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Abstract. This article examines the dynamic phase transitions and pattern

formations attributed to binary systems modeled by the Cahn-Hilliard equa-

tion. In particular, we consider a two-dimensional lattice structure and de-
termine how different choices of the spanning vectors influence the resulting

stability and pattern formations. As the trivial steady-state loses its linear

stability, the binary system undergoes a dynamic transition which is shown
to be characterized by both the geometry of the domain and the choice of

parameters of the model. Unlike rectangular domains, we are able to observe

the emergence of hexagonally–packed circles, as well as the familiar rolls and
square structures. We begin with the decomposition of our function space into

a stable and unstable eigenspace before calculating the center manifold that

maps the former to the later. In analyzing the resulting reduced equations,
we consider the different multiplicities that the critical eigenvalue can have,

which is shown to be geometry-dependent. We briefly consider the long-range
interaction model and determine that it produces similar results to the original

model.
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1. Introduction

The Cahn-Hilliard model is a partial differential equation that describes the
process of phase separation by which two components of a binary fluid sponta-
neously separate and form domains pure in each component; see, e.g., Cahn and
Hilliard [1], Novick-Cohen and Segel [6], Reichl [8], and Pismen [7]. The Cahn-
Hilliard model is also used in modeling sharp interfaces of materials such as in Liu
and Shen [3], as well as as Shen and Yang [9], who developed a phase field model
for the mixture of two incompressible fluids and its approximations by a Fourier-
Spectral method. Many situations can be be modeled as a phase separation of
binary systems, and the systematic study of solutions to the Cahn-Hilliard equa-
tion and their stabilities prove to be useful in the natural sciences.

The main objective of this paper is to initiate a study of dynamic transitions
and pattern formations on a lattice periodic structure for the Cahn-Hilliard model
without or with long-range interaction. The specific goal is then to explore how the
geometry of the spatial domain, the physical parameters γ2 and γ3, and the control
λ affect 1) the type of phase transitions; 2) the structure of the transition states;
and 3) the emergence of different patterns (rolls, squares, hexagons, etc.).

This article will examine the phase transition and pattern formation that occurs
in a lattice domain system. The control parameter λ plays a critical role in deter-
mining the degeneracy of the basic solution u = 0 into patterns in the form of new
solutions to the model. Some patterns found in the lattice domain include rolls,
squares, hexagons, and rectangles in the far field.

It is classical that the Cahn-Hilliard model can be put in the perspective of an
infinite dimensional dissipative dynamical system. The mathematical analysis of
the model is carried using the dynamical transition theory developed by Ma and
Wang [5]. The key ingredients of the analysis consist of the following. First, the
solution on a lattice structure L with dual lattice L∗ = {n1k1+n2k2|(n1, n2) ∈ Z2}
can be Fourier expanded; see Section 2 for details. The Fourier modes correspond
to eigenfunctions of the linearized equation. This leads to a precise characteriza-
tion of the critical thresholds, the principle of exchange of stabilities (PES), and
the stable and unstable modes.

Second, we derive leading order approximations of the center manifold function,
so that the stable modes are written as functions of the unstable/center modes. We
then derive the leading order approximation of the reduced system of the original
Cahn-Hilliard on the center manifold. The reduced system depends on the number



CAHN-HILLIARD ON LATTICES: DYNAMIC TRANSITIONS AND PATTERN FORMATIONS3

of critical modes, the spatial geometry, and the physical parameters γ2, γ3, and λ.
The reduced system captures the precise information on types of phase transitions,
the structure of the transitions, and the related emerging patterns. For example,
in the case where the dimension of the critical space is four, the type of transition
is dictated by the sign of

b = γ3 −Aγ2
2 ,

with

A = max

{
(

2

27|kc1|2
+

4

9
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |kc1|2
)),

2

9|kc1|2

}
.

If b > 0, the system undergoes a dynamical transition to a local attractor Σλ, ho-
mological to a 3D sphere S3. Also, Σλ contains three circles of steady states and
a two-dimensional torus of steady states. In addition, the solution on Σλ gives rise
to square and roll patterns.

Reduction of our model into a system of reduced equations allows us to find
equilibrium solutions and transition types at bifurcation. Possible transitions in-
clude a continuous (Type I), jump (Type II), and mixed (Type III) transition. In a
continuous transition, emerging solutions stay withing a neighborhood of the basic
solution during bifurcation. Conversely, a jump transition exhibits solutions quickly
diverging from the basic solution and approaching the far field. Mixed transitions
are those that exhibit behavior of both Type I and Type II.

In the multiplicity six case, hexagon packed patterns also appear, which are ab-
sent in the classical Cahn-Hilliard model on rectangular domains.

2. Cahn-Hilliard Model

Consider a binary system of components with concentrations uA and uB that
experience long-range repulsive interaction. Assuming that the system is incom-
pressible, we can work exclusively with uA through the identity uA + uB = 1.
Consider the free energy functional associated with the binary system:

F (uA) =

∫
U

(
µ

2
|∇uA|2 + f(uA)

+
σd

2
(−∆)−

1
2 (uA − a) · (−∆)−

1
2 (uA − a))dx+ F0.(2.1)

Here U ⊂ R2 is a bounded domain, (−∆)−
1
2 is a fractional power of the Laplacian,

µ and σd are positive physical parameters, a is the concentration of component A
in the disordered state, and F0 is the free energy of the system in the disordered
state. We assume that

f(uA) = b1(uA − a)2 + b2(uA − a)3 + b3(uA − a)4(2.2)

where b1, b2, and b3 > 0 are arbitrary constants. The disordered state corresponds
to a complete spread of component A and is written as

a =
1

|U |

∫
U

uA(x)dx(2.3)
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where |U | is the area of the domain. In this paper, we will explore the case when U
is a lattice domain, and the typical Neumann boundary conditions associated with
the Cahn-Hilliard model will be replaced with a periodic condition over the lattice.

Let l1, l2 ∈ R2 be any set of linearly independent vectors. We consider a two-
dimensional lattice L and its dual lattice L∗ given by

(2.4)
L = {n1l1 + n2l2|(n1, n2) ∈ Z2},
L∗ = {n1k1 + n2k2|(n1, n2) ∈ Z2},

where ki · lj = 2πδij for i, j ∈ {1, 2}. Let U be the area enclosed by the parallelo-
gram created by the vectors l1 and l2.

The non-dimensional form of the negative gradient flow of the free energy (2.1)
is given by

(2.5)

ut = −∆2u− λ∆u+∆(γ2u
2 + γ3u

3), (x, t) ∈ R2 × R+,

u(x+ l, t) = u(x, t), l ∈ L,

u(x, 0) = ϕ(x),∫
U

u(x, t)dx = 0.

The non-dimensional variables and parameters (suppressing the primes) are given
by

(2.6)

x′ =
x

d
, t′ =

mµ

d4
t,

u′ = u, λ = −d2b1
µ

,

γ2 =
d2b2
µ

, γ3 =
d2b3
µ

.

These parameters were considered in [4]. Solutions of (2.5) take the form

u(x, t) =
∑

k∈L∗\{0}

(zk(t)e
ik·x + zk(t)e

−ik·x),(2.7)

where each point of the lattice can be written as k = n1k1 +n2k2 for some integers
(n1, n2) ̸= (0, 0), as in Hoyle [2]. Observe that the solution is periodic in L as
desired. From this, it can be calculated that

∆u(x, t) =
∑

k∈L∗\{0}

−|n1k1 + n2k2|2(zk(t)eik·x + zk(t)e
−ik·x)(2.8)

and

∆2u(x, t) =
∑

k∈L∗\{0}

|n1k1 + n2k2|4(zk(t)eik·x + zk(t)e
−ik·x).(2.9)

To put the model (2.5) in the perspective of nonlinear dissipative dynamical sys-
tems, we let

(2.10)

H := {u ∈ L2(U) |
∫
U

udx = 0},

H1 := {u ∈ H4(U) ∩H | u(x+ l, t) = u(x, t), l ∈ L},
H1/2 := {u ∈ H2(U) ∩H | u(x+ l, t) = u(x, t), l ∈ L}.
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We shall split the linear component of (2.5) into two operators: one depending on
the control parameter λ and the other not. Define Lλ = −A + Bλ : H1 → H and
G : H1/2 → H by

(2.11)
Au = ∆2u, Bλu = −λu,

G(u) = ∆(γ2u
2 + γ3u

3).

Then, (2.5) can be written as

(2.12)

∂u

∂t
= Lλu+G(u),

u(x, 0) = ϕ(x).

It is then classical to show that for any ϕ ∈ H, (2.12) has a global in time solution

u ∈ L2([0, T ];H1) ∩ L∞([0, T ];H), for all T > 0.(2.13)

In other words, (2.12) is a well-posed dynamical system.

3. Principle of Exchange of Stabilities

To study the dynamical transitions and pattern formations of (2.12), we first
examine the linear instability, leading to the exchange of stabilities principle. The
eigenvalues and eigenfunctions of Lλ subject to the periodicity in (2.5) are

βn1n2
(λ) = −|n1k1 + n2k2|4 + λ|n1k1 + n2k2|2

= −|n1k1 + n2k2|2(|n1k1 + n2k2|2 − λ),(3.1)

en1n2
= ei(n1k1·x+n2k2·x),(3.2)

as seen in (2.7) and (2.8). Note that both of these can be written equivalently as
βk = −|k|2(|k|2 − λ) and ek = eik·x and will be used interchangeably henceforth.

Let S ⊂ Z2 \ {(0, 0)} be the set of all integer weights (n1, n2) that minimize the
magnitude of the vector k = n1k1 + n2k2. More explicitly, denote

(3.3)
S = {(n1, n2) ∈ Z2 \ {(0, 0)} |

|n1k1 + n2k2|2 = min
(p,q)∈Z2\{(0,0)}

|pk1 + qk2|2}.

It can be seen that the possible values of the cardinality of S are two, four, and six.
For notation, when #S = 6, the elements of S are (nc

1, n
c
2), (−nc

1,−nc
2), (n

c
3, n

c
4),

(−nc
3,−nc

4), (n
c
5, n

c
6), and (−nc

5,−nc
6). Define the critical vectors of L∗ by

(3.4)

kc1 = nc
1k1 + nc

2k2,

kc2 = nc
3k1 + nc

4k2,

kc3 = nc
5k1 + nc

6k2.

Should #S = 2 or #S = 4, we will work only with one or two critical vectors,
respectively.

We now give examples of three lattices in which the critical eigenvalue has mul-
tiplicity two, four, and six. When #S = 4, the four vectors that have minimal
magnitude are the two critical vectors and their opposites. Perhaps the simplest
lattice to consider is the square lattice spanned by the vectors k1 = (1, 0) and
k2 = (0, 1). In this case, the elements of the lattice that have minimal magnitude
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Figure 1. Examples of various lattice structures in which the crit-
ical eigenvalue has multiplicity; (a) four, (b) two, and (c) six.

are the two spanning vectors as well as their opposites.

When #S = 2, only one vector and its additive inverse can achieve minimal

magnitude, as is the case with the critical vector kc = (
√
3
2 − 1, 1

2 ) of the lattice

spanned by the vectors k1 = (1, 0) and k2 = (
√
3
2 , 1

2 ). Notice that this critical vector
is the difference of the two spanning vectors; that is kc = k2 − k1.

When #S = 6, we seek three vectors and their opposites with minimal mag-

nitude. The lattice spanned by the vectors k1 = (1, 0) and k2 = (− 1
2 ,−

√
3
2 ) has

critical vectors k1, k2, and k1 + k2 = ( 12 ,−
√
3
2 ) as well as their additive inverses.

figure 1 shows graphs of these three lattices.

Define the spaces Eλ
1 and Eλ

2 by

(3.5)
Eλ

1 = span{e±i(nc
1k1+nc

2k2)·x | (nc
1, n

c
2) ∈ S},

Eλ
2 = span{u | ⟨u, ei⟩ = 0 for all ei ∈ Eλ

1 }.

We define the critical value of the control parameter by λ0 = |kc1|2 = |kc2|2 = |kc3|2.
This critical value plays a central role in the stability of the basic solution u = 0.
Specifically, as λ crosses the threshold λ0, a finite number of the eigenvalues given
by (3.1) become positive, and the basic solution becomes linearly unstable. This
principle of exchange of stabilities is given mathematically as follows:

(3.6)


βn(λ) < 0 if λ < λ0,

βn(λ) = 0 if λ = λ0,

βn(λ) > 0 if λ > λ0,

βn1n2
(λ0) < 0 if (n1, n2) ∈ Z× Z \ ({(0, 0)} ∪ S),

for all n ∈ S. Thus, with critical value λ0, the eigenvalue −|kc1|2(|kc1|2 − λ), has
either multiplicity two, four, or six with basis vectors for the eigenspace

(3.7)
{e1 = ei(k

c
1·x), e2 = e−i(kc

1·x), e3 = ei(k
c
2·x),

e4 = e−i(kc
2·x), e5 = ei(k

c
3·x), e6 = e−i(kc

3·x)},
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with the number of vectors equal to the cardinality of S. We now verify the existence
of a dynamical phase transition of (2.11) as λ becomes larger than λ0. Based on
Theorem 2.1.3 in [5], we have the following dynamical transition theorem:

Theorem 3.1 (Existence of Transition). The system (2.11) undergoes a dynamical
transition from the basic state u = 0 as the control parameter λ crosses the critical
threshold λ0. The transition is one of the three types: continuous, catastrophic, or
random, and the type is dictated by the nonlinear interaction.

Remark: This theorem states that a transition occurs when λ > λ0, and the tran-
sition will either be Type I, Type II, or Type III. The transition type is dependent
on the geometry of the lattice and the system parameters λ, γ2, and γ3. It is deter-
mined by capturing the nonlinear interactions of stable and unstable modes, using
dynamical transition theory and center manifold techniques. This will be the main
focus of the remaining part of the paper.

4. Multiplicity Four Case

4.1. Center manifold reduction. Consider the case where S has cardinality
four. Let

(4.1) Eλ
1 = span{e1(λ), e2(λ), e3(λ), e4(λ)},

denote the unstable and stable eigenspaces, respectively. Let Pi denote the canon-
ical projection of H into Ei for i = 1, 2. Then u(x,t) belongs to the direct sum of
these two spaces and can be written as

u(x, t) = y1e1 + y2e2 + y3e3 + y4e4 + z,(4.2)

where z ∈ Eλ
2 is the stable component. Equation (2.12) can thus be written in the

form

(yt · e+ zt) = Lλ(y · e+ z) +G(y · e+ z),(4.3)

where y = (y1, y2, y3, y4) and e = (e1, e2, e3, e4). Let ei ∈ e be any of the four
unstable eigenfunctions. Consider the projection of the Cahn-Hilliard equation
that results from taking the inner product of both sides of (4.3) with ei. Using the
mutual orthogonality of the eigenfunctions, we have∫

U

ẏieiēidx =

∫
U

Lλ(yiei)ēidx+

∫
U

G(y · e+ z)ēidx.(4.4)

Here integration is to be taken over the parallelogram U . Applying the linear
operator to ei and simplifying, we are left with

ẏi

∫
U

eiēidx = yiβnc
1n

c
2
(λ)

∫
U

eiēidx+

∫
U

G(y · e+ z)ēidx,

which implies that

ẏi = yiβnc
1n

c
2
(λ) +

1

|ei|2

∫
U

G(y · e+Φ(y))ēidx,(4.5)

where the norm of the eigenfunction is the area of the parallelogram |l1 × l2|. Here
we have written z = Φ(y) which is the center manifold function that maps the
unstable eigenspace to the stable. Because the linear operator L is diagonal near
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λ = λ0, we can use the following formula for the center manifold (Theorem A.1.1
in [5]):

−LλΦ(y) = P2G(y · e) + h.o.t.,(4.6)

where P2 denotes projection onto the stable eigenspace Eλ
2 . Fourier decomposing

the center manifold as Φ(y) =
∑∞

k=5 φk(y)ek allows us to write the left hand side
of (4.6) as

−LλΦ(y) = −
∞∑
k=5

φkLλek = −
∞∑
k=5

φkβk(λ)ek.(4.7)

Let ek ∈ Eλ
2 be any stable eigenfunction. Then taking the inner product of (4.6)

with ek yields

−βk|ek|2φk =

∫
U

G(y · e)ēkdx+ h.o.t.,(4.8)

which implies that

φk(y) = − 1

βk|ek|2

∫
U

G(y · e)ēkdx+ h.o.t.,(4.9)

where φk represents the Fourier coefficient of Φ(y) with basis function ek. We shall
use the following eight stable eigenfunctions for our approximation of the center
manifold:

(4.10)

e5,6 = e±2ikc
1·x, e7,8 = e±2ikc

2·x,

e9,10 = e±i(kc
1·x+kc

2·x), e11 = ei(−kc
1·x+kc

2·x),

e12 = ei(k
c
1·x−kc

2·x).

Associated with each of these eigenfunctions is a coefficient in y that is found by
means of equation (4.9). Let ek ∈ {ei}i=12

i=5 be any one of these stable eigenfunctions.
Per equation (4.9), we have

φk(y) = − 1

βk|ek|2

∫
U

∆(γ2(y · e)2 + γ3(y · e)3)ēkdx.(4.11)

Using integration by parts and the fact that ∆ēk = |k|2ēk, we can write

φk(y) = − |k|2

βk|ek|2

∫
U

(γ2(y · e)2 + γ3(y · e)3)ēkdx.(4.12)

The orthogonality of the eigenfunctions ensures that
∫
eiējdx = |ej |2δij . When the

nonlinear term of (4.12) is expanded, we see that the integral of every term vanishes
save for those of γ2(y · e)2 + γ3(y · e)3 that have eigenfunction ek. More specifically,
take e5 = e2ik

c
1·x. Dropping the cubic term, we have

φ5(y) = −
|k2nc

12n
c
2
|2

β2nc
12n

c
2
|e5|2

∫
U

γ2(y1e1 + y2e2 + y3e3 + y4e4)
2ē5dx,(4.13)

where the subscript on k2nc
12n

c
2
denotes the integers in the linear combination of the

eigenfunction e5 = ei(2k
c
1·x+0kc

2·x). Since ē5 = e−2ikc
1·x, we are searching for terms

of the square that contain the eigenfunction e2ik
c
1·x. Upon expanding, we observe
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that the only such term is γ2y
2
1e

2
1, since e21 = e5. Therefore the integral of all other

terms is zero and we are left with

φ5(y) = −
|k2nc

12n
c
2
|2

β2nc
12n

c
2
|e5|2

∫
U

γ2y
2
1e

2
1ē5dx

= −
γ2|k2nc

12n
c
2
|2

β2nc
12n

c
2
|e5|2

y21

∫
U

dx

= −
γ2|k2nc

12n
c
2
|2

β2nc
12n

c
2

y21 .(4.14)

where again k2nc
12n

c
2
= 2kc1 + 0kc2 and β2nc

12n
c
2
= −|k2nc

12n
c
2
|2(|k2nc

12n
c
2
|2 − λ) is the

eigenvalue of e5. We can obtain the other Fourier coefficients of the center manifold
by proceeding in a similar manner for the rest of the stable eigenfunctions. Listed
here, the coefficients are

(4.15)

φ5,6,7,8 = −
γ2|k(2nc

12n
c
2)
|2

β(2nc
12n

c
2)

y21,2,3,4,

φ9 = −
2γ2|k(nc

1+nc
3,n

c
2+nc

4)
|2

β(nc
1+nc

3,n
c
2+nc

4)
y1y3,

φ10 = −
2γ2|k(−nc

1−nc
3,−nc

2−nc
4)
|2

β(−nc
1−nc

3,−nc
2−nc

4)
y2y4,

φ11 = −
2γ2|k(−nc

1+nc
3,−nc

2+nc
4)
|2

β(−nc
1+nc

3,−nc
2+nc

4)
y2y3,

φ12 = −
2γ2|k(nc

1−nc
3,n

c
2−nc

4)
|2

β(nc
1−nc

3,n
c
2−nc

4)
y1y4.

Writing the center manifold as Φ(y) =
∑12

k=5 φk(y)ek and returning to equation
(4.5), we can view the nonlinear term as

γ2P1∆(

4∑
j=1

yjej +Φ)2 + γ3P1∆(

4∑
j=1

yjej +Φ)3.(4.16)

Letting ek ∈ Eλ
1 and dropping higher-order terms, we have

γ2

∫
U

∆(

4∑
j=1

yjej)
2ēkdx+ 2γ2

∫
U

∆((

4∑
j=1

yjej)Φ)ēkdx+ γ3

∫
U

∆(

4∑
j=1

yjej)
3ēkdx.

(4.17)

Using integration by parts and the fact that ∆ēk = |k|2ēk, we’re left with

|k|2(γ2
∫
U

(

4∑
j=1

yjej)
2ēkdx+ 2γ2

∫
U

(

4∑
j=1

yjej)Φēkdx+ γ3

∫
U

(

4∑
j=1

yjej)
3ēkdx).

(4.18)
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Consider the differential equation for y1 in the system (4.5). We have, along with
(4.18), that

ẏ1 = y1βnc
1n

c
2
(λ) +

|kc1|2

|e1|2
(γ2

∫
U

(

4∑
j=1

yjej)
2ē1dx

+ 2γ2

∫
U

(

4∑
j=1

yjej)Φē1dx+ γ3

∫
U

(

4∑
j=1

yjej)
3ē1dx).(4.19)

We search for cross-terms among (
∑4

j=1 yjej)
2 that contain the eigenfunction e1 =

eik
c
1·x. However, observation shows that there are no such terms. This holds true,

in fact, for each of the four differential equations in (4.5). Now looking at the term

(
∑4

j=1 yjej)Φ and using our expansion of the center manifold, we see that the terms

y2e2φ5e5, y3e3φ12e12, y4e4φ9e9,

all contain the eigenfunction e1 once simplified. Thus, the only non-zero terms that
result from the second integral in (4.19) are

2γ2|e1|2(y2φ5 + y3φ12 + y4 + φ9).

Finally, consider the term (
∑4

j=1 yjej)
3. We again seek cross-terms of this cube

that contain the eigenfunction e1 so that the integral may be non-trivial. The terms
we find are

3y21e
2
1y2e2, 6y1e1y3e3y4e4.

Thus the final integral in (4.19) becomes

γ3|e1|2(y21y2 + y1y3y4).

Combining these results in the original differential equation (4.5) yields the follow-
ing reduced equation

ẏ1 = y1βnc
1n

c
2
(λ) + |kc1|2(2γ2(y2φ5 + y3φ12 + y4φ9) + γ3(3y

2
1y2 + 6y1y3y4)).(4.20)

Using the coefficients found in (4.15) and the expressions of the eigenvalues in (3.1),
we can write y2φ5 + y3φ12 + y4φ9 as

γ2(−
y21y2

|k(2nc
1,2n

c
2)
|2 − λ

− 2y1y3y4
|k(nc

1−nc
3,n

c
2−nc

4)
|2 − λ

− 2y1y3y4
|k(nc

1+nc
3,n

c
2+nc

4)
|2 − λ

)

= γ2(−
y21y2

4|kc1|2 − λ
− 2y1y3y4

|kc1 − kc2|2 − λ
− 2y1y3y4

|kc1 + kc2|2 − λ
).

Using this, we can write (4.20) more conveniently as

ẏ1 = −|kc1|2(|kc1|2 − λ)y1

− 2γ2
2 |kc1|2(

−2y1y3y4
|kc1 − kc2|2 − λ

− 2y1y3y4
|kc1 + kc2|2 − λ

+
y21y2

−4|kc1|2 − λ
)

+ γ3|kc1|2(3y21y2 + 6y1y3y4).(4.21)

Following this procedure for the other three differential equations in (4.5) yields a
system of reduced equations which will be used to determine the transition type
and stability of solutions of the Cahn-Hilliard equation.
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By omitting the higher order terms o(3) := o(|y3|) +O(|y3|β1(λ)|), the reduced
system of (2.11) on the center manifold is given by the following:

y1t = β1(λ)y1 − 2γ2
2 |kc1|2(

−2y1y3y4
|kc1 − kc2|2 − λ

− 2y1y3y4
|kc1 + kc2|2 − λ

+
y21y2

−4|kc1|2 + λ
)

−γ3|kc1|2(3y21y2 + 6y1y3y4),(4.22)

y2t = β1(λ)y2 − 2γ2
2 |kc1|2(

−2y2y3y4
|kc1 − kc2|2 − λ

− 2y2y3y4
|kc1 + kc2|2 − λ

+
y1y

2
2

−4|kc1|2 + λ
)

−γ3|kc1|2(3y1y22 + 6y2y3y4),(4.23)

y3t = β1(λ)y3 − 2γ2
2 |kc1|2(

−2y1y2y3
|kc1 − kc2|2 − λ

− 2y1y2y3
|kc1 + kc2|2 − λ

+
y23y4

−4|kc1|2 + λ
)

−γ3|kc1|2(3y23y4 + 6y1y2y3),(4.24)

y4t = β1(λ)y4 − 2γ2
2 |kc1|2(

−2y1y2y4
|kc1 − kc2|2 − λ

− 2y1y2y4
|kc1 + kc2|2 − λ

+
y3y

2
4

−4|kc1|2 + λ
)

−γ3|kc1|2(3y3y24 + 6y1y2y4).(4.25)

Letting λ = λ0 = |k1|2, y2 = y1, and y4 = y3 gives

y1t = 2γ2
2 |kc1|2(

2y1|y3|2

|kc1 − kc2|2 − |kc1|2
+

2y1|y3|2

|kc1 + kc2|2 − |kc1|2
+

y1|y1|2

3|kc1|2
)

− γ3|kc1|2(3y1|y1|2 + 6y1|y3|2),(4.26)

y1t = 2γ2
2 |kc1|2(

2y1|y3|2

|kc1 − kc2|2 − |kc1|2
+

2y1|y3|2

|kc1 + kc2|2 − |kc1|2
+

y1|y1|2

3|kc1|2
)

− γ3|kc1|2(3y1|y1|2 + 6y1|y3|2),(4.27)

y3t = 2γ2
2 |kc1|2(

2y3|y1|2

|kc1 − kc2|2 − |kc1|2
+

2y3|y1|2

|kc1 + kc2|2 − |kc1|2
+

y3|y3|2

3|kc1|2
)

− γ3|kc1|2(3y3|y3|2 + 6y3|y1|2),(4.28)

y3t = 2γ2
2 |kc1|2(

2y3|y1|2

|kc1 − kc2|2 − |kc1|2
+

2y3|y1|2

|kc1 + kc2|2 − |k1|2
+

y3|y3|2

3|kc1|2
)

− γ3|kc1|2(3y3|y3|2 + 6y3|y1|2).(4.29)

Now break up the variables into real and imaginary components, so that y1 =
a1 + a2i and y3 = a3 + a4i. By combining real and imaginary parts, this gives the
leading order approximation of reduced system at the critical threshold λ0:

(4.30)

a1t = a1(ξ(a
2
1 + a22) + η(a23 + a24)),

a2t = a2(ξ(a
2
1 + a22) + η(a23 + a24)),

a3t = a3(η(a
2
1 + a22) + ξ(a23 + a24)),

a4t = a4(η(a
2
1 + a22) + ξ(a23 + a24)),

where

(4.31)

ξ =
2γ2

2 − 9|kc1|2γ3
3

,

η = 2|kc1|2(
2γ2

2

|kc1 − kc2|2 − |kc1|2
+

2γ2
2

|kc1 + kc2|2 − |kc1|2
− 3γ3).
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It can be seen that for i, j, k, l ∈ [1, 4] ∩ Z where i ̸= j ̸= k ̸= l, the 48 straight line
orbits come from the 24 straight lines given by

ai = aj = ak = 0,(4.32)

a21 = a22 = a23 = a24,(4.33)

ai = aj = 0 and a2k = a2l .(4.34)

Finally, the reduced system

(4.35)

a1t = βa1 + a1(ξ(a
2
1 + a22) + η(a23 + a24)) + o(3),

a2t = βa2 + a2(ξ(a
2
1 + a22) + η(a23 + a24)) + o(3),

a3t = βa3 + a3(η(a
2
1 + a22) + ξ(a23 + a24)) + o(3),

a4t = βa4 + a4(η(a
2
1 + a22) + ξ(a23 + a24)) + o(3),

where β = β10(λ) and o(3) = o(|a|3)+O(|a|3 ∗ |β|). By combining equations as well
as letting a21 + a22 = r21 and a23 + a24 = r22 gives the system (∗)

(4.36)
r1t = βr1 + r1(ξr

2
1 + ηr22) + o(3),

r2t = βr2 + r2(ηr
2
1 + ξr22) + o(3).

4.2. Dynamical transition theorem.

Theorem 4.1 (Transition Types of Multiplicity Four Case). Consider system
(2.12). Let the multiplicity of β1(λ0) be four. Let

A = max{( 2

27|kc1|2
+

4

9
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |kc1|2
)),

2

9|kc1|2
}.(4.37)

Then the following assertions hold true:
1. If

γ3 > Aγ2
2 ,(4.38)

then as λ crosses λ0, the system (2.11) undergoes a continuous (Type I) dynamic
transition to a local attractor Σλ, homological to S3.
2. If

γ3 < Aγ2
2 ,(4.39)

then the system undergoes a jump (Type II) dynamic transition as λ crosses λ0.

Remark: If the system undergoes a Type II transition, then the following are true:
1. Let λ < λ0 and λ be near λ0, then the system undergoes a sub-critical bifurcation.
2. There exists λ∗ < λ0 at which a saddle node bifurcation occurs.
These statements are true regarding all Type II transitions in future theorems.

Proof. The transition type at the critical point λ0 = |k1|2 is given by the system

(4.40)
r1t = r1(ξr

2
1 + ηr22),

r2t = r2(ηr
2
1 + ξr22),
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where ξ and η are defined in (4.31). It can be calculated that

ξ + η > 0 ⇐⇒ γ3 < (
2

27|kc1|2
+

4

9
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |k1|2
))γ2

2 ,

(4.41)

ξ + η < 0 ⇐⇒ γ3 > (
2

27|kc1|2
+

4

9
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |kc1|2
))γ2

2 ,

(4.42)

ξ > 0 ⇐⇒ γ3 <
2

9|kc1|2
γ2
2 ,(4.43)

ξ < 0 ⇐⇒ γ3 >
2

9|kc1|2
γ2
2 ,(4.44)

η > 0 ⇐⇒ γ3 <
4|kc1|2

3
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |kc1|2
)γ2

2 ,(4.45)

η < 0 ⇐⇒ γ3 >
4|kc1|2

3
(

1

|kc1 − kc2|2 − |kc1|2
+

1

|kc1 + kc2|2 − |kc1|2
)γ2

2 .(4.46)

Note that there are no elliptic orbits as the system (2.12) is a gradient system (see
Lemma A.2.7 in [5]). Observe that on the straight line r1 = r2, the system satisfies
dr2
dr1

= r2
r1

where ξ + η ̸= 0 and r1, r2 > 0. It can be seen that r1 = 0 and r2 = 0 as
well as r1 = r2 are the straight lines corresponding to the three straight line orbits
of this system.

Note that on the straight line r1 = r2, the system reduces to

(4.47)
r1t = r31(ξ + η),

r2t = r32(η + ξ).

Thus, when ξ+η > 0, the solutions tend away from the origin, and when ξ+η < 0,
the solutions tend towards the origin. In other words, when γ3 < ( 2

27|kc
1|2

+
4
9 (

1
|kc

1−kc
2|2−|kc

1|2
+ 1

|kc
1+kc

2|2−|kc
1|2

))γ2
2 , the solutions tend away from the origin, and

when γ3 > ( 2
27|kc

1|2
+ 4

9 (
1

|kc
1−kc

2|2−|kc
1|2

+ 1
|kc

1+kc
2|2−|kc

1|2
))γ2

2 , the solutions tend towards

the origin.

Note that on the straight line r1 = 0, the system reduces to

(4.48)
r1t = 0,

r2t = ξr32.

Thus, when ξ > 0, the solutions tend away from the origin, and when ξ < 0, the
solutions tend towards the origin. In other words, when γ3 < 2

9|kc
1|2

γ2
2 , the solutions

tend away from the origin, and when γ3 > 2
9|kc

1|2
γ2
2 , the solutions tend towards the

origin.

Note that on the straight line r2 = 0, the system reduces to

(4.49)
r1t = ξr31,

r2t = 0.
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Figure 2. Straight line orbits for: (a) ξ + η < 0 and ξ < 0; (b)
ξ + η > 0 and ξ > 0; (c) ξ + η > 0 and ξ < 0; (d) ξ + η < 0 and
ξ > 0.

Thus, when ξ > 0, the solutions tend away from the origin, and when ξ < 0, the
solutions tend towards the origin. In other words, when γ3 < 2

9|kc
1|2

γ2
2 , the solutions

tend away from the origin, and when γ3 > 2
9|kc

1|2
γ2
2 , the solutions tend towards the

origin.

By putting this together, when ξ + η < 0 and ξ < 0, or equivalently γ3 >
max{( 2

27|kc
1|2

+ 4
9 (

1
|kc

1−kc
2|2−|kc

1|2
+ 1

|kc
1+kc

2|2−|kc
1|2

)), 2
9|kc

1|2
}γ2

2 , solutions along all three

of the straight lines mentioned above approach the origin, so the transition is Type I.

When ξ+η > 0 and ξ > 0, or equivalently γ3 < min{( 2
27|kc

1|2
+ 4

9 (
1

|kc
1−kc

2|2−|kc
1|2

+
1

|kc
1+kc

2|2−|kc
1|2

)), 2
9|kc

1|2
}γ2

2 , solutions along all three of the straight lines mentioned

above tend away from the origin, so the transition is Type II.

If 2
9|kc

1|2
γ2
2 < ( 2

27|kc
1|2

+ 4
9 (

1
|kc

1−kc
2|2−|kc

1|2
+ 1

|kc
1+kc

2|2−|kc
1|2

))γ2
2 and 2

9|kc
1|2

γ2
2 < γ3 <

( 2
27|kc

1|2
+ 4

9 (
1

|kc
1−kc

2|2−|kc
1|2

+ 1
|kc

1+kc
2|2−|kc

1|2
))γ2

2 , then ξ < 0 and ξ+η > 0. This means

that solutions along the line r1 = r2 tend away from the origin, but solutions along
the lines r1 = 0 and r2 = 0 tend towards the origin, so the transition is Type II.

If 2
9|kc

1|2
γ2
2 > ( 2

27|kc
1|2

+ 4
9 (

1
|kc

1−kc
2|2−|kc

1|2
+ 1

|kc
1+kc

2|2−|kc
1|2

))γ2
2 and ( 2

27|kc
1|2

+ 4
9 (

1
|kc

1−kc
2|2−|kc

1|2
+

1
|kc

1+kc
2|2−|kc

1|2
))γ2

2 < γ3 < 2
9|kc

1|2
γ2
2 , then ξ > 0 and ξ + η < 0. This means that so-

lutions along the line r1 = r2 tend towards the origin, but solutions along the lines
r1 = 0 and r2 = 0 tend away from the origin, so the transition is Type II. □

Figure 1 show graphs of the straight line orbits in r1, r2 space. Notice that only
Figure 1(A) features solutions that approach the origin, hence why it is Type I.

4.3. Structure of the set of transition states. To study the detailed struc-
ture of the local attractor Σλ in Theorem 4.1, representing all transition states for
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λ > λ0, we examine the nontrivial fixed points of the reduced system by solving

(4.50)
βr1 = −r1(ξr

2
1 + ηr22),

βr2 = −r2(ηr
2
1 + ξr22).

The solutions are

p1 =(r1, r2) = (0,

√
−β

ξ
),(4.51)

p2 =(r1, r2) = (

√
−β

ξ
, 0),(4.52)

p3 =(r1, r2) = (

√
−β

ξ + η
,

√
−β

ξ + η
), if ξ2 ̸= η2.(4.53)

Note that the general solution u in Σλ is given by

u = y1e1 + y2e2 + y3e3 + y4e4 +Φ(y, λ),(4.54)

with Φ = o(|y|). Therefore, the eigenfunctions
∑4

k=1 ykek dictate the typical pat-
terns of solutions, represented by Σλ, for λ beyond the critical threshold λ0. The
Jacobian of the system at a fixed point (r1, r2) is given by

J =

(
β + 3ξr21 + ηr22 2ηr1r2

2ηr1r2 β + ηr21 + 3ξr22

)
.(4.55)

Consider the solution (r1, r2) = (0,
√

−β
ξ ). It can be seen that the Jacobian cal-

culated at this solution is diag(β + η|βξ |, β + 3ξ|βξ |). Thus, if β > 0, then −|ξ| < η

implies that this solution is a saddle and −|ξ| > η implies this solution is stable.

Consider the solution (r1, r2) = (
√

−β
ξ , 0). It can be seen that the Jacobian cal-

culated at this solution is diag(β + 3ξ|βξ |, β + η|βξ |). Thus, if β > 0, then −|ξ| < η

implies that this solution is a saddle and −|ξ| > η implies this solution is stable.

Consider the solution (r1, r2) = (
√

−β
ξ+η ,

√
−β
ξ+η ) with the condition that ξ2 ̸= η2.

The Jacobian calculated at this solution is(
β + (3ξ + η)| β

ξ+η | 2η| β
ξ+η |

2η| β
ξ+η | β + (3ξ + η)| β

ξ+η |

)
.(4.56)

It can be calculated that the eigenvalues of this matrix are β − (η − 3ξ)| β
ξ+η | and

β + 3β(η+ξ
β ∗ | β

ξ+η |). If β > 0, then η > ξ implies this solution is stable and η < ξ

implies this solution is a saddle. In conclusion, we have the following theorem:

Theorem 4.2 (Structure of Σλ). In the collapsed phase space (r1, r2), the bifurcated
attractor from case one in Theorem 4.1, Σλ ≈ S3, collapses to an arc in the first
quadrant, Σr

λ, which contains three fixed points: p1, p2, p3, given in (4.83-4.85).
For j ∈ {1, 2, 3}, pj generates the circles (p1 and p2) or torus (p3) of steady states

(r
(j)
1 eiθ, r

(j)
2 eiθ), which are all contained in Σλ.
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4.4. Example: square lattice. Let l1 = ( 2π50 , 0) and l2 = (0, 2π
50 ). The scal-

ing factor 50 is chosen so that the patterns are easier to be visualized. Then,
the dual lattice is spanned by the vectors k1 = (50, 0) and k2 = (0, 50). The
critical vectors in this case are kc1 = k1 and kc2 = k2. Thus |kc1|2 = |kc2|2 =
50 and |kc1 + kc2|2 = |kc1 − kc2|2 = 5000. We also have that β = 50λ − 2500,
ξ = 2

3γ
2
2 − 150γ3, and η = 8

99γ
2
2 − 300γ3. From the theorem in section 6, when

γ3 > max{ 37
22275 ,

2
450}γ

2
2 = 2

450γ
2
2 , all straight line orbits tend towards the origin

and the transition is Type I. When 37
22275γ

2
2 < γ3 < 2

450γ
2
2 , solutions along the

straight line r1 = r2 tend away from zero, but solutions along r1 = 0 and r2 = 0
tend towards the origin and the transition is Type II. When γ3 < 37

22275γ
2
2 , all

straight line orbits tend away from the origin and the transition is Type II.

The three stationary solutions are

(4.57)

p1 = (r1, r2) = (0,

√
7500− 150λ

2γ2
2 − 450γ3

),

p2 = (r1, r2) = (

√
7500− 150λ

2γ2
2 − 450γ3

, 0),

p3 = (r1, r2) = (

√
247500− 4950λ

74γ2
2 − 44550γ3

,

√
247500− 4950λ

74γ2
2 − 44550γ3

).

The trivial solution is unstable when the control parameter exceeds the critical
threshold, i.e. when λ > 50. Now let λ > 50. For the first and second solutions,
26
27γ

2
2 < γ3 < 22

9 γ2
2 implies the solutions are stable, and else are saddles. For the

third solution, 26
27γ

2
2 < γ3 < 22

9 γ2
2 implies the solution is stable, and else is a saddle.

Consider the solution (r1, r2) = (0,
√

7500−150λ
2γ2

2−450γ3
). Recalling that a21 + a22 = r21,

a23 + a24 = r22, and further that y1 = a1 + a2i, y3 = a3 + a4i, we see that our
stationary solutions to the reduced system are radial. From (4.2), we can write the
solutions as u(x, t) = y1e1 + ȳ1ē1 + y3e3 + ȳ3ē3 where the stable component is of
little significance anymore and can be dropped. In this case, r1 = 0 so the solution
becomes u = y3e3 + ȳ3ē3. Expanding and noting that kc2 = (0, 50) and e3 = eik

c
2x,

we have

(4.58)

u(x, t) = (a3 + ia4)(cos(k
c
2 · x)

+ i sin(kc2 · x)) + (a3 − ia4)(cos(k
c
2 · x)− i sin(kc2 · x))

= 2(a3 cos(50x2)− a4 sin(50x2)),

where x = (x1, x2). As (a3, a4) run along the circle a23 + a24 = r22, a set of sta-
tionary solutions is generated in (x, t)-space. The principle exchange of stability
guarantees that patterns in the form of solutions to (2.5) emerge as λ crosses the
critical threshold λ0 = 50. Figure 2 shows a graph of the stationary solution

(r1, r2) = (0,
√

7500−150λ
2γ2

2−450γ3
) when λ = 50.1, γ2 = 1, and γ3 = 17

450 . In this case,

(r1, r2) = (0, 1) and γ3 < 26
27γ

2
2 so that the solution is a saddle and we have chosen

the point (a3, a4) = (
√
2
2 ,

√
2
2 ) on the circle of solutions. The characteristic patterns

for this stationary solution are horizontal rolls. Graphically, we see that the size
of the domain is responsible for the amount of rolls within the square, and the
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Figure 3. Horizontal rolls exhibited by the stationary solution
u(x, t) =

√
2 cos(50x2)−

√
2 sin(50x2).

Figure 4. Vertical rolls exhibited by the stationary solution
u(x, t) =

√
2 cos(50x1)−

√
2 sin(50x1).

patterns shift vertically as the parameters (a1, a2) run along the unit circle.

Likewise, the solution for (r1, r2) = (
√

7500−150λ
2γ2

2−450γ3
, 0) can be written as

(4.59)

u(x, t) = (a1 + ia2)(cos(k
c
1 · x)

+ i sin(kc1 · x)) + (a1 − ia2)(cos(k
c
1 · x)− i sin(kc1 · x))

= 2(a1 cos(50x1)− a2 sin(50x1)),

which also produces rolls, however this time horizontal. Figure 3 shows a graph
of this solution for the same choice of constants and parameters used in Figure 2.

Finally, the solution for (r1, r2) = (
√

247500−4950λ
74γ2

2−44550γ3
,
√

247500−4950λ
74γ2

2−44550γ3
) can be writ-

ten as the sum of the previous solutions

u(x, t) = 2(a1 cos(x1)− a2 sin(x1) + a3 cos(x2)− a4 sin(x2)),(4.60)

where both (a1, a2) and (a3, a4) run along different circles centered at the origin
with radii r1 = r2. figure 4 shows the graph of this solution for λ = 50.1, γ2 = 1,
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Figure 5. Square-packed circles exhibited by stationary solution
u(x, t) =

√
2 cos(50x1) −

√
2 sin(50x1) +

√
2 cos(50x2) −

√
2

sin(50x2).

γ3 = 569
445500 . In this case, (r1, r2) = (1, 1), and γ3 > 26

27γ
2
2 so that the solution is

stable. Here, we have chosen (a1, a2) = (
√
2
2 ,

√
2
2 ) and (a3, a4) = (

√
2
2 ,

√
2
2 ) as the two

points on the unit circle. Notice here that the characteristic patterns are circles
and that they are arranged in a square-like fashion throughout the lattice. We
will encounter another pattern that exhibits circles packed in a different manner,
namely hexagonally-packed circles.

5. Multiplicity Two Case

5.1. Dynamical transition theorem. Consider the same situation as above
but assume that the pairs of (n1, n2) that minimize |n1k1 +n2k2|2 are (nc

1, n
c
2) and

(−nc
1,−nc

2). Equivalently, the cardinality of S is two. In this case, βn1n2
(λ0) < 0

if (n1, n2) ∈ Z× Z \ {(0, 0), (nc
1, n

c
2), (−nc

1,−nc
2)}. Thus, with critical value λ0, the

eigenvalue −|nc
1k1+nc

2k2|2(|nc
1k1+nc

2k2|2−λ) = −|kc|2(|kc|2−λ), has multiplicity
two:

(5.1)
Eλ

1 = span{e1 = ei(kc·x), e2 = e−i(kc·x)},

Eλ
2 = span{e3(λ), ...}.

An example of this is when the lattice is spanned by the vectors l1 = ( π
25 ,−

√
3π
25 )

and l2 = (0, 2π
25 ), which will be discussed in section 5.2. The solution can thus be

written as

u(x, t) = y1e1 + y2e2 + z,(5.2)

where z ∈ Eλ
2 is the stable component. By similar computation, the center manifold

function up to higher order terms is given by

ϕ(x) =
−γ2y

2
1

4|kc|2 − λ
e2ikc·x − γ2y

2
2

4|kc|2 − λ
e−2ikc·x.(5.3)
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Using this function, it can be calculated that the reduced equations for this system
are

(5.4)

y1t = −|kc|2(|kc|2 − λ)y1 +
2|kc|2γ2

2y
2
1y2

4|kc|2 − λ
− 3|kc|2y21y2γ3 + o(3),

y2t = −|kc|2(|kc|2 − λ)y2 +
2|kc|2γ2

2y1y
2
2

4|kc|2 − λ
− 3|kc|2y1y22γ3 + o(3).

Theorem 5.1 (Transition Types for Multiplicity Two). Assume the multiplicity
of β1 is two at λ = λ0 = |kc|2. The following are true:
1. If γ3 > 2

9|kc|2 γ
2
2 the system undergoes a continuous dynamical transition (Type

I) to Σλ ≈ S1 consisting of a circle of steady-states as λ crosses λ0.
2. If γ3 < 2

9|kc|2 γ
2
2 the system undergoes a jump dynamical transition (Type II) as

λ crosses λ0.

Proof. By letting

(5.5)
λ = λ0 = |kc|2, y1 = a1 + a2i,

y2 = a1 − a2i, η =
2

3
γ2
2 − 3|kc|2γ3,

the system given by (5.4) can be rewritten as

(5.6)
a1t = ηa1(a

2
1 + a22),

a2t = ηa2(a
2
1 + a22).

By analyzing this system, it can be seen that all solutions tend towards the origin
when η < 0 and tend away from the origin when η > 0. Thus, the transition is
Type I when η < 0 and Type II when η > 0. □

By using the approximative system

a1t = βa1 + ηa1(a
2
1 + a22),(5.7)

a2t = βa2 + ηa2(a
2
1 + a22),(5.8)

and letting a21 + a22 = r2, this system can be rewritten as

rt = βr + ηr3.(5.9)

The nontrivial equilibrium of this system is r =
√

−β
η . The Jacobian of this system

at a fixed point r is

J =
(
β + 3ηr2

)
.(5.10)

When r =
√

−β
η , the eigenvalue of the Jacobian is β + 3η|βη |. If β > 0, then η < 0

must be true, which implies that this solution will be stable. Stationary solutions
in this case are given by

(5.11)

u(x, t) = y1e1 + ȳ1ē1

= (a1 + ia2)(cos(kc · x) + i sin(kc · x))
+ (a1 − ia2)(cos(kc · x)− i sin(kc · x))
= 2(a1 cos(kc · x)− a2 sin(kc · x)),



20 GROSSMAN, HALLORAN, AND WANG

Figure 6. Stationary solution r=1

where (a1, a2) run along the circle a21 + a22 = r2. Note that solutions depend solely
on the two critical vectors of the lattice in which the magnitudes are least, and that
the spanning vectors play no direct role besides specifying the domain.

5.2. Example: roll patterns on parallelogram. Let l1 = ( π
25 ,−

√
3π
25 ) and

l2 = (0, 2π
25 ). Then the dual lattice is spanned by the vectors where k1 = (50, 0)

and k2 = (25
√
3, 25). It can be shown that |k1|2 = |k2|2 = 2500, |k1 + k2|2 =

3125 + 1250
√
3, and |k1 − k2|2 = 5000 − 2500

√
3. The critical points of the

lattice are k2 − k1 and k1 − k2 and so we will use the analysis outlined in the
section dealing lwith multiplicity two. In this case, it can be shown that β =
−(5000− 2500

√
3)(5000− 2500

√
3− λ) and η = 2

3γ
2
2 − 3(5000− 2500

√
3)γ3. From

section 5.1, when γ3 > 2
9(5000−2500

√
3)
γ2
2 , all straight line orbits tend towards the

origin and the transition is Type I. When γ3 < 2
9(5000−2500

√
3)
γ2
2 all straight line

orbits tend away from the origin and the transition is Type II.

The nontrivial stationary solution is r =

√
(2−

√
3)(2−

√
3−λ)

2
3γ

2
2−3(2−

√
3)γ3

. The non-trivial

solution is always stable for λ > λ0. By section 5.1, the solution can be written as

u(x, t) = 2(a1 cos(kc · x)− a2 sin(kc · x)),(5.12)

where kc = k2 − k1 = (
√
3
2 − 1, 1

2 ) and (a1, a2) run along the circle a21 + a22 = r2.

Figure 5 shows a graph of the solution for λ = 2, γ2 = 1, and γ3 = − 7−6
√
3

18−9
√
3
,

in which case r = 1. The parameters (a1, a2) are evaluated at the point (
√
3
2 , 1

2 ).
Notice the characteristic patterns are horizontal rolls similar to the square case.

6. Multiplicity Six Case

6.1. Dynamical transition theorem. Consider the same situation as above
but assume that #S = 6. Then,

S = {(nc
1, n

c
2), (−nc

1,−nc
2), (n

c
3, n

c
4), (−nc

3,−nc
4), (n

c
5, n

c
6), (−nc

5,−nc
6)}.(6.1)
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Thus, we have βn1n2
(λ0) < 0 for all (n1, n2) ∈ Z2\(S∪{(0, 0)}). Thus, with critical

value λ0, the eigenvalue

βnc
1n

c
2
(λ) = −|nc

1k1 + nc
2k2|2(|nc

1k1 + nc
2k2|2 − λ)

= −|kc|2(|kc|2 − λ),(6.2)

has multiplicity six with

(6.3)

e1 = ei(k
c
1·x), e2 = e−i(kc

1·x), e3 = ei(k
c
2·x),

e4 = e−i(kc
2·x), e5 = ei(k

c
3·x), e6 = e−i(kc

3·x),

Eλ
1 = span{e1, ..., e6},

Eλ
2 = span{e7, e8, ...}.

The solution can thus be written as

u(x, t) =

6∑
i=1

yiei + z ∈ Eλ
1

⊕
Eλ

2 ,(6.4)

where z ∈ Eλ
2 is the stable component. By similar computation, the center manifold

function up to higher order terms is given by ϕ(x) =
∑24

i=7 ϕiei. Using the notation
that

(6.5)

e7 = e2ik
c
1·x, e8 = e−2ikc

1·x, e9 = e2ik
c
2·x,

e10 = e−2ikc
2·x, e11 = e2ik

c
3·x, e12 = e−2ikc

3·x,

e13 = ei(k
c
1+kc

2)·x, e14 = e−i(kc
1+kc

2)·x, e15 = ei(k
c
1+kc

3)·x,

e16 = e−i(kc
1+kc

3)·x, e17 = ei(k
c
2+kc

3)·x, e18 = e−i(kc
2+kc

3)·x,

e19 = ei(k
c
1−kc

2)·x, e20 = e−i(kc
1−kc

2)·x, e21 = ei(k
c
1−kc

3)·x,

e22 = e−i(kc
1−kc

3)·x, e23 = ei(k
c
2−kc

3)·x, e24 = e−i(kc
2−kc

3)·x,
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it can be calculated that the coefficients of the manifold are

(6.6)

ϕ7 =
−γ2y

2
1

4|kc1|2 − λ
, ϕ8 =

−γ2y
2
2

4|kc1|2 − λ
,

ϕ9 =
−γ2y

2
3

4|kc1|2 − λ
, ϕ10 =

−γ2y
2
4

4|kc1|2 − λ
,

ϕ11 =
−γ2y

2
5

4|kc1|2 − λ
, ϕ12 =

−γ2y
2
6

4|kc1|2 − λ
,

ϕ13 =
−2γ2y1y3

|kc1 + kc2|2 − λ
, ϕ14 =

−2γ2y2y4
|kc1 + kc2|2 − λ

,

ϕ15 =
−2γ2y1y5

|kc1 + kc3|2 − λ
, ϕ16 =

−2γ2y2y6
|kc1 + kc3|2 − λ

,

ϕ17 =
−2γ2y3y5

|kc2 + kc3|2 − λ
, ϕ18 =

−2γ2y4y6
|kc2 + kc3|2 − λ

,

ϕ19 =
−2γ2y1y4

|kc1 − kc2|2 − λ
, ϕ20 =

−2γ2y2y3
|kc1 − kc2|2 − λ

,

ϕ21 =
−2γ2y1y6

|kc1 − kc3|2 − λ
, ϕ22 =

−2γ2y2y5
|kc1 − kc3|2 − λ

,

ϕ23 =
−2γ2y3y6

|kc2 − kc3|2 − λ
, ϕ24 =

−2γ2y4y5
|kc2 − kc3|2 − λ

.

Let

(6.7)

λ = λ0 = |kc1|2

y1 = a1 + a2i,

y2 = a1 − a2i,

y3 = a3 + a4i,

y4 = a3 − a4i,

y5 = a5 + a6i,

y6 = a5 − a6i,

D±
12 =

1

|kc1 ± kc2|2 − |kc1|2
,

D±
13 =

1

|kc1 ± kc3|2 − |kc1|2
,

D±
23 =

1

|kc2 ± kc3|2 − |kc1|2
,

ξ = −3|kc1|2γ3 +
2

3
γ2
2 ,

η = −6|kc1|2γ3 + |kc1|2(4D−
12 + 4D+

12)γ
2
2 ,

χ = −6|kc1|2γ3 + |kc1|2(4D−
13 + 4D+

13)γ
2
2 ,

ω = −6|kc1|2γ3 + |kc1|2(4D−
23 + 4D+

23)γ
2
2 .
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Then, the reduced system on the center manifold can be rewritten as

(6.8)

a1t = βa1 + a1(ξ(a
2
1 + a22) + η(a23 + a24) + χ(a25 + a26)) + o(3),

a2t = βa2 + a2(ξ(a
2
1 + a22) + η(a23 + a24) + χ(a25 + a26)) + o(3),

a3t = βa3 + a3(η(a
2
1 + a22) + ξ(a23 + a24) + ω(a25 + a26)) + o(3),

a4t = βa4 + a4(η(a
2
1 + a22) + ξ(a23 + a24) + ω(a25 + a26)) + o(3),

a5t = βa5 + a5(χ(a
2
1 + a22) + ω(a23 + a24) + ξ(a25 + a26)) + o(3),

a6t = βa6 + a6(χ(a
2
1 + a22) + ω(a23 + a24) + ξ(a25 + a26)) + o(3).

It can be calculated that
(6.9)

ξ > 0 ⇐⇒ γ3 <
2

9|kc1|2
γ2
2 ,

ξ < 0 ⇐⇒ γ3 >
2

9|kc1|2
γ2
2 ,

ξ + ω > 0 ⇐⇒ γ3 < (
2

27|kc1|2
+

4

9
D−

23 +
4

9
D+

23)γ
2
2 ,

ξ + ω < 0 ⇐⇒ γ3 > (
2

27|kc1|2
+

4

9
D−

23 +
4

9
D+

23)γ
2
2 ,

ξ + χ > 0 ⇐⇒ γ3 < (
2

27|kc1|2
+

4

9
D−

13 +
4

9
D+

13)γ
2
2 ,

ξ + χ < 0 ⇐⇒ γ3 > (
2

27|kc1|2
+

4

9
D−

13 +
4

9
D+

13)γ
2
2 ,

ξ + η > 0 ⇐⇒ γ3 < (
2

27|kc1|2
+

4

9
D−

12 +
4

9
D+

12)γ
2
2 ,

ξ + η < 0 ⇐⇒ γ3 > (
2

27|kc1|2
+

4

9
D−

12 +
4

9
D−

12D
+
12)γ

2
2 ,

ξ + η + χ > 0 ⇐⇒ γ3 < (
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

13 +
4

15
D+

13)γ
2
2 ,

ξ + η + χ < 0 ⇐⇒ γ3 > (
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

13 +
4

15
D+

13)γ
2
2 ,

η + ξ + ω > 0 ⇐⇒ γ3 < (
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

23 +
4

15
D+

23)γ
2
2 ,

η + ξ + ω < 0 ⇐⇒ γ3 > (
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

23 +
4

15
D+

23)γ
2
2 ,

χ+ ω + ξ > 0 ⇐⇒ γ3 < (
2

45|kc1|2
+

4

15
D−

13 +
4

15
D+

13 +
4

15
D−

23 +
4

15
D+

23)γ
2
2 ,

χ+ ω + ξ < 0 ⇐⇒ γ3 > (
2

45|kc1|2
+

4

15
D−

13 +
4

15
D+

13 +
4

15
D−

23 +
4

15
D+

23)γ
2
2 .

By letting r21 = a21 + a22, r
2
2 = a23 + a24, and r23 = a25 + a26, the system becomes

r1t = r1(ξr
2
1 + ηr22 + χr23),(6.10)

r2t = r2(ηr
2
1 + ξr22 + ωr23),(6.11)

r3t = r3(χr
2
1 + ωr22 + ξr23).(6.12)
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The straight lines corresponding to this system are

r1 = r2 = 0;(6.13)

r1 = r3 = 0;(6.14)

r2 = r3 = 0;(6.15)

r1 = 0 and r2 = r3;(6.16)

r2 = 0 and r1 = r3;(6.17)

r3 = 0 and r1 = r2;(6.18)

r1 = r2 = r3.(6.19)

On these straight lines, the systems that emerge are respectively{
r3t = ξr33;(6.20) {
r2t = ξr32;(6.21) {
r1t = ξr31;(6.22) {
r2t = r32(ξ + ω),

r3t = r33(ξ + ω);
(6.23) {

r1t = r31(ξ + χ),

r3t = r33(ξ + χ);
(6.24) {

r1t = r31(ξ + η),

r2t = r32(ξ + η);
(6.25) 

r1t = r31(ξ + η + χ),

r2t = r32(ξ + η + ω),

r3t = r33(ξ + χ+ ω).

(6.26)

Thus, the only way for all solutions to go to zero along these straight lines is for all
of the coefficients to be negative. Let

A = { ξ

γ2
2

,
ξ + ω

γ2
2

,
ξ + χ

γ2
2

,
ξ + η

γ2
2

,
ξ + η + χ

γ2
2

,
ξ + η + ω

γ2
2

,
ξ + χ+ ω

γ2
2

},(6.27)

or equivalently,

(6.28)

A = { 2

9|kc1|2
, (

2

27|kc1|2
+

4

9
D−

23 +
4

9
D+

23), (
2

27|kc1|2
+

4

9
D−

13 +
4

9
D+

13),

(
2

27|kc1|2
+

4

9
D−

12 +
4

9
D+

12),

(
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

13 +
4

15
D+

13),

(
2

45|kc1|2
+

4

15
D−

12 +
4

15
D+

12 +
4

15
D−

23 +
4

15
D+

23),

(
2

45|kc1|2
+

4

15
D−

13 +
4

15
D+

13 +
4

15
D−

23 +
4

15
D+

23)}
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From this, it can be seen that the transition is Type I when γ3 > (maxA)γ2
2 and

Type II when γ3 < (maxA)γ2
2 . This can be stated in the following theorem:

Theorem 6.1 (Transition Types for Multiplicity Six Case). Suppose kc1, k
c
2, and

kc3 are defined as previously and kc3 = akc1 + bkc2 such that a, b ̸= 0 and (a, b) ∈
Z2 \ {(1, 1), (−1, 1), (−1,−1), (1,−1)}. Then, the system undergoes a continuous
(Type I) transition to Σλ homological to S3 when γ3 > (maxA)γ2

2 (implying that
ξ < 0) and undergoes a jump (Type II) transition when γ3 < (maxA)γ2

2 .

6.2. Structure of the set of transition states. By using the approximative
system

r1t = βr1 + r1(ξr
2
1 + ηr22 + χr23) + o(3),(6.29)

r2t = βr2 + r2(ηr
2
1 + ξr22 + ωr23) + o(3),(6.30)

r3t = βr3 + r3(χr
2
1 + ωr22 + ξr23) + o(3),(6.31)

the nontrivial equilibria of this system can be calculated to be

(6.32)

p1 : (r1, r2, r3) = (

√
−β

ξ
, 0, 0),

p2 : (r1, r2, r3) = (0,

√
−β

ξ
, 0),

p3 : (r1, r2, r3) = (0, 0,

√
−β

ξ
),

p4 : (r1, r2, r3) = (0,

√
−β

ω + ξ
,

√
−β

ω + ξ
),

p5 : (r1, r2, r3) = (

√
−β

χ+ ξ
, 0,

√
−β

χ+ ξ
),

p6 : (r1, r2, r3) = (

√
−β

η + ξ
,

√
−β

η + ξ
, 0),

p7 : (r1, r2, r3) = (

√
β(ξ − ω)(−η + ξ − χ+ ω)

η2ξ − 2ηχω + ξ(−ξ2 + χ2 + ω2)
,√

β(ξ − χ)(−η + ξ + χ− ω)

η2ξ − 2ηχω + ξ(−ξ2 + χ2 + ω2)
,√

β(ξ − η)(η + ξ − χ− ω)

η2ξ − 2ηχω + ξ(−ξ2 + χ2 + ω2)
).

The Jacobian of the reduced system at a fixed point (r1, r2, r3) is

J =

β + 3ξr21 + ηr22 + χr23 2ηr1r2 2χr1r3
2ηr1r2 β + ηr21 + 3ξr22 + ωr23 2ωr2r3
2χr1r3 2ωr2r3 β + χr21 + ωr22 + 3ξr23

 .

(6.33)
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The stability of each solution can be determined from calculating the eigenvalues
of this matrix at each equilibria, such as in the example in the next section.

Theorem 6.2 (Structure of Σλ). Under a Type I transition, the bifurcated attractor
Σλ from Theorem 6.1 is homological to S5, with p1, p2, and p3 correspond to circles
of solutions; p4, p5, and p6 correspond to torii of solutions; and p7 corresponding
to an S1 × S1 × S1 surface.

6.3. Example: roll patterns. Let l1 = (2π, 7
√
15π
15 ) and l2 = (0, 8

√
15π
15 ). Then

the dual lattice is spanned by k1 = (1, 0) and k2 = (− 7
8 ,

√
15
4 ). Note that |k1−k2|2 =

285
64 , |k1 + k2|2 = 61

64 . The critical points of the lattice are thus k1, −k1, k2, −k2,
2k1 + 2k2, and −2k1 − 2k2, so we will use the analysis outlined in the previous
sections dealing with multiplicity six with higher coefficient linear dependence. Let
γ2 = 1 and γ3 = 2. Observe that β = λ − 1, ξ = − 16

3 , η = − 63764
663 , χ = − 36076

3657 ,

ω = − 314956
38577 . Let λ = λ0 = 1 and consider the straight line orbits of the system.

From theorem 6.1, we see that max(A) = ξ = − 16
3 , and thus the transition is

Type I because γ3 > (maxA)γ2
2 . Now let λ = 1.1 so that we may consider the

pattern formation that results from the dynamic transition as λ crossed the critical
threshold. The trivial solution (r1, r2, r3) = (0, 0, 0) obviously becomes unstable as

λ > λ0 = 1. Next consider the solution (r1, r2, r2) = (
√

−β
ξ , 0, 0) = (

√
3

160 , 0, 0).

The Jacobian evaluated at this solution is

J =

−0.2 0 0
0 −1.703 0
0 0 −0.085

 ,(6.34)

and so the solution is stable. Observe that because β, ξ, η, and χ are all negative,

the solutions (r1, r2, r3) = (0,
√

−β
ξ , 0) and (r1, r2, r3) = (0, 0,

√
−β
ξ ) are also both

stable as their Jacobians are diagonal matrices with negative entries. The solution

(r1, r2, r2) = (
√

−β
ξ , 0, 0) can be written as

u(x, t) = 2(a1 cos(k
c
1 · x)− a2 sin(k

c
1 · x)),(6.35)

where a21 + a22 = r21. Graphs of this solution (and the previous two) are similar
to those of the multiplicity two case. Now consider the solution (r1, r2, r3) =

(0,
√

−β
ω+ξ ,

√
−β
ω+ξ ) = (0, 38577

5207000 ,
38577

5207000 ). The Jacobian evaluated at this solution

is

J =

0.094 0 0
0 0.0987 −0.000896
0 −0.000896 0.987

 ,(6.36)

with eigenvalues ( 24899
250000 ,

24451
250000 ,

47
500 ), from which we see that the solution is unstable

in all directions. This solution can be written as

u(x, t) = 2(a3 cos(k
c
2 · x)− a4 sin(k

c
2 · x) + a5 cos(k

c
3 · x)− a6 sin(k

c
3 · x)),(6.37)

where a23 + a24 = r22 and a25 + a26 = r23. Graphs of this solution are similar to those
of the multiplicity four case. Consider the solution p7. Substituting values for β,
ξ, ω, η, and χ produce undefined values for r1 and r2. Subsequently, this solution
does not exist for the values of the parameters chosen.
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7. Multiplicity Six with kc3 = kc1 + kc2

7.1. Center manifold reduction. Consider the same situation as above but
assume that kc3 = kc1 + kc2. This scenario is important because different coefficients
would have zero in the denominator in the previous computations. If kc3 = kc1 − kc2,
then the lattice can be redefined with kc2 = −kc2 and the rest of these computations
follow. In this case,

S = {(nc
1, n

c
2), (−nc

1,−nc
2), (n

c
3, n

c
4), (−nc

3,−nc
4), (n

c
5, n

c
6), (−nc

5,−nc
6)}.(7.1)

Thus, we have βn1n2(λ0) < 0 for all (n1, n2) ∈ Z2\(S∪{(0, 0)}). Thus, with critical
value λ0, the eigenvalue

βnc
1n

c
2
(λ) = −|nc

1k1 + nc
2k2|2(|nc

1k1 + nc
2k2|2 − λ)

= −|kc|2(|kc|2 − λ),(7.2)

has multiplicity six with

(7.3)

e1 = ei(k
c
1·x), e2 = e−i(kc

1·x), e3 = ei(k
c
2·x),

e4 = e−i(kc
2·x), e5 = ei(k

c
3·x), e6 = e−i(kc

3·x),

Eλ
1 = span{e1, ..., e6},

Eλ
2 = span{e7, e8, ...}.

The solution can thus be written as

u(x, t) =

6∑
i=1

yiei + z,(7.4)

where z ∈ span{e7, e8, ...} is the stable component. By similar computation, the

center manifold function up to higher order terms is given by ϕ(x) =
∑24

i=7 ϕiei.
Using the notation that

(7.5)

e7 = e2ik
c
1·x, e8 = e−2ikc

1·x, e9 = e2ik
c
2·x,

e10 = e−2ikc
2·x, e11 = e2ik

c
3·x, e12 = e−2ikc

3·x,

e13 = ei(k
c
1−kc

2)·x, e14 = e−i(kc
1−kc

2)·x, e15 = ei(2k
c
1+kc

2)·x,

e16 = e−i(2kc
1+kc

2)·x, e17 = ei(k
c
2+2kc

2)·x, e18 = e−i(kc
2+2kc

2)·x,

it can be calculated that the coefficients of the manifold are

(7.6)

ϕ7 =
−γ2y

2
1

4|kc1|2 − λ
, ϕ8 =

−γ2y
2
2

4|kc1|2 − λ
,

ϕ9 =
−γ2y

2
3

4|kc1|2 − λ
, ϕ10 =

−γ2y
2
4

4|kc1|2 − λ
,

ϕ11 =
−γ2y

2
5

4|kc1|2 − λ
, ϕ12 =

−γ2y
2
6

4|kc1|2 − λ
,

ϕ13 =
−2γ2y1y4

|kc1 − kc2|2 − λ
, ϕ14 =

−2γ2y2y3
|kc1 − kc2|2 − λ

,

ϕ15 =
−2γ2y1y5

|2kc1 + kc2|2 − λ
, ϕ16 =

−2γ2y2y6
|2kc1 + kc2|2 − λ

,

ϕ17 =
−2γ2y3y5

|kc1 + 2kc2|2 − λ
, ϕ18 =

−2γ2y4y6
|kc1 + 2kc2|2 − λ

.
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Using this function and by letting

(7.7)

λ = λ0 = |kc1|2

y1 = a1 + a2i,

y2 = a1 − a2i,

y3 = a3 + a4i,

y4 = a3 − a4i,

y5 = a5 + a6i,

y6 = a5 − a6i,

ξ = 2|kc1|2(
2γ2

2

|kc1 − kc2|2 − |kc1|2
− 3γ3),

η = −3|kc1|2γ3 +
2

3
γ2
2

χ = 2|kc1|2(
2γ2

2

|2kc1 + kc2|2 − |kc1|2
− 3γ3),

ω = 2|kc1|2(
2γ2

2

|kc1 + 2kc2|2 − |kc1|2
− 3γ3),

τ = 2|kc1|2γ2,

the reduced system can be rewritten as
(7.8)

a1t = βa1 + a1(η(a
2
1 + a22) + ξ(a23 + a24) + χ(a25 + a26))− τa3a5 − τa4a6 + o(3),

a2t = βa2 + a2(η(a
2
1 + a22) + ξ(a23 + a24) + χ(a25 + a26))− τa3a6 + τa4a5 + o(3),

a3t = βa3 + a3(ξ(a
2
1 + a22) + η(a23 + a24) + ω(a25 + a26))− τa1a5 − τa2a6 + o(3),

a4t = βa4 + a4(ξ(a
2
1 + a22) + η(a23 + a24) + ω(a25 + a26))− τa1a6 + τa2a5 + o(3),

a5t = βa5 + a5(χ(a
2
1 + a22) + ω(a23 + a24) + η(a25 + a26))− τa1a3 + τa2a4 + o(3),

a6t = βa6 + a6(χ(a
2
1 + a22) + ω(a23 + a24) + η(a25 + a26))− τa2a3 − τa1a4 + o(3).

From this point, the transition dynamics can be calculated using the different
straight lines in a six dimensional space. In order to make the calculations simpler,
we will impose another condition on the original solution of the equation: u must
be even in x.

7.2. u even in x. Assume that u(x, t) = u(−x, t). For this to be true, then
(7.9) ∑

(n1,n2)∈Z×Z+\{(0,0)}

(zn1n2
(t)ei(n1(k1·x)+n2(k2·x)) + zn1n2

(t)e−i(n1(k1·x)+n2(k2·x)))

=
∑

(n1,n2)∈Z×Z+\{(0,0)}

(zn1n2
(t)e−i(n1(k1·x)+n2(k2·x)) + zn1n2

(t)ei(n1(k1·x)+n2(k2·x))).
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This condition implies that z(t) = z(t), so z(t) ∈ R for all t. This also means that

u(x, t) =
∑

(n1,n2)∈Z×Z+\{(0,0)}

zn1n2(t)(e
i(n1(k1·x)+n2(k2·x)) + e−i(n1(k1·x)+n2(k2·x)))

=
∑

(n1,n2)∈Z×Z+\{(0,0)}

(2zn1n2(t) cos(n1(k1 · x) + n2(k2 · x))

=
∑

(n1,n2)∈Z×Z+\{(0,0)}

(z̃n1n2(t) cos(n1(k1 · x) + n2(k2 · x)).

For the remaining part of this paper, we will be suppressing the tilde.

Now assume that #S = 3 (this can occur since u is even so the negative of a
mode is the same as the mode itself) and kc3 = kc1 + kc2. In this case,

S = {(nc
1, n

c
2), (n

c
3, n

c
4), (n

c
5, n

c
6)}.(7.10)

Thus, we have βn1n2
(λ0) < 0 for all (n1, n2) ∈ Z× Z+ \ (S ∪ {(0, 0)}). Thus, with

critical value λ0, the eigenvalue

βnc
1n

c
2
(λ) = −|nc

1k1 + nc
2k2|2(|nc

1k1 + nc
2k2|2 − λ)

= −|kc|2(|kc|2 − λ),(7.11)

has multiplicity six with

(7.12)

e1 = cos(kc1 · x), e2 = cos(kc2 · x), e3 = cos(kc3 · x),

Eλ
1 = span{e1, e2, e3},

Eλ
2 = span{e4, e5, ...}.

The solution can thus be written as

u(x, t) =

3∑
i=1

yiei + z,(7.13)

where z ∈ Eλ
2 is the stable component. By similar computation, the center manifold

function up to higher order terms is given by ϕ(x) =
∑24

i=4 ϕiei. Using the notation
that

(7.14)

e4 = cos(2kc1 · x), e5 = cos(2kc2 · x),
e6 = cos(2kc3 · x), e7 = cos((kc1 − kc2) · x),
e8 = cos((2kc1 + kc2) · x), e9 = cos((kc1 + 2kc2) · x),

it can be calculated that the coefficients of the manifold are

(7.15)

ϕ4 =
−γ2y

2
1

8|kc1|2 − 2λ
, ϕ5 =

−γ2y
2
2

8|kc1|2 − 2λ
,

ϕ6 =
−γ2y

2
3

8|kc1|2 − 2λ
, ϕ7 =

−γ2y1y2
|kc1 − kc2|2 − λ

,

ϕ8 =
−γ2y1y3

|2kc1 + kc2|2 − λ
, ϕ9 =

−γ2y2y3
|kc1 + 2kc2|2 − λ

.
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Using this function and by letting

(7.16)

λ = λ0 = |kc1|2,

ξ = −3

4
|kc1|2γ3 +

1

6
γ2
2 ,

η = −3

2
|kc1|2γ3 +

|kc1|2

|kc1 − kc2|2 − |kc1|2
γ2
2 ,

χ = −3

2
|kc1|2γ3 +

|kc1|2

|2kc1 + kc2|2 − |kc1|2
γ2
2 ,

ω = −3

2
|kc1|2γ3 +

|kc1|2

|kc1 + 2kc2|2 − |kc1|2
γ2
2 ,

τ = −|kc1|2γ2,

the reduced system can be rewritten as

(7.17)

y1t = βy1 + y1(ξy
2
1 + ηy22 + χy23) + τy2y3 + o(3),

y2t = βy2 + y2(ηy
2
1 + ξy22 + ωy23) + τy1y3 + o(3),

y3t = βy3 + y3(χy
2
1 + ωy22 + ξy23) + τy1y2 + o(3).

By algebraic calculations, it can be shown that if |kc1|2 = |kc2|2 = |kc3|2 and kc3 =
kc1 + kc2, then |kc1 − kc2|2 = |2kc1 + kc2|2 = |kc1 + 2kc2|2. This implies, that

(7.18)

ξ = −3

4
|kc1|2γ3 +

1

6
γ2
2 ,

η = χ = ω = −3

2
|kc1|2γ3 +

|kc1|2

|kc1 − kc2|2 − |kc1|2
γ2
2 ,

τ = −|kc1|2γ2,

and the reduced system can be rewritten as

(7.19)

y1t = βy1 + ξy31 + ηy1y
2
2 + ηy1y

2
3 + τy2y3 + o(3),

y2t = βy2 + ξy32 + ηy2y
2
3 + ηy1y

2
2 + τy1y3 + o(3),

y3t = βy3 + ξy33 + ηy21y3 + ηy22y3 + τy1y2 + o(3).

7.3. Dynamical transition theorem.

Theorem 7.1 (Transition Types with kc3 = kc1 + kc2). Consider the system defined
in (7.52-7.54):
Case 1: If γ2 = 0, then the system undergoes a continuous (Type I) transition to
Σλ ≈ S2 if γ3 > 0, and undergoes a jump (Type II) transition if γ3 < 0.
Case 2: If γ2 > 0, the system undergoes a jump (Type II) transition if γ3 < 2

9|kc
1|2

γ2
2 ,

and a continuous (Type I) transition to Σλ ≈ S2 if γ3 > 2
9|kc

1|2
γ2
2 .

Case 3: If γ2 < 0, the system undergoes a jump (Type II) transition.

Proof. Case 1: If γ2 = 0, then

ξ = −3

4
|kc1|2γ3, η = −3

2
|kc1|2γ3, τ = 0.(7.20)
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The system then becomes

y1t = βy1 + ξy1(y
2
1 + 2y22 + 2y23) + o(3),(7.21)

y2t = βy2 + ξy2(2y
2
1 + y22 + 2y23) + o(3),(7.22)

y3t = βy3 + ξy3(2y
2
1 + 2y22 + y23) + o(3).(7.23)

If ξ > 0, the all solutions will tend away from the origin, and if ξ < 0 all solutions
will tend towards the origin. Equivalently, if γ3 < 0, the all solutions will tend away
from the origin, and if γ3 > 0 all solutions will tend towards the origin. Therefore,
if γ3 < 0, the transition is Type II and if γ3 > 0, the transition is Type I.
Case 2: If γ2 > 0 then τ < 0. The straight lines corresponding to this system are

(7.24)

y1 = y2 = 0,

y1 = y3 = 0,

y2 = y3 = 0,

y1 = 0 and y22 = y23 ,

y2 = 0 and y21 = y23 ,

y3 = 0 and y21 = y22 ,

y21 = y22 = y23 .

Let i, j, k ∈ [1, 3]∩Z such that i ̸= j, i ̸= k, and j ̸= k. Along the lines of the form
yi = yj = 0, the system reduces to

ykt = ξy3k.(7.25)

Observe that since ξ = − 3
4 |k

c
1|2γ3 + 1

6γ2,

ξ > 0 ⇐⇒ γ3 <
2

9|kc1|2
γ2
2 .(7.26)

It can be seen that if ξ < 0, solutions along these lines tend towards the ori-
gin and if ξ > 0, solutions along these lines tend away from the origin. Equiva-
lently, if γ3 > 2

9|kc
1|2

γ2
2 , solutions along these lines tend towards the origin and if

γ3 < 2
9|kc

1|2
γ2
2 , solutions along these lines tend away from the origin. It can also be

seen that along the lines of the form yk = 0 and y2i = y2j , there are no straight line
solutions because at least one of yi and yj must be zero.

Along the line y1 = y2 = y3 the system reduces to

(7.27)

y1t = βy1 + y31(ξ + 2η) + τy21 + o(3),

y2t = βy2 + y32(ξ + 2η) + τy22 + o(3),

y3t = βy3 + y33(ξ + 2η) + τy23 + o(3).

By truncating this system to second order (which can be done since we are consid-
ering small perturbations near the origin), the system becomes

(7.28)

y1t = τy21 ,

y2t = τy22 ,

y3t = τy23 .
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Since τ < 0, all solutions along this straight line that start near zero tend towards
zero.
Case 3: If γ2 < 0 then τ > 0. The straight lines corresponding to this system are

(7.29)

y1 = y2 = 0,

y1 = y3 = 0,

y2 = y3 = 0,

y1 = 0 and y22 = y23 ,

y2 = 0 and y21 = y23 ,

y3 = 0 and y21 = y22 ,

y21 = y22 = y23 .

Let i, j, k ∈ [1, 3]∩Z such that i ̸= j, i ̸= k, and j ̸= k. Along the lines of the form
yi = yj = 0, the system reduces to

ykt = ξy3k.(7.30)

Observe that since ξ = − 3
4 |k

c
1|2γ3 + 1

6γ2,

ξ > 0 ⇐⇒ γ3 <
2

9|kc1|2
γ2
2 .(7.31)

It can be seen that if ξ < 0, solutions along these lines tend towards the ori-
gin and if ξ > 0, solutions along these lines tend away from the origin. Equiva-
lently, if γ3 > 2

9|kc
1|2

γ2
2 , solutions along these lines tend towards the origin and if

γ3 < 2
9|kc

1|2
γ2
2 , solutions along these lines tend away from the origin. It can also be

seen that along the lines of the form yk = 0 and y2i = y2j , there are no straight line
solutions because at least one of yi and yj must be zero.

Along the line y1 = y2 = y3 the system reduces to

y1t = βy1 + y31(ξ + 2η) + τy21 + o(3),(7.32)

y2t = βy2 + y32(ξ + 2η) + τy22 + o(3),(7.33)

y3t = βy3 + y33(ξ + 2η) + τy23 + o(3).(7.34)

By truncating this system to second order (which can be done since we are consid-
ering small perturbations near the origin), the system becomes

(7.35)

y1t = τy21 ,

y2t = τy22 ,

y3t = τy23 .

Since τ > 0, all solutions along this straight line that start near zero tend away
from zero.

□
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7.4. Structure of the set of transition states. Consider the approximative
system

y1t = βy1 + y1(ξy
2
1 + ηy22 + ηy23) + τy2y3 + o(3),(7.36)

y2t = βy2 + y2(ηy
2
1 + ξy22 + ηy23) + τy1y3 + o(3),(7.37)

y3t = βy3 + y3(ηy
2
1 + ηy22 + ξy23) + τy1y2 + o(3).(7.38)

Assume that γ2 < 0 so that τ > 0 (if γ2 > 0, the same equilibria and stability will
persist). The nontrivial equilibria of this system can be calculated as in Hoyle [2]
to be

• Rolls:

– (y1, y2, y3) = (±
√

−β
ξ , 0, 0),

– (y1, y2, y3) = (0,±
√

−β
ξ , 0),

– (y1, y2, y3) = (0, 0,±
√

−β
ξ );

• Hexagons:

– y1 = y2 = y3 =
−τ±

√
τ2−4βξ−8βη

2ξ+4η if τ2 − 4βξ − 8βη ≥ 0;

• Rectangles:

– (y1, y2, y3) = ( τ
ξ−η ,±

√
−1
ξ+η (β + τ2ξ

(ξ−η)2 ),±
√

−1
ξ+η (β + τ2ξ

(ξ−η)2 )),

– (y1, y2, y3) = (±
√

−1
ξ+η (β + τ2ξ

(ξ−η)2 ),
τ

ξ−η ,±
√

−1
ξ+η (β + τ2ξ

(ξ−η)2 )),

– (y1, y2, y3) = (±
√

−1
ξ+η (β + τ2ξ

(ξ−η)2 ),±
√

−1
ξ+η (β + τ2ξ

(ξ−η)2 ),
τ

ξ−η ).

Some of these solutions are in far-fields, so we will not consider those. The
solutions that are not in far fields are

• Rolls:

– ±p1 = (±
√

−β
ξ , 0, 0),

– ±p2 = (0,±
√

−β
ξ , 0),

– ±p3 = (0, 0,±
√

−β
ξ );

• Hexagons (if τ2 − 4βξ − 8βη ≥ 0):

– p4 = (
−τ+

√
τ2−4βξ−8βη

2ξ+4η ,
−τ+

√
τ2−4βξ−8βη

2ξ+4η ,
−τ+

√
τ2−4βξ−8βη

2ξ+4η ).

The Jacobian of this system at a fixed point (y1, y2, y3) is

J =

β + 3ξy21 + ηy22 + ηy23 2ηy1y2 + τy3 2ηy1y3 + τy2
2ηy1y2 + τy3 β + ηy21 + 3ξy22 + ηy23 2ηy2y3 + τy1
2ηy1y3 + τy2 2ηy2y3 + τy1 β + ηy21 + ηy22 + 3ξy23

 .

(7.39)

The stability of each solution can be determined from calculating the eigenvalues
of this matrix at each equilibrium.

Theorem 7.2 (Stability of Roll Solutions). Consider the roll solutions ±p1, ±p2,
and ±p3 and assume β > 0 (or equivalently λ > λ0):

Case 1: If η < ξ − τ
√

−ξ
β , then the roll solutions all have three stable eigenvalues.

Case 2: If ξ − τ
√

−ξ
β < η < ξ + τ

√
−ξ
β , then the roll solutions all have two stable
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eigenvalues and one unstable eigenvalue. Moreover, the unstable directions for ±p1
are (0,±1, 1), for ±p2 are (±1, 0, 1), and for ±p3 are (±1, 1, 0).

Case 3: If η > ξ+ τ
√

−ξ
β , then the roll solutions all have one stable eigenvalue and

two unstable eigenvalue. Moreover, the stable direction will be towards the origin
and the two unstable directions are orthogonal to the stable direction.

Proof. Consider the roll solutions ±p1. It can be seen that

J(±p1) =


β + 3ξ|−β

ξ | 0 0

0 β + η|−β
ξ | ±τ

√
−β
ξ

0 ±τ
√

−β
ξ β + η|−β

ξ |

 ,(7.40)

J(±p2) =


β + η|−β

ξ | 0 ±τ
√

−β
ξ

0 β + 3ξ|−β
ξ | 0

±τ
√

−β
ξ 0 β + η|−β

ξ |

 ,(7.41)

J(±p3) =


β + η|−β

ξ | ±τ
√

−β
ξ 0

±τ
√

−β
ξ β + η|−β

ξ | 0

0 0 β + 3ξ|−β
ξ |

 .(7.42)

By computation, the eigenvalues and eigenvectors of J(±p1) are

(7.43)

λ1 = β + 3ξ|−β

ξ
|, v1 = (1, 0, 0),

λ2 = β + η|−β

ξ
|+ τ

√
−β

ξ
, v2 = (0,±1, 1),

λ3 = β + η|−β

ξ
| − τ

√
−β

ξ
, v3 = (0,∓1, 1),

the eigenvalues and eigenvectors of J(±p2) are

(7.44)

λ1 = β + 3ξ|−β

ξ
|, v1 = (1, 0, 0),

λ2 = β + η|−β

ξ
|+ τ

√
−β

ξ
, v2 = (±1, 0, 1),

λ3 = β + η|−β

ξ
| − τ

√
−β

ξ
, v3 = (∓1, 0, 1),
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and the eigenvalues and eigenvectors of J(±p3) are

(7.45)

λ1 = β + 3ξ|−β

ξ
|, v1 = (1, 0, 0),

λ2 = β + η|−β

ξ
|+ τ

√
−β

ξ
, v2 = (±1, 1, 0),

λ3 = β + η|−β

ξ
| − τ

√
−β

ξ
, v3 = (∓1, 1, 0).

Now assume that β > 0, so ξ < 0 must be true. In this case, the eigenvalues reduce
to

(7.46)

λ1 = −2β,

λ2 = β + η
−β

ξ
+ τ

√
−β

ξ
,

λ3 = β + η
−β

ξ
− τ

√
−β

ξ
.

From this, the following statements emerge:

(7.47)

λ1 < 0,

λ2 > 0 ⇐⇒ η > ξ − τ

√
−ξ

β
,

λ3 > 0 ⇐⇒ η > ξ + τ

√
−ξ

β
.

Since ξ < 0, if η < ξ − τ
√

−ξ
β , these solutions will have three stable eigenvalues, if

ξ − τ
√

−ξ
β < η < ξ + τ

√
−ξ
β , the solution will have two stable eigenvalues and one

unstable eigenvalue, and if η > ξ + τ
√

−ξ
β , these solutions will have two unstable

eigenvalues and one stable eigenvalue. □

Consider the hexagon solution p4. It can be seen that

J(p4) =

β + 3ξy21 + 2ηy21 2ηy21 + τy1 2ηy21 + τy1
2ηy21 + τy1 β + 2ηy21 + 3ξy21 2ηy21 + τy1
2ηy21y

2
1 + τy1 2ηy21 + τy1 β + 2ηy21 + 3ξy21

 .(7.48)

This solution will be further explored in the example below.

7.5. Example: roll and hexagonal patterns. Let l1 = ( π
25 ,−

√
3π
75 ) and

l2 = (0,− 2
√
3π

75 ). The dual lattice is spanned by the vectors k1 = (50, 0) and

k2 = (−25,−25
√
3). Note that k1 + k2 = (25,−25

√
3) and |k1|2 = |k2|2 =

|k1 + k2|2 = 2500. The critical points of the lattice are thus k1, −k1, k2, −k2,
k1 + k2, and −k1 − k2, so we will use the analysis outlined in the previous sections
dealing with multiplicity six where kc1 = k1, k

c
2 = k2, and kc3 = k1+k2. Observe that

β = 2500λ− 6250000, ξ = −1875γ3 +
1
6γ

2
2 , η = −3750γ3 +

1
2γ

2
2 , and τ = −2500γ2.
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Let λ = λ0 = 1 and consider the straight line orbits of the system. Assume
γ2 = 0. From Theorem 7.1, we see that the transition is Type I if γ3 > 0 and
Type II if γ3 < 0. For γ2 > 0, the transition is Type I if γ3 > 2

9γ
2
2 and Type II if

γ3 < 2
9γ

2
2 . For γ2 < 0, the transition is always Type II and solutions along these

orbits will tend away from the origin.
Now let λ = 2501 so that we may consider the pattern formation that results

from the dynamic transition at λ = λ0 = 2500. Consider the trivial solution
y1 = y2 = y3 = 0. This solution loses its stability as the control parameter exceeds
the critical threshold, i.e. when λ > λ0 = 2500. Now consider the rolls solutions

yi = ±

√
37500000− 15000λ

−11250γ3 + γ2
2

, yj = 0, yk = 0, i ̸= j ̸= k,(7.49)

for i ∈ {1, 2, 3}. Theorem 7.1 determines the stability of these six solutions in
terms of γ2 and γ3. Let γ2 = 1, γ3 = 2, and λ = 2501. Then ξ = − 22499

6 ,

η = − 14999
2 , τ = −2500, and β = 1. From this, we can calculate that ξ + τ

√
−ξ
β =

−156839 and ξ − τ
√

−ξ
β = 149340. It then follows that

ξ + τ

√
−ξ

β
< η < ξ − τ

√
−ξ

β
,(7.50)

and Case 2 of the theorem applies. We see that the rolls each have two stable eigen-
values and one unstable eigenvalue. The unstable directions for p1 are (0,±1, 1),
for p2 are (±1, 0, 1), and for p3 are (±1, 1, 0). From (7.13), by ignoring higher order
terms, we can write the rolls solutions as

u(x, t) =

3∑
i=1

yiei,(7.51)

where the coefficients yi are found by means of equation (16.1); in this case our
nontrivial coefficient is ±0.817 and the others are zero . Thus, our six solutions are

(7.52)

u1,2(x, t) = ±0.817 cos(50x1),

u3,4(x, t) = ±0.817 cos(−25x1 − 25
√
3x2),

u5,6(x, t) = ±0.817 cos(25x1 − 25
√
3x2).

figure 5 shows a graph of the solution u1. Notice that the rolls are vertical, a
result of the x1 term inside the cosine. In contrast, figure 6 shows a graph of the
solution u3 where the rolls are oriented at a different angle.

Consider the hexagonal solution p4 given by

y1 = y2 = y3 =
−τ +

√
τ2 − 4βξ − 8βη

2ξ + 4η
.(7.53)

Using our previous values of γ2, γ3, and λ, the solution becomes

y1 = y2 = y3 = −0.134.(7.54)
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Figure 7. Rolls exhibited by the stationary solution u(x, t) = 0.817 cos(50x1)

Figure 8. Rolls exhibited by the stationary solution u(x, t) =

0.817 cos(−25x1 − 25
√
3x2)

We look now at the Jacobian (15.37) evaluated at this solution. Plugging in coeffi-
cients, we get

J(p4) =

−470 65.68 65.68
65.68 −470 65.68
65.68 65.68 −470

 .(7.55)

The eigenvalues of this matrix are (− 13392
25 ,− 13392

25 ,−−8466
25 ), all of which are

stable. Thus, the stationary solution is stable and can be written as

u7(x, t) = −0.134[cos(50x1) + cos(−25x1 − 25
√
3x2) + cos(25x1 − 25

√
3x2)].

(7.56)

figure 8 shows a graph of this solution. Notice that the circles are hexagonally-
packed, in contrast with the square-packed circles of figure 4. In fact, hexagonally-
packed circles (HPC) are not normally observed under the regular Cahn-Hilliard
model on rectangular domains. It is the uniqueness of our lattice structure and the
high multiplicity of the critical eigenvalue that allows for this pattern to emerge.
We consider the long-range interaction model in the next section.
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Figure 9. Hexagonally-packed circles exhibited by the station-
ary solution u(x, t) = −0.213(cos(50x1) + cos(−25x1 − 25

√
3x2) +

cos(25x1 − 25
√
3x2))

8. Long-Range Interaction

Assume the same lattice structure as mentioned in section 1, but now consider
any solution to the boundary value problem

(8.1)

ut = −∆2u− λ∆u− σu+∆(γ2u
2 + γ3u

3), (x, t) ∈ R2 × R+,

u(x+ k, t) = u(x, t), k ∈ L∗,

u(x, 0) = ϕ(x),∫
U

u(x, t)dx = 0.

In this case, the linear operator L is given by Lu = −∆2u−λ∆u−σu, the eigenvalues
of L are

βn1n2
(λ) = −|n1k1 + n2k2|4 + λ|n1k1 + n2k2|2 − σ

= −|n1k1 + n2k2|2(|n1k1 + n2k2|2 − λ)− σ.(8.2)

To find the first mode that goes unstable, observe that if βn1n2
(λ) = 0, then

λ = |n1k1 + n2k2|2 + σ
|n1k1+n2k2|2 Thus, the critical value λ0 is given by

λ0 = min
k∈L∗\{(0,0)}

(|n1k1 + n2k2|2 +
σ

|n1k1 + n2k2|2
).(8.3)

Let S ⊂ Z2 \ {(0, 0)} such that S = {(n1, n2)|(|n1k1 +n2k2|2 + σ
|n1k1+n2k2|2 ) = λ0}.

It can be seen that depending on parameter values, the possible values of the car-
dinality of S are any even natural number. The critical vector kc = nc

1k1 + nc
2k2

is related to the long-range interaction term in the manner |kc|2 ∼
√
σ. As σ gets

larger, |kc|2 increases leading to richer and more complex patterns.

Assume going forward that #S = 2. Then,

S = {(nc
1, n

c
2), (−nc

1,−nc
2)}.(8.4)
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Thus, we have βn1n2
(λ0) < 0 for all (n1, n2) ∈ Z2\(S∪{(0, 0)}). Thus, with critical

value λ0, the eigenvalue

βnc
1n

c
2
(λ) = −|nc

1k1 + nc
2k2|2(|nc

1k1 + nc
2k2|2 − λ)− σ

= −|kc|2(|kc|2 − λ)− σ,(8.5)

has multiplicity two with

(8.6)

e1 = ei(k
c
1·x), e2 = e−i(kc

1·x)

Eλ
1 = span{e1, e2}

Eλ
2 = span{e3, e4, ...}.

The solution can thus be written as

u(x, t) = y1e1 + y2e2 + z,(8.7)

where z ∈ Eλ
2 is the stable component. By similar computation, the center manifold

function up to higher order terms is given by

ϕ(x) =
4γ2|kc1|2y21

−4|kc1|2(4|kc1|2 − λ)− σ
e2ikc·x +

4γ2|kc1|2y22
−4|kc1|2(4|kc1|2 − λ)− σ

e−2ikc·x.(8.8)

Using this function, it can be calculated that the reduced equations for this system
are

(8.9)

y1t = βy1 +
8|kc1|2γ2

2y
2
1y2

−4|kc1|2(4|kc1|2 − λ)− σ
− 3|kc1|2y21y2γ3,

y2t = βy2 +
8|kc1|2γ2

2y1y
2
2

−4|kc1|2(4|kc1|2 − λ)− σ
− 3|kc1|2y1y22γ3.

By letting

(8.10)

λ = λ0 = |kc1|2 +
σ

|kc1|2
, y1 = a1 + a2i,

y2 = a1 − a2i, η =
−8|kc1|4

3(−4|kc1|4 + σ)
γ2
2 − 3|kc1|2γ3,

the reduced system can be rewritten as

a1t = βa1 + ηa1(a
2
1 + a22) + o(3),(8.11)

a2t = βa2 + ηa2(a
2
1 + a22) + o(3).(8.12)

Theorem 8.1 (Transition Types with Long-Range Interaction). Assume the mul-
tiplicity of β1 is two at λ = λ0 = |kc|2. The following are true:

1. If γ3 >
8|kc

1|
2

9(4|kc
1|4−σ)γ

2
2 the system undergoes a continuous dynamical transition

(Type I) to Σλ ≈ S1 consisting of a circle of steady-states as λ crosses λ0.

2. If γ3 <
8|kc

1|
2

9(4|kc
1|4−σ)γ

2
2 the system undergoes a jump dynamical transition (Type

II) as λ crosses λ0.

Proof. By analyzing the system

(8.13)
a1t = ηa1(a

2
1 + a22),

a2t = ηa2(a
2
1 + a22),
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it can be seen that all solutions tend towards the origin when η < 0 and tend away
from the origin when η > 0. Thus, the transition is Type I when η < 0 and Type
II when η > 0. □

By using the approximative system

(8.14)
a1t = βa1 + ηa1(a

2
1 + a22) + o(3),

a2t = βa2 + ηa2(a
2
1 + a22) + o(3),

and letting a21 + a22 = r2, this system can be rewritten as

rt = βr + ηr3.(8.15)

The nontrivial equilibrium of this system is r =
√

−β
η . The Jacobian of this system

at a fixed point r is

J =
(
β + 3ηr2

)
.(8.16)

When r =
√

−β
η , the eigenvalue of the Jacobian is β + 3η|βη |. If β > 0, then η < 0

must be true, which implies that this solution will be stable. Stationary solutions
in this case are given by

(8.17)

u(x, t) = y1e1 + ȳ1ē1

= (a1 + ia2)(cos(kc · x) + i sin(kc · x))
+ (a1 − ia2)(cos(kc · x)− i sin(kc · x))
= 2(a1 cos(kc · x)− a2 sin(kc · x)).

where (a1, a2) run along the circle a21 + a22 = r2. Note that solutions depend solely
on the two critical vectors of the lattice in which the magnitude is least, and that
the spanning vectors play no direct role besides specifying the domain.
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