CAHN-HILLIARD ON LATTICES: DYNAMIC TRANSITIONS
AND PATTERN FORMATIONS

JARED GROSSMAN, EVAN HALLORAN, AND SHOUHONG WANG

ABSTRACT. This article examines the dynamic phase transitions and pattern
formations attributed to binary systems modeled by the Cahn-Hilliard equa-
tion. In particular, we consider a two-dimensional lattice structure and de-
termine how different choices of the spanning vectors influence the resulting
stability and pattern formations. As the trivial steady-state loses its linear
stability, the binary system undergoes a dynamic transition which is shown
to be characterized by both the geometry of the domain and the choice of
parameters of the model. Unlike rectangular domains, we are able to observe
the emergence of hexagonally—packed circles, as well as the familiar rolls and
square structures. We begin with the decomposition of our function space into
a stable and unstable eigenspace before calculating the center manifold that
maps the former to the later. In analyzing the resulting reduced equations,
we consider the different multiplicities that the critical eigenvalue can have,
which is shown to be geometry-dependent. We briefly consider the long-range
interaction model and determine that it produces similar results to the original
model.
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1. INTRODUCTION

The Cahn-Hilliard model is a partial differential equation that describes the
process of phase separation by which two components of a binary fluid sponta-
neously separate and form domains pure in each component; see, e.g., Cahn and
Hilliard [I], Novick-Cohen and Segel [6], Reichl [§], and Pismen [7]. The Cahn-
Hilliard model is also used in modeling sharp interfaces of materials such as in Liu
and Shen [3], as well as as Shen and Yang [9], who developed a phase field model
for the mixture of two incompressible fluids and its approximations by a Fourier-
Spectral method. Many situations can be be modeled as a phase separation of
binary systems, and the systematic study of solutions to the Cahn-Hilliard equa-
tion and their stabilities prove to be useful in the natural sciences.

The main objective of this paper is to initiate a study of dynamic transitions
and pattern formations on a lattice periodic structure for the Cahn-Hilliard model
without or with long-range interaction. The specific goal is then to explore how the
geometry of the spatial domain, the physical parameters v, and 73, and the control
A affect 1) the type of phase transitions; 2) the structure of the transition states;
and 3) the emergence of different patterns (rolls, squares, hexagons, etc.).

This article will examine the phase transition and pattern formation that occurs
in a lattice domain system. The control parameter A\ plays a critical role in deter-
mining the degeneracy of the basic solution u = 0 into patterns in the form of new
solutions to the model. Some patterns found in the lattice domain include rolls,
squares, hexagons, and rectangles in the far field.

It is classical that the Cahn-Hilliard model can be put in the perspective of an
infinite dimensional dissipative dynamical system. The mathematical analysis of
the model is carried using the dynamical transition theory developed by Ma and
Wang [5]. The key ingredients of the analysis consist of the following. First, the
solution on a lattice structure L with dual lattice L* = {niki +naks|(n1,n2) € Z?}
can be Fourier expanded; see Section 2 for details. The Fourier modes correspond
to eigenfunctions of the linearized equation. This leads to a precise characteriza-
tion of the critical thresholds, the principle of exchange of stabilities (PES), and
the stable and unstable modes.

Second, we derive leading order approximations of the center manifold function,
so that the stable modes are written as functions of the unstable/center modes. We
then derive the leading order approximation of the reduced system of the original
Cahn-Hilliard on the center manifold. The reduced system depends on the number



CAHN-HILLIARD ON LATTICES: DYNAMIC TRANSITIONS AND PATTERN FORMATIONS 3

of critical modes, the spatial geometry, and the physical parameters 5, 3, and .
The reduced system captures the precise information on types of phase transitions,
the structure of the transitions, and the related emerging patterns. For example,
in the case where the dimension of the critical space is four, the type of transition
is dictated by the sign of

b= — Av3,

A { ( 2 n 4 ( 1 n 1 ) 2 }

= max — ) .
27kS[2 9 kT — RS2 — RS2 |RT 4+ RS2 — [RT[2 7 9RT[?

If b > 0, the system undergoes a dynamical transition to a local attractor Xy, ho-

mological to a 3D sphere S3. Also, ¥, contains three circles of steady states and

a two-dimensional torus of steady states. In addition, the solution on X gives rise
to square and roll patterns.

Reduction of our model into a system of reduced equations allows us to find
equilibrium solutions and transition types at bifurcation. Possible transitions in-
clude a continuous (Type I), jump (Type II), and mixed (Type III) transition. In a
continuous transition, emerging solutions stay withing a neighborhood of the basic
solution during bifurcation. Conversely, a jump transition exhibits solutions quickly
diverging from the basic solution and approaching the far field. Mixed transitions
are those that exhibit behavior of both Type I and Type II.

In the multiplicity six case, hexagon packed patterns also appear, which are ab-
sent in the classical Cahn-Hilliard model on rectangular domains.

2. CAHN-HILLIARD MODEL

Consider a binary system of components with concentrations u4 and up that
experience long-range repulsive interaction. Assuming that the system is incom-
pressible, we can work exclusively with ua through the identity ua + up = 1.
Consider the free energy functional associated with the binary system:

Flua) = [ (§I9ual + Fua)

(2.1) + %(_A)—%(UA —a)- (~A)"%(uy — a))dz + Fy.

Here U C R? is a bounded domain, (—A)~2 is a fractional power of the Laplacian,
1 and oy are positive physical parameters, a is the concentration of component A
in the disordered state, and Fj is the free energy of the system in the disordered
state. We assume that

(2.2) f(ua) =bi(ug —a)®> + ba(us —a)® + bz(us — a)*

where by, ba, and bs > 0 are arbitrary constants. The disordered state corresponds
to a complete spread of component A and is written as

1
(2.3) a= |U/UuA(x)dm
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where |U| is the area of the domain. In this paper, we will explore the case when U
is a lattice domain, and the typical Neumann boundary conditions associated with
the Cahn-Hilliard model will be replaced with a periodic condition over the lattice.

Let I1,ly € R? be any set of linearly independent vectors. We consider a two-
dimensional lattice L and its dual lattice L* given by

L= {’Illll + n212|(n1,n2) c ZQ},
L* = {Tllk‘l + n2k2|(n1,n2) S Z2}

where k; - [; = 2md;; for 4,5 € {1,2}. Let U be the area enclosed by the parallelo-
gram created by the vectors [; and I5.

(2.4)

The non-dimensional form of the negative gradient flow of the free energy (2.1))
is given by

¢ = =A% — A\Au + A(ypu? + y3u?), (2,t) € R x RT,
(ac—i—l t)—u(x t),leL,

/Uu(sc, t)dx = 0.

The non-dimensional variables and parameters (suppressing the primes) are given
by

g

mp

=2 =Ty
T d z
d?by
A
2. u = u, A=——,
(26) ;
by dhy
Y= V3= ——-
I I

These parameters were considered in [4]. Solutions of (2.5) take the form
(2.7) u(z,t) = Z (2 (t)e™™ 4z (e ),
keL*\{0}
where each point of the lattice can be written as k = n1ky + noko for some integers

(n1,n2) # (0,0), as in Hoyle [2]. Observe that the solution is periodic in L as
desired. From this, it can be calculated that

(2.8) Au(z,t) = Z —|naky + naka|2(zk(£)e™® + zp(H)e* )
keL*\{0}

and

(2.9) Au(z,t)= Y |niky + nokal* (2 (8)e™™* + 2 (E)e 7).
keL*\{0}

To put the model (2.5)) in the perspective of nonlinear dissipative dynamical sys-
tems, we let

H = {ueLQ(U)|/udx:0},
Hy ={ue HYU)NH | u(z+1,t) = u(z,t),l € L},
Hyjo={ue H*(U)NH |u(z+1,t) =u(z,t),l € L}.

(2.10)
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We shall split the linear component of (2.5)) into two operators: one depending on
the control parameter A and the other not. Define Ly = —A + By : Hy — H and
G: H1/2 —H by

Au = A2u, Byu = —\u,
G(u) = A(yau? + y3u?).
Then, (2.5) can be written as

(2.11)

Ju
o
(2.12) gt ~ Dt G,
u(z,0) = ¢(x).
It is then classical to show that for any ¢ € H, (2.12) has a global in time solution
(2.13) u € L*([0,T]; Hy) N L>=([0,T); H), for all T > 0.

In other words, (2.12)) is a well-posed dynamical system.

3. PRINCIPLE OF EXCHANGE OF STABILITIES

To study the dynamical transitions and pattern formations of (2.12)), we first
examine the linear instability, leading to the exchange of stabilities principle. The
eigenvalues and eigenfunctions of Ly subject to the periodicity in (2.5)) are

Brans (A) = —|n1ky + naka|* + Nniky + noks|?
(3.1) = —|niky + noka[?([naky + noks|® — X),

(32) €ning = ei(nlkl‘x—i_nzk?l)

)

as seen in (2.7) and (2.8). Note that both of these can be written equivalently as
Br = —|k|>(|k|?> — \) and ex = ¢** and will be used interchangeably henceforth.

Let S C Z*\ {(0,0)} be the set of all integer weights (n1,n2) that minimize the
magnitude of the vector k = n1k; 4+ noks. More explicitly, denote

S ={(n1,n2) € Z°\ {(0,0)} |

3.3
(3.3) |niky + noko|? = Ipk1 + qka|*}.

min

(p,9)€Z22\{(0,0)}
It can be seen that the possible values of the cardinality of S are two, four, and six.
For notation, when #S = 6, the elements of S are (n{,n$), (—n$, —n3), (n§,ng),
(—n§, —ng), (ng,ng), and (—ng, —ng). Define the critical vectors of L* by

kT = niky + nSka,
(3.4) ks = n5ky + ngke,

kS = ngky + ngks.
Should #S = 2 or #S5 = 4, we will work only with one or two critical vectors,
respectively.

We now give examples of three lattices in which the critical eigenvalue has mul-
tiplicity two, four, and six. When #S = 4, the four vectors that have minimal
magnitude are the two critical vectors and their opposites. Perhaps the simplest
lattice to consider is the square lattice spanned by the vectors k1 = (1,0) and
ko = (0,1). In this case, the elements of the lattice that have minimal magnitude
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a) b) c)

FiGURE 1. Examples of various lattice structures in which the crit-
ical eigenvalue has multiplicity; (a) four, (b) two, and (c) six.

are the two spanning vectors as well as their opposites.

When #S = 2, only one vector and its additive inverse can achieve minimal
magnitude, as is the case with the critical vector k¢ = (§ -1, %) of the lattice
spanned by the vectors k1 = (1,0) and ke = (@, 1). Notice that this critical vector
is the difference of the two spanning vectors; that is k¢ = ko — k1.

When #S5 = 6, we seek three vectors and their opposites with minimal mag-
nitude. The lattice spanned by the vectors k1 = (1,0) and ko = (—;—@) has
1 _ V3

critical vectors ki, ko, and ki + ko = ( 5,—%) as well as their additive inverses.

FIGURE 1 shows graphs of these three lattices.

Define the spaces E7 and F3 by
E? = span{eFinikitnka) @ | (pe pey o g1

E3 = span{u | (u,e;) =0 for all e; € E?}.

(3.5)

We define the critical value of the control parameter by Ao = |k§|? = |kS|? = |Kk§|?.
This critical value plays a central role in the stability of the basic solution v = 0.
Specifically, as A crosses the threshold Ay, a finite number of the eigenvalues given
by (3.1) become positive, and the basic solution becomes linearly unstable. This
principle of exchange of stabilities is given mathematically as follows:

Brn(A) <0 if A < Ao,
n(A) =0 if A=),
(3.6) B ( ) 1 0
Bn(N) >0 if A > Ao,

Bnlnz()\o) < 0if (nl,ng) EZL X T \ ({(0,0)} U S),

for all n € S. Thus, with critical value Ao, the eigenvalue —|k$§|2(|k$|? — \), has
either multiplicity two, four, or six with basis vectors for the eigenspace

{e; = e F1e) oy = e Uk1D) o — ilkan)

. c . c 5 c
eq = e—z(kQ'x)’es _ ez(k3~;c)766 — e—z(k‘g;ac)}7

, €2

(3.7)
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with the number of vectors equal to the cardinality of S. We now verify the existence
of a dynamical phase transition of (2.11) as A becomes larger than Ag. Based on
Theorem 2.1.3 in [5], we have the following dynamical transition theorem:

Theorem 3.1 (Existence of Transition). The system (2.11) undergoes a dynamical
transition from the basic state w = 0 as the control parameter \ crosses the critical
threshold \g. The transition is one of the three types: continuous, catastrophic, or
random, and the type is dictated by the nonlinear interaction.

Remark: This theorem states that a transition occurs when A\ > \g, and the tran-
sition will either be Type I, Type II, or Type III. The transition type is dependent
on the geometry of the lattice and the system parameters A, v, and 3. It is deter-
mined by capturing the nonlinear interactions of stable and unstable modes, using
dynamical transition theory and center manifold techniques. This will be the main
focus of the remaining part of the paper.

4. MuLTIPLICITY FOUR CASE

4.1. Center manifold reduction. Consider the case where S has cardinality
four. Let
(4.1) E} = span{e1()), e2(N), e3(N), es(N)},

denote the unstable and stable eigenspaces, respectively. Let P; denote the canon-
ical projection of H into E; for i = 1,2. Then u(z,t) belongs to the direct sum of
these two spaces and can be written as

(4.2) u(x,t) = yi1e1 + yae2 + yses + yaeqs + 2,

where z € E2 is the stable component. Equation (2.12) can thus be written in the
form

(4.3) (yr-et+z)=La(y-e+2)+Gy-e+ 2),

where y = (y1,92,y3,y4) and e = (e1,e2,e3,e4). Let e; € e be any of the four
unstable eigenfunctions. Consider the projection of the Cahn-Hilliard equation
that results from taking the inner product of both sides of with e;. Using the
mutual orthogonality of the eigenfunctions, we have

(4.4) / yiei&dr = / Ly (y;e;)eéidx + / G(y-e+ z)edx.
U U U

Here integration is to be taken over the parallelogram U. Applying the linear
operator to e; and simplifying, we are left with

yz/ €;€;dT = YiBnsng ()\)/ eiéid$+/ G(y-e+z)edr,
U U U
which implies that

. 1 _
(4.5) Yi = YiBngng (A) + e / Gy - e+ ®(y))ede,
il“ Ju
where the norm of the eigenfunction is the area of the parallelogram |1 x l3|. Here
we have written z = ®(y) which is the center manifold function that maps the
unstable eigenspace to the stable. Because the linear operator L is diagonal near
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A = Ao, we can use the following formula for the center manifold (Theorem A.1.1
in [5]):

(46) —L)\(I)(y) = PQG(y . 6) + h.O.t.,

where P, denotes projection onto the stable eigenspace E3. Fourier decomposing
the center manifold as ®(y) = >~ s vr(y)ex allows us to write the left hand side

of (4.6) as
(4.7) —L \®(y) = — Z erLer = — Z PrBr(A)ex.
k=5 k=5

Let e, € E2 be any stable eigenfunction. Then taking the inner product of (4.6
with ey yields

(4.8) —Brlexer = / G(y - e)érdx + h.o.t.,
U

which implies that

1
-~ Belex]?
where @y, represents the Fourier coefficient of ®(y) with basis function e;. We shall

use the following eight stable eigenfunctions for our approximation of the center
manifold:

(4.9) or(y) = /U G(y - e)érdx + h.o.t.,

5.6 = e:ﬁ:2zk1‘-z’ erg = 6:|:2'Lk:2‘~a:’
(4.10) €9,10 = eiz(kl‘x-‘rkz-aﬁ), e11 = ez(—lcl~:c+kz~:zc)7
€10 = ez(kfxfkgz)

Associated with each of these eigenfunctions is a coefficient in y that is found by
means of equation (4.9). Let ey, € {e;}:=1? be any one of these stable eigenfunctions.
Per equation (4.9), we have

1
(4.11) or(Yy) =~ / A(ya(y-e)* + 73y - e)*)exnd.
Brlexl* Ju
Using integration by parts and the fact that Aé = |k|?¢;, we can write
|k[? 2 3y~
(4.12) er(y) = — 5 | (2(y-e)” +13(y-e)”)erdz.
Brlexl* Ju

The orthogonality of the eigenfunctions ensures that [ e;ejdz = |e;]|%d;;. When the
nonlinear term of (4.12)) is expanded, we see that the integral of every term vanishes
save for those of v2(y - €)? +73(y - €)® that have eigenfunction eg. More specifically,
take e5 = e2%1"* Dropping the cubic term, we have

|k2neang |2

(4.13) ws5(y) = / Yo (y1e1 + yae2 + yses + yaea) ezdr,
U

Baneang les|?
where the subscript on k2n§2n§ denotes the integers in the linear combination of the
i(2k1-z+0k3-2)  Gipce € = e—2iki @

2ikT-x

eigenfunction e; = e
of the square that contain the eigenfunction e

, we are searching for terms
. Upon expanding, we observe
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that the only such term is voy2e?, since e? = e5. Therefore the integral of all other
terms is zero and we are left with

|k2neang |2

2 2
es(y) = — /7296656195
) Bansangles|? Ju T

__’721<12n§2ng,|2y2/daj
ﬁ2n§2ng|€5|2 ! U

2
_ 2lkangong| 2

(4.14) 2

Ban 2ng

where again k2n§2n§ = 2k{ + 0k§ and anigng = —|k2n§2n3|2(|k‘2n§2ng|2 — )\) is the
eigenvalue of e5. We can obtain the other Fourier coefficients of the center manifold
by proceeding in a similar manner for the rest of the stable eigenfunctions. Listed
here, the coefficients are

 Telk@ngng)?

¥5,6,7,8 = Y1,2,3,4)
/6(2n‘i2n§)
292|K(ng g, ng-+ng)
P9 = — R T
B +ng,ng+ns)
279 k(e —me —ne_ney|?
(415) V10 = — 'Yl (=nf—ng,—n3 "4)‘ Yous,
B(—ng—ng,~ng—ng)
2
.  272[R(ng4ng, —ngtng)| -
B(=ng+ng,—ng+ns)
2
1o 292/ (ng —ng ng—ng)| s,

B(nf—ng,ng—nz)

Writing the center manifold as ®(y) = 2,162:5 vr(y)er and returning to equation
(4.5), we can view the nonlinear term as

4 4

(4.16) 2PIA yiej + @)% +PIA yje; + ®)°.
j=1 j=1

Letting e, € B and dropping higher-order terms, we have

(4.17)

4 4 4
72/ A(Zyjej)zefkdwr?’h/ A((Zyjej)@)efkdwr%/ A yjes) erda.
U (S U =1

j=1
Using integration by parts and the fact that Aey = |k|%e, we're left with

(4.18)

4 4 4
|k|2(72/(Zyjej)%‘kdm+2’yg/(Zyjej)<1>e_kdx—|—73/(Zyjej)Se‘kdx).
(Ot viS Ui
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Consider the differential equation for y; in the system (4.5). We have, along with
(4.18), that

) k¢ 2 4 B
Y1 = Y1Bneng(N) + |ei||2 (Vz/U(Z yje;) érdx
=1

4 4
(4.19) +2’yg/(Zyjej)fbe_ldx—i—'yg/(Zyjej)?’e‘ldx).
j=1

j=1 U i—

Wel search for cross-terms among (Z?:l y;e;)? that contain the eigenfunction e; =

e'*1'*  However, observation shows that there are no such terms. This holds true,

in fact, for each of the four differential equations in (4.5). Now looking at the term

(Z?Zl yje;)® and using our expansion of the center manifold, we see that the terms
Y2€2¥5€5, Y3€3P12€12; Y4€4P9€9,

all contain the eigenfunction e; once simplified. Thus, the only non-zero terms that
result from the second integral in (4.19)) are

272 e1|* (Y2405 + Y312 + Ya + p9).

Finally, consider the term (Ej:l yje;)3. We again seek cross-terms of this cube
that contain the eigenfunction e; so that the integral may be non-trivial. The terms
we find are

3yielyses, Byierysesyaes.
Thus the final integral in becomes
valer* (72 + y1ysya)-
Combining these results in the original differential equation yields the follow-
ing reduced equation
(4.20) 1 = y1Bnens(A) + K512 (272(y205 + Y3012 + Yae) + 13(3yiy2 + 6y1Y3y4)).

Using the coefficients found in (4.15)) and the expressions of the eigenvalues in (3.1)),
we can write Yo + Y312 + Yapg as

B yiye B 2y1Y3Ya 2y193Y4 )
‘k(an,2ng)|2 - A

72( -
[Fng—ngms—n)|? = A [Kngtngnging)]? = A

oyl 2yiysye 251yswa )
ARTP =X |k — k5P = A [kf RS2 — AT

Using this, we can write (4.20]) more conveniently as
v = k(RSP = N

=72

—2Y1Y3Y4 2y1Y3y4 Yy
-9 2 kc 2 _
R ke =X T e kP = T Ak =X
(4.21) + v3|k§ 12 (3yiya + 6Y1y3ya)-

Following this procedure for the other three differential equations in (4.5)) yields a
system of reduced equations which will be used to determine the transition type
and stability of solutions of the Cahn-Hilliard equation.
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By omitting the higher order terms o(3) := o(|y3|) + O(|y®|81(N)]), the reduced
system of (2.11) on the center manifold is given by the following:

—291Y3Ya 2Y1Y3Ya Yiye
— A —_9 2 ke 2 .

y1e = B1( M)y V3|1l (\kf—kﬂ?—)\ kS + k52 — A —4\kf|2—|—/\)

(4.22) —3 kS 1P (3y3ya + 6y1y3y4),
—2y2Y3y4 2021314 Y195
= B1(N)ya — 292|kS|? —

Yoi ﬁl( )y2 72' 1| (‘ki_kﬂg_)\ |ki+k§|2_>‘+_4‘ki|2+/\)

(4.23) —3|k5|* (By1y3 + 6y2ysya),
—2Y1Y2y3 2Y192Y3 Y3Ys
= B1(N)ys — 273 |kS|? - 3

Y3t = B1(N)ys3 Y3kl (\kf—k§|2—)\ kS + kS2 — A —4\kf|2—|—/\)

(4.24) —3|kS1* (3y3ya + 6y1y2y3),
—2y112Y4 2y1Y2y4 Ysy3
— A ) 2 kc 2 _

Yar ﬁl( )y4 72' 1| (‘ki_kﬂz—)\ |kf+k§|2—>\+—4“€i|2+/\)
(4.25) —3|kS1? (Bysyi + 6y1y2y4).
Letting A = A9 = |I€1|27 yo = U1, and y4 = U3 gives

, 2y1]ys|? 2y1|ys|? 1|y |2
2|1.c12
ylt = 2,}/ |k ‘ ( C C C C C C + C )
PN ks — kg2 — (RS2 RS + RS2 — RSP 3kS|2
(4.26) — 3|52 (3ya |y |* + 61 ys]?),
_ 2771|ys|? 271)ys|? Tilyi|?
211.c12
Yt = 27 |k ‘ ( c c c + c c c + c )
PPN ks — kg2 — (RS2 T RS + RS2 — RS2 3k
(4.27) — 3| kS (37tlys|® + 671 lysl?),
2ys|y1]? 2y3|y1]? yslys|?
2|1.c12
y3t = 27 |k ‘ ( C C C C C C + C )
PN ks — kg2 — (kS TS + RS2 — RS2 3kS|2
(4.28) — 3|k§ 12 (3yslys|® + 6ysy1]?),
_ 273)y1 2 273)y1 |2 U3lys)?
211.c12
st = 293 |kS|* (= . P + Ses)
PN ks — kg2 — RS2 T RS + RS2 — ka2 3k
(4.29) — 3| k{ > (3713 |* + 67]y1|?).

Now break up the variables into real and imaginary components, so that y; =
a1 + asi and y3 = az + a4i. By combining real and imaginary parts, this gives the
leading order approximation of reduced system at the critical threshold \g:

a1y = a1(£(a} + a3) + n(a3 + a3)),

(430) age = az(€(af + a3) + (a3 + ai)),
ag; = az(n(ai + a3) + &(a3 + ai)),
as = as(n(ai + a3) + &£(a3 + ai)),
where
- 293 — i|kf|2’737
4.31
o n = 22 23 — 33).

+
KT — k5[2 =[R2 [RT + R5J% — (K2
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It can be seen that for i, j, k,1 € [1,4] N Z where i # j # k # [, the 48 straight line
orbits come from the 24 straight lines given by

(4.32) a; = a; = ap =0,
(4.33) aj = a3 =a3 = a3,
(4.34) a; = a; =0 and a} = aj.

ar = Bar + a1 (§(af + a3) + (a3 + a?)) + o(3),

as; = Bag + az(€(a? + a3) +n(a3 + a?)) + o(3),
(4.35) 5 9 9

ase = Baz + az(n(al + a3) + &(a3 + a3)) + o(3),

ay = Bay + as(n(a? + a3) + &(a3 + a3)) + o(3),

where 3 = (10()\) and o(3) = o(|al?) +O(]a| *|B]). By combining equations as well
as letting a? + a3 = r? and a3 + aF = r3 gives the system ()
r1e = Br1 +r1(&ry +nr3) + o(3),

4.36
(4.36) Fot = Bra + ra(m? + €12) + o(3).

4.2. Dynamical transition theorem.

Theorem 4.1 (Transition Types of Multiplicity Four Case). Consider system
. Let the multiplicity of 51(Xo) be four. Let

2 4( 1 1 ), 2 y.
27‘kc|2 9 |kc _ kc|2 ‘k0|2 |/€C + kc|2 |kc‘2 9|/€C|2

(4.37) A=max{(z=—3
Then the following assertions hold true:

1. If

(4.38) 15 > A,

then as \ crosses Ao, the system (2.11) undergoes a continuous (Type I) dynamic
transition to a local attractor ¥, homological to S3.

2. If
(4.39) Vs < A3,
then the system undergoes a jump (Type II) dynamic transition as A crosses Ag.

Remark: If the system undergoes a Type II transition, then the following are true:
1. Let A < Ag and X be near )\, then the system undergoes a sub-critical bifurcation.
2. There exists A* < A\g at which a saddle node bifurcation occurs.

These statements are true regarding all Type II transitions in future theorems.

Proof. The transition type at the critical point A\g = |k;|? is given by the system

rie =r1(&rg +nr3),

(4.40)
rae = ra(nri + €r3),
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where ¢ and n are defined in (4.31). It can be calculated that

(4.41)
2 4 1 1
+7>0 < 73 < + - + 3,
f” < 5T 5 = = e TR -
(4.42)
2 4 1 1
£+77<0<:>73>( c +7( c c c + c c c ))72’
27|kS12 T 9|k — k§J2 — [kSI2 T [KS + ks[2 — kS22
2
4.43 0 < — 42
(4.43) &> 73<9|k§|272’
2
4.44 0 — — 2
(4.44) €< 73>9|k§|272’
41kS |2 1 1 5
(445) n>0 < 43 < (o 5t e )72
3 [k — kg2 — [kSI2 T IR+ RS2 — [KE[2T
41kS |2 1 1 5

(4.46) n <0 < ~3 > )Y

( c c c + c c c
3 CIRE — RS2 =[R2 (RS + RS2 — (RSP

Note that there are no elliptic orbits as the system is a gradient system (see
Lemma A.2.7 in [5]). Observe that on the straight line 1 = ro, the system satisfies
j—:? = ;—f where £ + 7 # 0 and 71,79 > 0. It can be seen that r; =0 and 7o = 0 as
well as r; = 7y are the straight lines corresponding to the three straight line orbits

of this system.

Note that on the straight line r; = r5, the system reduces to

1t = T?(E =+ n)a

4.47
(447 ror =13 (n+§).

Thus, when & +n > 0, the solutions tend away from the origin, and when £ +7 < 0,

the solutions tend towards the origin. In other words, when v3 < (ﬁ +
1

4 1

ol |k§—ks|? kS

when vz > (27@;'2 + %( |k;—k;\12—\k§|2 + ‘kag‘g_‘W )73, the solutions tend towards

the origin.

+ ‘kﬁkg‘lt‘kﬂz,))’y%, the solutions tend away from the origin, and

Note that on the straight line 1 = 0, the system reduces to

(4.48) e =0
’ Top = Erg.
Thus, when £ > 0, the solutions tend away from the origin, and when & < 0, the
solutions tend towards the origin. In other words, when v3 < B ,fc‘g 7%, the solutions
1
2

tend away from the origin, and when 3 > W*yg, the solutions tend towards the
1

origin.
Note that on the straight line ro = 0, the system reduces to

Tt = é’r?:

4.49
( ) Tot = 0.



14 GROSSMAN, HALLORAN, AND WANG

a) b)
T/ A
<
<) d)
1
III//"" *['\//
. -/\ >

FIGURE 2. Straight line orbits for: (a) £ + 17 < 0 and £ < 0; (b)
E+n>0and €>0;(c) E+n>0and £ <0; (d) £+ n <0 and
&> 0.

Thus, when £ > 0, the solutions tend away from the origin, and when ¢ < 0, the

solutions tend towards the origin. In other words, when 3 < ﬁﬁ, the solutions

tend away from the origin, and when ~y3 > ﬁvg, the solutions tend towards the
1

origin.

By putting this together, when £ + 17 < 0 and ¢ < 0, or equivalently v; >
rnax{(mi%|2 + %( ‘kffkgllleﬂQ + |k§+k§|127|k‘f|2))’ 9“3%'2 143, solutions along all three
of the straight lines mentioned above approach the origin, so the transition is Type I.

When £+n > 0 and £ > 0, or equivalently 3 < min{(miﬂrz + %(|k§—kg\12—\kf|2 +

1 2
s PT))s alks
above tend away from the origin, so the transition is Type II.

B 142, solutions along all three of the straight lines mentioned

2 .2 2 4 1 1 2 2 .2
¥ smee2 < (oie + 5 (e + reevmgrmee )02 and gz <93 <
2 4 1 | 2 :
(27Ik§\2 +§( ek =The 2 + |k§+k§|2*|kil2))%’ then £ < 0 an.d.§+77 > 0. T.hls means
that solutions along the line r; = ro tend away from the origin, but solutions along
the lines 7; = 0 and 72 = 0 tend towards the origin, so the transition is Type II.

2 .2 2 4 1 1 2 2 4 1
1 gpi 12 > (i 5 (=g + rermge=ree )02 20d (o + 5 (=g +
W))’yg < vz < ﬁﬁ, then £ > 0 and £ + 1 < 0. This means that so-
lutions along the line r; = r5 tend towards the origin, but solutions along the lines
r1 = 0 and ro = 0 tend away from the origin, so the transition is Type II. ([l

FIGURE 1 show graphs of the straight line orbits in r1, ry space. Notice that only
FIGURE 1(A) features solutions that approach the origin, hence why it is Type L.

4.3. Structure of the set of transition states. To study the detailed struc-
ture of the local attractor X, in Theorem 4.1, representing all transition states for
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A > ), we examine the nontrivial fixed points of the reduced system by solving

(4.50) o i _rl(gri N W?
Bra = —ro(nri +£r3).

The solutions are

(4.51) p1 =(r1,7r2) = (0, \/ %5),
(4.52) p2 =(r1,72) = \/ ;B ,0),
(4.53) p3 =(r1,72) \/ 5_4'677 A/ 5_4'677 if €% # 0’

Note that the general solution u in ¥y is given by
(4.54) u = yi1e1 + yae2 + yzes + yses + P(y, A),

with ® = o(|y|). Therefore, the eigenfunctions Zizl yrey dictate the typical pat-
terns of solutions, represented by X, for A beyond the critical threshold A\g. The
Jacobian of the system at a fixed point (r1,72) is given by

8+ 3&% + nr% 2nr1re
4. p—
(4.55) J ( 2mr1ro B+ nr? + 3¢r3

Consider the solution (r1,r2) = (0, 4/ %ﬁ) It can be seen that the Jacobian cal-

culated at this solution is diag(8 + 77|§|,5 + 3§|§\) Thus, if 5 > 0, then —|¢| < n
implies that this solution is a saddle and —|¢| > n implies this solution is stable.

Consider the solution (r1,73) = (1/=2,0). It can be seen that the Jacobian cal-

culated at this solution is diag(5 + 3§|§|,[3 + 77|§\) Thus, if 8 > 0, then —[¢| <7
implies that this solution is a saddle and —|€| > 1 implies this solution is stable.

Consider the solution (r1,r9) = (4/ jfn, \/ €+77 ) with the condition that &2 # n?.

The Jacobian calculated at this solution is

BEermlsl 2l
4.56 E4+n E+n .
(4.56) ( 2wl B+ n>|§fi,7|>

It can be calculated that the eigenvalues of this matrix are 5 — (n — 3£)|%| and

B+ 36(’7+5 * |£+77|) If B > 0, then n > £ implies this solution is stable and n < &
implies thls solution is a saddle. In conclusion, we have the following theorem:

Theorem 4.2 (Structure of Xy). In the collapsed phase space (r1,12), the bifurcated
attractor from case one in Theorem 4.1, X\ = S3, collapses to an arc in the first
quadrant, ¥, which contains three fized points: p1, p2, p3, given in (4.83-4.85).
For j € {1,2,3}, p; generates the circles (p1 and py) or torus (ps) of steady states

(r%j)ew,réj)ew), which are all contained in Xy.
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4.4. Example: square lattice. Let Iy = (£5,0) and Iy = (0, £). The scal-
ing factor 50 is chosen so that the patterns are easier to be visualized. Then,
the dual lattice is spanned by the vectors ky = (50,0) and k2 = (0,50). The
critical vectors in this case are k{ = ki and k§ = kp. Thus |k§|? = |k§]? =
50 and |k + k§|2 = |k$ — Kk§|> = 5000. We also have that 8 = 50\ — 2500,
¢ = 293 — 15073, and n = &~3 — 300y3. From the theorem in section 6, when
v3 > max{ 2232775, %}73 = ﬁﬁ, all straight line orbits tend towards the origin
and the transition is Type I. When 22‘5—27757% < 7z < ﬁ’yg, solutions along the
straight line ry = ro tend away from zero, but solutions along r; = 0 and ro = 0
tend towards the origin and the transition is Type II. When v3 < 223—277573, all

straight line orbits tend away from the origin and the transition is Type II.

The three stationary solutions are

[ 7500 — 150\
p1 = (r1,r2) = (0, M)a
[ 7500 — 150\
4.57 =(r1,m2) =/ z=——=——,0),
( ) p2 = (r1,7m2) = ( 272 — 45073 )

_ (T , ) B ( 247500 — 4950\ 247500 — 4950)\)
Ps =m0 re) = 14550n, " \| 7403 — 4455075

The trivial solution is unstable when the control parameter exceeds the critical
threshold, i.e. when A > 50. Now let A > 50. For the first and second solutions,

3—273 < 3 < %’yg implies the solutions are stable, and else are saddles. For the

third solution, %’yg <3 < 2—9273 implies the solution is stable, and else is a saddle.

Consider the solution (rq,73) = (0, /%). Recalling that a? + a3 = r?,
a% + ai = r%, and further that y; = a1 + aqi, y3 = as + aqi, we see that our
stationary solutions to the reduced system are radial. From , we can write the
solutions as u(x,t) = yie1 + y1€1 + yses + ys€z where the stable component is of
little significance anymore and can be dropped. In this case, r; = 0 so the solution
becomes u = yses + yz€3. Expanding and noting that k§ = (0,50) and e3 = ethar
we have

u(z,t) = (as + iaq)(cos(ks - x)
(4.58) +isin(kS - x)) + (a3 — iaq)(cos(kS - x) — isin(k§ - x))
= 2(a3 cos(50z3) — a4 sin(50x2)),

where © = (z1,22). As (a3,a4) run along the circle a? + a2 = r3, a set of sta-
tionary solutions is generated in (x,t)-space. The principle exchange of stability
guarantees that patterns in the form of solutions to emerge as A crosses the
critical threshold A\g = 50. FIGURE 2 shows a graph of the stationary solution

(ri,rma) = (0,4/%) when A = 50.1, 72 = 1, and 3 = ;5. In this case,

(r1,72) = (0,1) and 3 < 2842 so that the solution is a saddle and we have chosen

the point (a3, a4) = (%, ?) on the circle of solutions. The characteristic patterns

for this stationary solution are horizontal rolls. Graphically, we see that the size
of the domain is responsible for the amount of rolls within the square, and the
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FI1GURE 3. Horizontal rolls exhibited by the stationary solution
u(x,t) = \/icos(BOxg) — \/§Sin(50x2).

FIGURE 4. Vertical rolls exhibited by the stationary solution
u(z,t) = /2 cos(50x1) — /2sin(50z,).

patterns shift vertically as the parameters (a1, az) run along the unit circle.

Likewise, the solution for (rq,r2) = (, /%, 0) can be written as
u(z,t) = (a1 + iag)(cos(k - x)
(4.59) +isin(k§ - x)) + (a1 — iag)(cos(k{ - x) — isin(k{ - z))
= 2(ay cos(50z1) — ag sin(50zx1)),

which also produces rolls, however this time horizontal. FIGURE 3 shows a graph
of this solution for the same choice of constants and parameters used in FIGURE 2.

: : _ ( [247500-4950x  /247500—4950X o
Finally, the solution for (r1,72) = (\/7475744550%, \/74%574455073) can be writ

ten as the sum of the previous solutions
(4.60) u(z,t) = 2(ay cos(z1) — ag sin(xy) + az cos(xa) — ay sin(xs)),

where both (a1, as2) and (a3, as) run along different circles centered at the origin
with radii r; = r9. FIGURE 4 shows the graph of this solution for A = 50.1, v = 1,
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FIGURE 5. Square-packed circles exhibited by stationary solution
u(z,t) = \/icos(50x1) — ﬂsin(50x1) + \/5008(50332) — V2
sin(50z2).

v3 = 2. In this case, (r1,r2) = (1,1), and 73 > 2843 so that the solution is

stable. Here, we have chosen (a1, a2) = (g, %) and (as,aq) = (g, %) as the two
points on the unit circle. Notice here that the characteristic patterns are circles
and that they are arranged in a square-like fashion throughout the lattice. We
will encounter another pattern that exhibits circles packed in a different manner,

namely hexagonally-packed circles.

5. MuLTIPLICITY TwWO CASE

5.1. Dynamical transition theorem. Consider the same situation as above
but assume that the pairs of (n1,n2) that minimize |n1k; + nokz|? are (n$,n$) and
(—ng, —n$). Equivalently, the cardinality of S is two. In this case, Bn,n,(Ao) <0
if (n1,m2) € Z x Z\ {(0,0), (n§,ns), (—ng, —n$)}. Thus, with critical value Ag, the
eigenvalue —|n§ky +nSka|?(|n$ky +nSka|? — A) = —|ke|?(Jke|? — ), has multiplicity
two:

E? = spanf{e; = e'F')

E3 = span{ez(\), ...}.

—i(ke-
,€2 = € l( z)}7

(5.1)

s _@)
250 25
and Iy = (0, 2%), which will be discussed in section 5.2. The solution can thus be

written as

An example of this is when the lattice is spanned by the vectors I; = (

(5.2) u(x,t) = yre1 + yoe2 + 2,

where z € F3 is the stable component. By similar computation, the center manifold
function up to higher order terms is given by

_ 2 ) 2 )
(53) Qb(I) = 7291 622]%'93 % 72zkc-z.

VTN ko2 —N©
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Using this function, it can be calculated that the reduced equations for this system
are

2|ke*v3uiye

yie = = Ikel*([kel* = Ny + = 3lke[*yTyays + o(3),

4ke)2 — A
(5.4) 2|k |C272y1y2
oo = el (kl® = M+ S 573 = 3lk Py +0(3).

Theorem 5.1 (Transition Types for Multiplicity Two). Assume the multiplicity
of By is two at A = \g = |k.|?. The following are true:
1. If v3 > ﬁ’y& the system undergoes a continuous dynamical transition (Type

I) to ¥y ~ S* consisting of a circle of steady-states as \ crosses \o.
2. If v3 < ﬁﬁ the system undergoes a jump dynamical transition (Type II) as
A crosses \g.

Proof. By letting

A=Xo = |ke|?, 1 =ai+ as,
(5.5) _ 2
Y2 = a1 — azt, n= 5’73 - 3|kc|273’

the system given by (5.4]) can be rewritten as

(5 6) aix = naj (a% + ag)a
' az = naz(ai + a3).

By analyzing this system, it can be seen that all solutions tend towards the origin
when 1 < 0 and tend away from the origin when n > 0. Thus, the transition is
Type I when nn < 0 and Type II when n > 0. (]

By using the approximative system
(5.7) ayy = fay + nay(ai + a3),
(5.8) ag = Bay + nag(a? + a3),
and letting a} + a3 = r?, this system can be rewritten as

(5.9) re = Br+nrd.

The nontrivial equilibrium of this system is r = 4/ 775 The Jacobian of this system
at a fixed point r is

(5.10) J = (B+3nr?).

When r = ,/775, the eigenvalue of the Jacobian is 8 + 3n|%\. If >0, thenn <0
must be true, which implies that this solution will be stable. Stationary solutions
in this case are given by
U(Z‘,t) =yi1e1 +y1€1
= (a1 +iaz2)(cos(k. - ) + isin(k. - x))
(5.11) ) -
+ (a1 — iag)(cos(k. - x) — isin(k. - x))

= 2(ay cos(k. - x) — ag sin(k. - x)),
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150

50

0 20 40 60 80 100

FIGURE 6. Stationary solution r=1

where (a1, as) run along the circle a? 4+ a3 = r2. Note that solutions depend solely
on the two critical vectors of the lattice in which the magnitudes are least, and that
the spanning vectors play no direct role besides specifying the domain.

5.2. Example: roll patterns on parallelogram. Let [y = (;—5,7%) and

lo = (0,%%). Then the dual lattice is spanned by the vectors where k1 = (50, 0)
and ko = (25v/3,25). It can be shown that |k1|? = |ko|?> = 2500, |k1 + k2| =
3125 + 1250v/3, and |k; — ko> = 5000 — 2500v/3. The critical points of the
lattice are ko — k1 and k; — ko and so we will use the analysis outlined in the
section dealing lwith multiplicity two. In this case, it can be shown that § =
—(5000 — 2500v/3)(5000 — 2500v/3 — A) and 1 = 23 — 3(5000 — 2500v/3)v3. From

section 5.1, when v3 > m’@ , all straight line orbits tend towards the

origin and the transition is Type I. When 3 < all straight line

2 2
9(5000—2500+/3) 72
orbits tend away from the origin and the transition is Type II.

(2—v3)(2—V3-))
293 -3(2—V3)ys
solution is always stable for A > A\g. By section 5.1, the solution can be written as

The nontrivial stationary solution is r = The non-trivial

(5.12) u(z,t) = 2(ay cos(ke - ) — ag sin(k. - x)),

where k. = ko — ky = (@ —1,1) and (a1, a2) run along the circle a? + a3 = r%
F1GURE 5 shows a graph of the solution for A = 2, 75 = 1, and 3 = —12169\/\/55,
in which case r = 1. The parameters (a1, as) are evaluated at the point (@, ).

Notice the characteristic patterns are horizontal rolls similar to the square case.

6. MULTIPLICITY SIX CASE

6.1. Dynamical transition theorem. Consider the same situation as above
but assume that #S5 = 6. Then,

(6.1) S ={(ng,n3),(=ni, —n3), (n3,n3), (—n3, —ng), (n5, 1), (—ng, —ng)}-
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Thus, we have f,,,,,(Xo) < 0 for all (ny,n2) € Z2\ (SU{(0,0)}). Thus, with critical
value g, the eigenvalue

Breng(N) = —|nfky + nska|*(Infk1 + nske|* — N)

(6.2) — _|kc|2(|kc|2 _ )\)7

has multiplicity six with
e = ei(’ff'lﬂ)’ es = e—i(k§'$)7 €3 = ei(k;m)7
€4 = e_i(kgim)a €5 = e’i(kg‘-z)7 €g = €_i(k§'z)7

E} = span{ey, ...,eq},

E3 = span{er, eg, ...}.

i)
I

The solution can thus be written as

6
(6.4) u(z,t) = Zyiei +ze B @Eg‘,

i=1

where z € F3 is the stable component. By similar computation, the center manifold
function up to higher order terms is given by ¢(z) = 2?17 ¢ie;. Using the notation
that

er = 627;]()§%E7 eg = 6722’165’-:1:’ eg = 62ik§-z,

e10 = 672’“65-17 e1] = eZikgm’ €19 = e*2ik§<m,

erg = RIHR T o iR T o (RS
(6.5) er = e tREHRD) @ o iRk o p—i(kERS) e

ero = KR o iRk o iRk

€99 = e—i(kf—kg)'x’ €3 = ei(k;—kg)'x, g = e—i(kg—k§)~x7
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it can be calculated that the coefficients of the manifold are

2
—72Y1
1= o ¢s
4|kS12 — A
2
—2Y3
P9 = T $10
4|kS12 — A
2
—2Y5
G111 = o P12
4|kS12 — A
_ 2%nys
P13 = e, P14
—2%21Y5
(6.6) _ 20y
$15 e+ k2 =\ P16
T 2%y3ys5
P17 = g+ RS2 =\ P18
—272Y1Y4
G190 = e 1 $20
7 — k52 — A
—2721Y6
P21 = T 1o P22
R — k52— X
—27v2Y3Y6
G235 = 5 $24
kS — kS| — A
Let
A= Ao = [Kf]?
Y1 = a1 + asi,
Yo = a1 — azi,
Y3 = a3z + aqt,
Y4 = a3 — asl,
ys = as + agt,
Y6 = as — agl,
1
Di; = :
(6.7) N TR
D, = L
|k§ £ k§[? — |kS[?
1
D =

€= =3|k{*vs +

|k§ + k§|* — [k§[?

2
727

_ —2Y5

a 4|kS)12 — A’

_ —72y3

o 4k§12 — N
e

- 4k§12 — N’
270y
RS RS2 -
27212y
RS RS =N
_ —272Y4Ys
RS RS2 -
_ 2712u3
R RS2
_ —27Y2y5
RS RSP -
_ —272y4Ys
RS = RSP -

n = —6|k{|*ys + |k{|> (4D, + 4D,)3,
X = —6[k§|*vs + |k§|>(4Dy3 + 4D15)73,
w = —6|k{[*ys + [k§|*(4Dg; + 4D35)73 .
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Then, the reduced system on the center manifold can be rewritten as

arr = Bar + a1 (&(af + a3) +n(a3 + a?) + x(af + a3)) + o(3),
age = Bag + as(£(af + a3) + nla3 + ai) + x(a3 + ag)) + o(3),
(6.8) agy = Baz + as(n(ai + a3) + £(a3 + af) + w(a + ag)) + o(3),
’ age = Bay + as(n(ai + a3) + &(a3 + a3) + w(ad + af)) + o(3),
ase = Bas + as(x(ai + a3) + w(aj + a3) + £(a3 + ag)) + o(3),
agt = Bag + ag(x(ai + a3) + w(aj + a3) + £(a3 + ag)) + o(3).
It can be calculated that
(6.9)
0 2
E>0 <= 1< g‘ka%,
0 2
E<0 <= v3> g‘ka%,
4
Etw>0 = 13< (27\kc|2+ D23+9D23)
2 4 4
E+w<0 <= 73> (27\k0|2 +-D 3+9D23)
2 4 4
€+X>O<$'Y3 (27‘k'c|2+ D3+9D13)
2 4 4
E+X<0 = 73> (27\k0|2+ D13+9D13)
2 4 4
§+n>0 <= 1< (27\k0|2 + D12+ 9D12)
2 4 4
§+n<0 <= 13> (27\k0|2 + D12+ 9D12D12)
2 4 4 4 4
0 — ——— + —Di. D Dy, Dy
SHmtx> < (g + 5P F 5P * gD+ D),
2 4 4 4 4
0 — ——— + —Di. D Dy, Dy
E+n+x< 73>(45\kf|2+15 12 T p Pt s p P 373
2 4 4 4 4
0 — ——— + —Di. D D5, D3
tetw> < (g + 5P F p PRt pDn + 5 DE),
2 4 4 4 4
0 = ——— + —Dj. D Dy, D5
THetw< > (g + 5P * 5Pt e+ 5 DE),
2 4 4 4 4
0 = ——— + —Dj. Dy Ds, D5
xtwtl> < (g + 3500+ 5P+ 0 + 5 Da),
2 4 4 4 4
0 — ——— + —Dj. Dy Dy, Dy
A > (et s P Pt 5 Pa DR
By letting 7 = a? + a3, r3 = a3 + a3, and r? = a2 + a2, the system becomes
(6.10) rie = r1(Erf + 3 +xr3),
(6.11) rop = ro(nri + €r + wr),

(6.12) ray = r3(xri +wr +&r3).
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The straight lines corresponding to this system are

) ry =19 = 0;

) ry =713 =0;
6.15) ro =13 = 0;

)

)

)

r1 =0 and ry = rg;

6.17 ro =0 and r| = r3;
6.18 r3 =0 and rq = ry;
6.19) rL=To = T3

On these straight lines, the systems that emerge are respectively

(6.20) {TSt =¢&r;
(6.21) {rzt = &r3;
(6.22) {m =&
Tat :T§(£+OJ),
(6.23) {w (e +w):
rie =1+ X),
(6.24) Lﬂ I
1t :7‘21;(54_7])’
6.25 (
(6:29) {th =73(£+n);
T1t :r§(£+n+X)a
(6.26) ror =136+ +w),
r3e =13+ x +w)

Thus, the only way for all solutions to go to zero along these straight lines is for all
of the coefficients to be negative. Let

(6.27) g g6 Ehw EX G Sty Erntw (XX tw,
2R A A2 2 T T ek

or equivalently,

2 2 4 4 2 4 4
A= —— — 4+ Dy +-Df), (=== + -D3 + =D
‘%mﬂw(wmﬂ2+9 2"y %%(wmﬂ2+9 13 g L)
2 4 4
——— + -—Dy, + -Df
(27|k%‘2 + 9 12+ 9 12)’
2 4 4 4 4
—— — + —D,+ —Df, + —D3 + —Di.
(6‘28) (45|k%‘2 + 15 12+ 15 12 + 15 13 + 15 13)’
2 4 4 4 4
—— — + —D,+ —Df, + — Dy + — D5
(%mﬂ2+15]2+1512+1523+1529’
2 4 4 4 4

DL+ -Dh+—Dy+—D
(45|kﬂ2 TPt Pt pPs T 23)}
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From this, it can be seen that the transition is Type I when 73 > (max A)y2 and
Type I when 73 < (max A)y2. This can be stated in the following theorem:

Theorem 6.1 (Transition Types for Multiplicity Six Case). Suppose k$, kS, and
kS are defined as previously and k§ = ak§ + bk§ such that a,b # 0 and (a,b) €
72\ {(1,1),(=1,1),(=1,-1),(1,=1)}. Then, the system undergoes a continuous
(Type I) transition to Xy homological to S® when 3 > (max A)v3 (implying that
€ <0) and undergoes a jump (Type II) transition when 3 < (max A)v3.

6.2. Structure of the set of transition states. By using the approximative
system

(6.29) rie = Bri 4 r1(&r} + nr3 4 xr3) + o(3),
(6.30) ror = Bry + ro(nri + &ra + wr%) +0(3),
(6.31) r3; = Brs + r3(xri + wri 4+ &r3) + o(3),

the nontrivial equilibria of this system can be calculated to be

p1: (7“177‘277"3):(”_?67070)a
P2 (7‘177”277"3):(07\/%570),
) = (00’/ ﬁ
y 2 (7”177”277“3 _ﬁ _B
\/ +¢£ \/w+
- -

57

w
(6.32) s - (Tl,T27T3):<\/X+ O’\/X+§)’
Ds : 7“1,7“277"3 \/7\/_7/8
n+& \n+¢&
(—n+&{—x+tw)

pr: (T17T27T3) (\/ 25_277Xw+§( §2+X +w2)a
BE—X)(n+E+x—w)
12§ = 2mxw + &(—€% + x* + w?)’
BE—nn+{-—x—w)
26 = 2nxw + §(—82 + X* + w?)
The Jacobian of the reduced system at a fixed point (r1,79,73) is
(6.33)

Dps: (7'1,7”2,7”3

).

B+ 3§r% + 777“% + Xr% 2nriTe 2xT17T3
J = 2nriry B+ nri + 3¢r3 + wr? 2wrars
2xr1rs3 2wrors 8+ XT% + wr% + 3£r§
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The stability of each solution can be determined from calculating the eigenvalues
of this matrix at each equilibria, such as in the example in the next section.

Theorem 6.2 (Structure of ). Under a Type I transition, the bifurcated attractor
¥y from Theorem 6.1 is homological to S, with p1, pa, and p3 correspond to circles
of solutions; py, ps, and pg correspond to torii of solutions; and p; corresponding
to an S x S x S surface.

6.3. Example: roll patterns.  Let [ = (2, 7‘/ﬁﬂ) and Iy = (0, 8m”). Then

15 15
the dual lattice is spanned by k1 = (1,0) and kg = (-4, @) Note that [k1 —ks|? =

%, |k1 + ko|? = %. The critical points of the lattice are thus ki, —k1, ko, —kso,
2k1 4 2ko, and —2k; — 2ko, so we will use the analysis outlined in the previous
sections dealing with multiplicity six with higher coefficient linear dependence. Let

72 = 1 and 3 = 2. Observe that 3 = A —1, £ = =18 5 = 63764 " —336605776,

3 663
w = —33184597576. Let A = Ay = 1 and consider the straight line orbits of the system.
From THEOREM 6.1, we see that max(A) = & = f%, and thus the transition is

Type I because v3 > (maxA)y3. Now let A = 1.1 so that we may consider the
pattern formation that results from the dynamic transition as A crossed the critical
threshold. The trivial solution (rq,r2,73) = (0,0, 0) obviously becomes unstable as
A > Ao = 1. Next consider the solution (r1,72,72) = ( %ﬁ,0,0) = (y/15,0,0).
The Jacobian evaluated at this solution is

—02 0 0
(6.34) J=| 0 -—1703 0o |,
0 0  —0.085

and so the solution is stable. Observe that because 3, £, i, and x are all negative,

,,/_T’B,O) and (r1,72,7r3) = (O,O,,/_Tﬁ) are also both
stable as their Jacobians are diagonal matrices with negative entries. The solution

the solutions (r1,72,73) = (0

(r1,72,7m2) = ( %70,0) can be written as

(6.35) u(z,t) = 2(ay cos(ky - x) — ag sin(k{ - x)),

where a? + a3 = r?. Graphs of this solution (and the previous two) are similar

to those of the multiplicity two case. Now consider the solution (ri,rq,r3) =
0,4/ %, W/w;fg) = (0, 38507, =3837T-). The Jacobian evaluated at this solution
is

0.094 0 0
(6.36) J = 0 0.0987 —0.000896 | ,
0 —0.000896 0.987

with eigenvalues (%7 22;0405010, %), from which we see that the solution is unstable

in all directions. This solution can be written as

(6.37)  wu(z,t) =2(azcos(ks - x) — aqgsin(ks - x) + as cos(ks - ) — ag sin(ks - z)),

where a% + a3 = r3 and a? + aZ = rZ. Graphs of this solution are similar to those
of the multiplicity four case. Consider the solution p;. Substituting values for 3,
¢, w, m, and x produce undefined values for r; and r5. Subsequently, this solution
does not exist for the values of the parameters chosen.
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7. MULTIPLICITY SIX WITH k§ = k{ + kS

7.1. Center manifold reduction. Consider the same situation as above but
assume that k§ = kf + k5. This scenario is important because different coefficients
would have zero in the denominator in the previous computations. If k§ = k{ — kS,

then the lattice can be redefined with k§ = —k§ and the rest of these computations
follow. In this case,
(71) S = {(n({a 77«3), (777}1:7 *ng)a (nicia nzcl)a (772?), *nfl)v (nga ng)7 (7”?,, 777’8)}

Thus, we have ,,,n,(Ao) < 0 for all (ny,n2) € Z2\ (SU{(0,0)}). Thus, with critical
value )\g, the eigenvalue

Brsng(A) = —nTky + nska|*(Infk1 + nSka|* — A)

(7.2) = ke[ *(kel* = ),
has multiplicity six with

er = ¢ik5@) ey = iR ®) oy — Gilk5 D)

ey = e ilks ), o5 = cih5®) o = pmikg )
(7:3) E} = span{ey, ...,es},

E3 = span{er, es, ...}.
The solution can thus be written as
(7.4) u(x,t) = i yie; + 2,
i=1

where z € span{er,es,...} is the stable component. By similar computation, the
center manifold function up to higher order terms is given by ¢(x) = Z?i7 oie;.
Using the notation that

er = eQikf‘J,} ey = e—2ikf~w7 eq = eQik:gw?

e10 = 672ik§-$, e1] = e2ik§»w, €19 = 672ik§~a:’
(7.5) €13 = ei(k;—kg).ac7 €14 = e—i(k;‘—kg).x7 15 = ez’(zk;‘+kg).x7

e16 = efi(2kf+k§)-x’ e17 = ei(k§+2k§)-a:’ e1g = 671'(k§+2k§)-z7

it can be calculated that the coefficients of the manifold are

2 2
T2 __TY
¢774|k§|2_)\’ ¢8 4|kf|2_)\’
2 2
77293 _ Y
¢974|k§|2_)\, ¢1O 4|k/’f|2_)\7
2 2
—Y2Y5 —72Y¢
D11 = o b12 = om0
76) R R 2
15 = —272y194 bra = —27%212Y3
PR — kg - N MRS — kg - N
b1 = —27291Y5 o = —2v292Y6
YT 2k RSP — X YT ke RS2 — X

17 = —2v2Y3Ys brs —292Y4Y6
T RS 4 2kS — X RS+ 2kS — X
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Using this function and by letting

A= o = [k§?
y1 = a1 + az,
Y2 = a1 — azi,
Y3 = asz + aat,
Y4 = az — aqi,
Ys = as + agt,

Y6 = a5 — Agl,

2
- c c cl2 73)’
Ok — RSJ2 — [KS2
c 2
n = =3Iki[*ys + 37
273
X =20k P (e o3~ 373);
2k + kS| — (k[
23
w = 2|k¢ 2 2 —3 ’
T= 2‘ki|2’72a

the reduced system can be rewritten as
(7.8)

a1t = Bay + a1(n(a — Tazas — Tasag + 0(3),

) (3)
)) — Tasag + Tagas + o(3),
) (3)
+a2)) — Tarag + Tazas + o(3),
) (3)
) (3)

— Taias — Ta20a¢ + 0

)

a3y = Baz + az(§

(
as = Bas + asz(n(a
(
aqr = Pas + as(é(a

ast = Bas + as(x(a — Taiaz + Tasas + 0(3),

(
agt = Bas + ag(x(a — Tasas — Tajaq + o(3).

From this point, the transition dynamics can be calculated using the different
straight lines in a six dimensional space. In order to make the calculations simpler,
we will impose another condition on the original solution of the equation: w must
be even in x.

7.2. w even in z.  Assume that u(z,t) = u(—=x,t). For this to be true, then
(7.9)
Y (el e natien) e o)
(n1,m2)€ZXZT\{(0,0)}
=Y Gt S i),

(n1,m2)€ZXZHT\{(0,0)}



CAHN-HILLIARD ON LATTICES: DYNAMIC TRANSITIONS AND PATTERN FORMATION®29

This condition implies that z(t) = z(t), so z(t) € R for all . This also means that

W= @GR D) | i)t o)
(n1,m2)€ZxZ+\{(0,0)}
= Z (221, n, (t) cos(ny (k1 - ) + na(ke - 2))

(n1,n2)€ZxZT\{(0,0)}

= > (Znyny (t) cos(ny (k1 - ) + na(ky - ).
(n1,m2)€ZXZHT\{(0,0)}

For the remaining part of this paper, we will be suppressing the tilde.

Now assume that #S = 3 (this can occur since u is even so the negative of a
mode is the same as the mode itself) and k§ = k§ + k5. In this case,

(7'10) S = {(nivng)v(ng’nfl)’(ng’n(ci)}

Thus, we have B, (o) < 0 for all (n1,n2) € Z x Z* \ (SU{(0,0)}). Thus, with
critical value A\, the eigenvalue

Brsns(\) = —[nfk1 + nsko|*(Infk1 + nSka|* — A)
(7.11) = —lke[* (k> = N),
has multiplicity six with
e; =cos(ki - x), ex=-cos(ks x), es=cos(ks-x),
(7.12) E} = span{ey, ea, es},
E3 = span{es, es, ..}.

The solution can thus be written as
3
(7.13) u(z,t) = Z yiei + 2,
i=1

where z € F3 is the stable component. By similar computation, the center manifold
function up to higher order terms is given by ¢(z) = Zfi 4 ¢iei. Using the notation
that

e4 = cos(2k{ - ), es = cos(2k5 - x),
(7.14) e = cos(2k5 - x), er = cos((k{ — kS) - ),
es = cos((2k{ + kS) - x), eg = cos((k§ + 2k5) - x),

it can be calculated that the coefficients of the manifold are

b= 1Y by = 23
DN P glkS2 —2x
2
7.15 __ Y _ Tkl
(719) %0 = Sz - 2x R Ty b
s —Y2Y1Y3 o —Y2Y2Y3

T2k + RS2 — N BEESTEEN
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Using this function and by letting

X=X = [ki]%,
3 . 1
¢ =k + 593,
3 i ch
n=—5lkil*ms + = |012‘ aEReE
(7.16) 2 kT — k5|* — [kl
. 3 i k,c2
X = =5k + o |61|2 PR
2 |2k1 + k5|* — |kl
|k§]?

3
— _= kc 2 27
T= _‘kﬂzﬁmv
the reduced system can be rewritten as

yie = By + y1 (€Yt + my3 + xv3) + Ty2ys + 0(3),
(7.17) Yoo = By2 + y2(nyi + €Y5 +wy3) + Ty1ys + o(3),
yse = Bys + ys(xyi + wys + £y3) + y1y2 + o(3).

By algebraic calculations, it can be shown that if |k$|? = |k§|? = |k§|? and kS =
k{ + kS, then |k§ — kS|? = |2k$ + kS|? = |k$ + 2k§|?. This implies, that
3. 1
= —IkiPs + 538,
(7.18) kS [?

3
n=x=w=—5k"s+ =75,

[k — k5|* — [kf]

T= —|/€f|2’)/27
and the reduced system can be rewritten as

Yie = Byr + EY5 + myys + myry3 + Tyays + o(3),
(7.19) Yar = By + &Y + nyay3 + nyrys + Ty1ys + o(3),
yse = Bys + &Y5 + nytys + ny3ys + Ty1ye + o(3).

7.3. Dynamical transition theorem.

Theorem 7.1 (Transition Types with k§ = k§ + k5). Consider the system defined
in (7.52-7.54):

Case 1: If v5 = 0, then the system undergoes a continuous (Type I) transition to
Y\~ 5% if y3 > 0, and undergoes a jump (Type II) transition if v3 < 0.

Case 2: If v > 0, the system undergoes a jump (Type II) transition if v3 < ﬁ’y&,

and a continuous (Type I) transition to Xy ~ S? if v3 > ﬁﬁ-
1
Case 3: If v2 < 0, the system undergoes a jump (Type II) transition.

Proof. Case 1: If 5 = 0, then

3 3
(720) 52 _Z‘RﬂQ’Yi’n n= _§|k’f|2’737 T=0.
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The system then becomes

(7.21) y1e = By + €y (v5 + 295 + 2u3) + o(3),
(7.22) Yar = By + &2 (2yF + v3 + 2y3) + 0(3),
(7.23) yse = Bys + Eys(2y7 + 2u3 + 3) + o(3).

If £ > 0, the all solutions will tend away from the origin, and if £ < 0 all solutions
will tend towards the origin. Equivalently, if y3 < 0, the all solutions will tend away
from the origin, and if v3 > 0 all solutions will tend towards the origin. Therefore,
if 43 < 0, the transition is Type II and if 3 > 0, the transition is Type I.

Case 2: If 75 > 0 then 7 < 0. The straight lines corresponding to this system are

y1=y2=0,
y1=y3 =0,
y2 =y3 =0,
(7.24) y1 =0 and y3 = y3,

y2 =0 and yi = v3,

ys =0 and yi = y3,

yi =5 = v3.
Let 4,7,k € [1,3] N Z such that ¢ # j, i # k, and j # k. Along the lines of the form
yi = y; = 0, the system reduces to

Observe that since § = —2 |k§|?y5 + %727

2
7.26 >0 <= 43 < ——~2.
( ) 5 Y3 9|kf|272

It can be seen that if & < 0, solutions along these lines tend towards the ori-

gin and if £ > 0, solutions along these lines tend away from the origin. Equiva-

lently, if 3 > ﬁvg, solutions along these lines tend towards the origin and if
1

v3 < ﬁ’yg, solutions along these lines tend away from the origin. It can also be

seen that along the lines of the form y; = 0 and y? = yjz, there are no straight line
solutions because at least one of y; and y; must be zero.

Along the line y; = ys = y3 the system reduces to
y1e = Byr + 47 (€ + 2n) + 17 + 0(3),
(7.27) yor = By2 +y3 (€ + 2n) + Ty3 + 0(3),
Y3t = Bys + y3 (€ +2n) + 743 + 0(3).

By truncating this system to second order (which can be done since we are consid-
ering small perturbations near the origin), the system becomes

Y1t = Ty%
(7.28) Yor = Y3,

Yst = TY3.
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Since 7 < 0, all solutions along this straight line that start near zero tend towards
Zero.
Case 3: If 79 < 0 then 7 > 0. The straight lines corresponding to this system are

y1 =y2 =0,

y1=y3 =0,

Y2 =y3 =0,

(7.29) y1 =0 and y3 = 43,
y2 = 0 and y7 = y3,

ys = 0 and y% :yg,

Yi = Y5 =3

Let 4,7,k € [1,3] NZ such that ¢ # j, i # k, and j # k. Along the lines of the form
y: = y; = 0, the system reduces to

(7.30) Ykt = &Y
Observe that since & = —2 |k§|?y5 + %727

2
7.31 0 — — = A2,
( ) £> 73 < 9|kf|272

It can be seen that if £ < 0, solutions along these lines tend towards the ori-

gin and if £ > 0, solutions along these lines tend away from the origin. Equiva-

lently, if 3 > ﬁﬁ, solutions along these lines tend towards the origin and if
1

73 < ﬁ'@, solutions along these lines tend away from the origin. It can also be

seen that along the lines of the form y; = 0 and y? = y?-, there are no straight line
solutions because at least one of y; and y; must be zero.

Along the line y; = ys = y3 the system reduces to

(7.32) yie = By + Y5 (€ +2n) + Tyi +0(3),
(7.33) Yor = Bya + Y3 (£ 4 2n) + TY5 + 0(3),
(7.34) yae = Bys + Y5 (£ +2n) + Y3 + 0(3).

By truncating this system to second order (which can be done since we are consid-
ering small perturbations near the origin), the system becomes

Y1t = Tyi
(7.35) Yor = Tyg7
Y3t = TY3-

Since 7 > 0, all solutions along this straight line that start near zero tend away
from zero.

O
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7.4. Structure of the set of transition states.