collection A is the intersec-
tion of all the normal subgroups containing A. The collection of normal subgroups containing
A is the same as the collection of normal subgroups containing NA. As such exchanging each
Ai for Ni dose not change set of normal subgroups we are intersecting when we compute
N . □
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