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Abstract. A translation surface is a collection of polygons in R2 with an even number of
sides where we identify pairs of parallel edges of equal length by translation. A square-tiled
surface is a special case of a translation surface that arises as a collection of unit squares.
Our focus is on a particular square-tiled surface called Eierlegende Wollmilchsau (EW). As
a surface in R2, a certain subgroup of SL(2,R) maps EW to itself. We investigate how this
group acts on the curves on EW. The representation of this group is called the Kontsevich-
Zorich monodromy group, which is used to study the dynamics of surfaces in the space
of translation surfaces. We also consider countable families of EW’s, and show that their
KZ monodromy groups are non-arithmetic. We work out examples of full KZ monodromy
groups in the cases where this is computationally feasible, and for the general case we use
properties of ramified covers to obtain results for an entire family of translation surfaces.
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1. Introduction

A translation surface is a collection of polygons in R2 with an even number of sides where
we identify pairs of parallel edges of equal length by translation. For example, the torus
(Figure 1) and the double torus (Figure 2) are both translation surfaces. A square-tiled
surface is a translation surface made of a finite collection of unit squares (Figure 3, and
Figure 4).
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Figure 1. A square with parallel sides glued together results in a torus.

Figure 2. An octagon with parallel sides glued together results in a double
torus.

We are interested in the moduli space of translation surfaces, therefore we define an equiv-
alence class of translation surfaces. Two translation surfaces are equivalent if one translation
surface can be cut and reglued (by translation) into the other, without rotation, reflection,
or scaling.

VV

Figure 3. A square-tiled surface (denoted L-Shape) with corresponding
marked sides glued together results in a double torus.
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VV
Figure 4. A square-tiled surface with corresponding marked sides glued to-
gether also results in a double torus.

Since a translation surface has a polygonal presentation in R2, one can apply a matrix from
GL(2,R) to the space of translation surfaces. Note that parallel lines remain parallel under
the GL(2,R)-action, hence polygons with pairs of parallel sides are mapped to polygons with
pairs of parallel sides. To preserve the area of a surface, we restrict to the action of SL(2,R).

The stabilizer of the SL2(R)-action on a surface X is called the Veech group of that surface,
denoted Γ(X). There are surfaces with large Veech groups in the sense that they are lattices
in SL2(R). These surfaces include the square-tiled surfaces.

We observe that [ 1 1
0 1 ] is an example of a stabilizing element in the Veech group of the unit

torus. Indeed, after applying the element to the surface, we can get an equivalent square-
tiled surface. By cutting and gluing by translation (Figure 5), we can recover the original
polygonal representation of the torus as a translation surface. Moreover, the group SL(2,Z)
is the Veech group of the square torus.

Figure 5. Applying a stabilizer to the torus, and regluing, results in a torus.

Equivalently, we can define the Veech group of a surface as the collection of derivatives
of the group of affine diffeomorphisms on the surface, denoted Aff(X). The affine diffeomor-
phisms of a translation surface X are diffeomorphisms of the surface such that the function
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can be represented as a linear map in charts. This perspective of the Veech group is par-
ticularly important to us since most of the complexity of the group of affine maps of a
square-tiled surface is captured by the collection of derivatives. Indeed, the following is an
exact sequence:

0 → Aut(X) → Aff(X)
D−→ Γ(X) → 0

Moreover, the kernel of the derivative map D is finite and corresponds to the collection of
automorphisms of the translation structure (which act as translations on the surface).

A surface is fixed in the moduli space under the action of the Veech group of that surface.
However, Aff(X) is a collection of maps on the surface, and consequently, the group acts non-
trivially on homology classes of curves on the underlying surface. The Kontsevich–Zorich
monodromy group encodes this information (Section ??).

In this project, we are interested in a specific family of square-tiled surfaces that arise as
covers of a Eierlegende Wollmilchsau (originally studied in [For06], [HS08]), which we will
call EW for short, (Figure 6). We construct a sequence of surfaces in attempt to find surfaces
that answer the following question from [GRLS24].

Question 1.1 ([GRLS24]). Do there exist surfaces of arbitrarily large genus with a highly
nonsimple spectrum?

While a lot of research has been done in finding surfaces with a completely degenerate
Lyapunov spectrum, not much is known about surfaces with highly nonsimple Lyapunov
spectrum.
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Figure 6. Eierlegende Wollmilchsau. All squares are unit squares. The gap
is there to emphasize that sides A and B are not identified.

The main result of our project is partial progress in understanding the Kontsevich–Zorich
monodromy groups of the surfaces in this family. In Section 2, we define our tools and show
how they are used on EW. In Section 3, we carry out our computations on our family of
surfaces using tools developed in Section 2.

Acknowledgements. This report is based on work supported by NSF grant DMS-2051032,
which we gratefully acknowledge. We would also like to express special thanks to the De-
partment of Mathematics at Indiana University for hosting the program.
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2. Definitions/Background

We are interested in understanding how the Affine group acts on first homology group
on particular covers of EW. We define the first homology group of a translation surface X,
denoted H1(X), as the abelianization of the fundamental group of X, i.e, H1(X) := π1(X)ab.
Since the Euler characteristic of a translation surface X is χ(X) = 2 − 2g, we define the
genus to be g. Before introducing the covers we will be studying, we will walk through a
few examples that detail how this action manifests.

We start with a slightly nontrivial surface called the L-Shape surface (Figure 3). Since
L-Shape is genus 2, there are four basis curves in the first homology group (Figure 7).

VV

Figure 7. L-Shape with basis vectors.

The Veech group of the L-Shape is Γ = ⟨[ 1 2
0 1 ] , [

1 0
2 1 ]⟩ ⪇ SL(2,Z). By applying [ 1 2

0 1 ] to
L-Shape, we are in effect looking at the action of a particular affine diffeomorphism of the
surface, and we can observe how the basis curves change under this map (Figure 8).
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VV

VV

VVVV

VV

Reglue

Reglue

Figure 8. L-Shape, and its basis, acted on by stabilizer [ 1 2
0 1 ].

We write the transformed curves in terms of the basis

α̃ = α + γ + 2δ

β̃ = β + γ

γ̃ = γ

δ̃ = δ

Let {α, β, γ, δ} be an ordered basis of the first homology group, then with respect to this
basis, we encode the induced action of the affine group as a representation ρ : Aff(X) →
End(H1(X;R)). The representation of the element [ 1 2

0 1 ] is

ρ

([
1 2
0 1

])
=


1 0 0 0
0 1 0 0
1 1 1 0
2 0 0 1

 .

Similarly,

ρ

([
1 0
2 1

])
=


1 0 1 1
0 1 2 0
0 0 1 0
0 0 0 1

 .
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2.1. Decomposition of H1 into Hst
1 ⊕ H

(0)
1 . Let X be a squared-tiled surface tiled by n

squares. For each square i, where i ∈ {1, . . . , n}, consider the cycles σi and ζi (Figure 9).
The tautological plane [GS23], Hst

1 (X), is the homology group spanned by the cycles
∑

σi

and
∑

ζi. The tautological plane is so named because it duplicates the original information
of the Veech group: any automorphism of the surface will act trivially on the tautological
plane, and any other affine map will act as its derivative, the Veech group element, on the
tautological plane.

i

Figure 9. For each square i, we consider the cycles σi and ζi.

We define the zero-holonomy group, H(0)
1 (X) := {γ ∈ H1(X)|⟨γ, α⟩ = 0,∀α ∈ Hst

1 (X)},
where ⟨γ, α⟩ is the intersection form, which counts the (algebraic) number of intersections
between two curves. By algebraic, we mean that we not only consider the number of inter-
sections but also consider the orientation of curves at each point of intersection.

+1 -1
Figure 10. ⟨γ, α⟩ = 1 if γ and α intersect as on the left. ⟨γ, α⟩ = −1 if γ
and α intersect as on the right. In short, ⟨,̇⟩̇ is a skew-symmetric form.

We note the decomposition

H1(X) = Hst
1 (X)⊕H

(0)
1 (X).

Each subspace is invariant under the affine group of X. In other words, a curve in the
tautological plane stays in the tautological plane after the action of a stabilizer. The same
holds for the zero-holonomy group. Furthermore, since the representation of the affine group
respects the intersection form, which is dual to a symplectic (volume) form on the cohomology
side, we have that our representation ρ : Aff(X) → Sp(H1(X;R)), i.e. all of our affine maps
are represented as a symplectic matrix with respect to the intersection form.

The Kontsevich–Zorich monodromy group is the group generated by the group represen-
tations of the Veech group on the zero-holonomy subspace. From now on, we call this KZ
monodromy group.
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We will compute the KZ monodromy group of EW. Consider EW with a basis for H(0)
1 (X)

as shown in Figure 11.
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Figure 11. EW with basis vectors for the zero-holonomy vector space.

We apply the stabilizer [ 1 0
1 1 ], and we keep track of how the basis curves move as we reglue

the surface (Figure 12, Figure13, and Figure 14).
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Figure 12. The action of [ 1 0
1 1 ] together with regluing instruction to get back

EW.

We observe the following: ⟨α1, α̃1⟩ = 1, ⟨β1, α̃1⟩ = −1, ⟨α2, α̃1⟩ = −1, and ⟨β2, α̃1⟩ = 1.
Since the intersection form is linear, and α̃1 = c1α1 + c2β1 + c3α2 + c4β2, we get a system of
equations

c1⟨α1, α1⟩+ c2⟨α1, β1⟩+ c3⟨α1, α2⟩+ c4⟨α1, β2⟩ = 1 = ⟨α1, α̃1⟩
c1⟨α1, α1⟩+ c2⟨α1, β1⟩+ c3⟨α1, α2⟩+ c4⟨α1, β2⟩ = −1 = ⟨β1, α̃1⟩
c1⟨α1, α1⟩+ c2⟨α1, β1⟩+ c3⟨α1, α2⟩+ c4⟨α1, β2⟩ = −1 = ⟨α2, α̃1⟩
c1⟨α1, α1⟩+ c2⟨α1, β1⟩+ c3⟨α1, α2⟩+ c4⟨α1, β2⟩ = 1 = ⟨β2, α̃1⟩

We conclude that α̃1 =
1
2
(α1 + β1 + α2 + β2).
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Figure 13. Applying the gluing instructions from Figure 12, and an auto-
morphism, which fixes the bottom left cone point of box 1.
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Figure 14. We observe how α1 changes by the transformations from Figure
12, and Figure 13.

When performing a similar computation for other basis curves, we calculate that the group
representation of [ 1 0

1 1 ] is

ρ

([
1 0
1 1

])
=

1

2


1 −1 1 −1
1 1 −1 −1
1 1 1 1
1 −1 −1 1

 .

Similarly,

ρ

([
1 1
0 1

])
=


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 .
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3. Main results
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Figure 15. The curve α̃1 is superimposed onto EW before transformations
in Figure 12, and Figure 13.

3.1. Our Family of Translation Surfaces. The presentation of EW (Figure 6) that we
are working with lends itself naturally to generalization. EW consists of two sets of four
squares, but we can construct a new surface using n sets of four squares, with gluing as
follows:

Figure 16. The general gluing pattern for the nth member of our family.

where adjacent vertical edges are glued together (so that one may draw the entire surface as
a single 2 by 2n rectangle, without the vertical gaps). Call the surface with n sets of four
squares Xn, so that EW = X2. Note X1 gives the torus.

The surface Xn has genus gn = 2n − 1. There are four cone points each with total angle
2πn.

3.2. A Zero-Holonomy Basis. In order to carry out our computations, we need a basis to
work with. In particular, if we find a basis specifically for the zero-holonomy subspace (as
opposed to one for the entire homology), this will avoid additional computations. The zero-
holonomy basis we work with can be partitioned into two groups, curves along the center
and curves along the top and bottom. For our curves along the center, we have the following:
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There are two types of curve here. The first are the dashed curves, which are simply loops
circling every slit but the last. The second set of curves consist of two pieces, one running
between adjacent slits from left to right on top and one running between the corresponding
adjacent slits on the bottom from right to left so as to close the loop. Again this is done
beginning on every slit except the last.

Our curves on the top and bottom will be:

Again, beginning at the top we have two sets of curves. First the solid curves, running from
the first square to the third, the third to the fifth, the fifth to the seventh, etc, until we
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reach the end. Each of these loops is then closed in the bottom by a corresponding segment
running from right to left. For instance, the first curve in the top left runs left from the first
square to the third square, and the second piece of that curve, in the bottom squares, runs
from right to left from the fifth square in the bottom row to the third square, closing the
loop.
The dashed curves are simple loops circling every other top and bottom edge. That is, the
first dashed curve is a loop around the top left edge, the next is a loop around the third top
edge, and so on, stopping at the fourth-to-last edge.

To verify that this is a basis, we can check that the intersection form is invertible. Xn

has genus 2n − 1, thus the zero-holonomy space has 2g − 2 = 4n − 4 curves. From left to
right along the top, label the solid curves by α1, . . . , αn−1 and the dashed curves on the top
by β1, . . . , βn−1. From left to right label the solid curves in the center by αn, . . . , α2n−2 and
the dashed curves by βn, . . . , β2n−2. Order the basis by α1, β1, α2, β2, . . . , α2n−2, β2n−2. For
1 ≤ i ≤ n− 1 and n ≤ j ≤ 2n− 2, αi and βi have no intersections with αj and βj. Thus our
intersection matrix will be block-diagonal with two blocks. In fact, these two blocks will be
negatives of each other. Let C be the block corresponding to the intersections of the center
curves (that is, the intersections of the curves αn, . . . , α2n−2 and βn, . . . , β2n−2, which given
the ordering of our basis will appear as the block in the lower right of the intersection form
Ω). That is,

Ω =

[
−C 0
0 C

]
with C having dimensions n− 1× n− 1. We claim C has the following form. Consider the
2n× 2n matrix where every element is zero except the following:
If i ≡ 1 (mod 2), then the ith row has a -1 in columns i+ 1 and i+ 5 (mod 2n), and a 2 in
column i+ 3.
If i ≡ 0 (mod 2), then the ith row has a 1 in columns i − 1 and i − 5, and a -2 in column
i− 3.
Note the columns are specified mod 2n, but the rows and columns are indexed beginning at
1, so the position 0 mod 2n corresponds to the last column rather than the first.
In terms of this 2n× 2n matrix, we claim C is the upper left 2n− 2× 2n− 2 submatrix.
With some effort one can show that C is indeed invertible, from which it follows that the
intersection form is invertible.
To exhibit an example of the above construction of the matrix C, and because we will use it
later to compute representations on X4, we present the matrix C in the n = 4 case (g4 = 7):

C =


0 −1 0 2 0 −1
1 0 0 0 1 0
0 0 0 −1 0 2
−2 0 1 0 0 0
0 −1 0 0 0 −1
1 0 −2 0 1 0


3.3. Veech Group Elements. In this section we will determine some Veech group elements
across our family of surfaces. By computing the Veech groups through Sage for the first
several dozen surfaces, we find that the number of generators of each Veech group, as well as
the index, grows rapidly (roughly quadratically) but seemingly without a nice explicit form.
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One other thing we observe but have not been able to prove is that for n odd, the Veech
groups of Xn and X2n are precisely the same.

Proposition 3.1. −I is in the Veech group of every Xn.

Proof. It is essentially immediate to check that −I is in the Veech group for every member
of the family; after applying the matrix, simply cut and reglue the two leftmost squares of
Figure 16 onto the very right. □

Proposition 3.2.
[
1 0
1 1

]
is in the Veech group of every Xn.

Proof. This follows by essentially the same gluing pattern as was used for X2 (see Figure 12).
After applying the transformation and dividing the parallelograms into triangles as was done
there, then for each parallelogram do the following: translate the top right triangle down to
the bottom right, translate the bottom left triangle onto the top left of the parallelogram to
the left, and translate the triangle containing the lower part of the slit into the corresponding
position in the parallelogram to the left. Note that for the leftmost parallelogram things
“wrap around”, so moving a triangle to the parallelogram to its left means moving that
triangle to the rightmost parallelogram. □

For n even, Sage also tells us that
[
n− 1 −n
1 −1

]
is in the Veech group of Xn. One notices,

however, that [
n− 1 −n
1 −1

]
= −

[
1 n
0 1

] [
1 0
1 1

]−1

,

so to show that this is an element of the Veech group, it suffices to show

Proposition 3.3.
[
1 n
0 1

]
is in the Veech group of Xn for n even.

Proof. To apply this matrix, it will be convenient to view our surfaces as one long 2 by

2n rectangle in the manner described earlier. After applying
[
1 n
0 1

]
, note that we obtain a

parallelogram where the top left corner is directly above the bottom right corner. This means
we can cut our surface down the vertical line connecting these corners, then reglue the two
resulting triangles by joining them along their diagonal to once again obtain a rectangular
configuration. In particular, after regluing we get the following transformation (keeping track
simply of where the top, center, and bottom edges are sent):

↓
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One can check that this preserves the structure of the translation surface. □

Proposition 3.4.
[
1 2n
0 1

]
is in the Veech group of every Xn.

This is obtained by a very similar cutting and regluing process.

Additionally, for completeness we will state here the following fact, which we will use and
restate later: for d|n, the Veech group of Xn is contained in the Veech group of Xd.

3.4. Computing Representations. Suppose we want to compute the representation of a
matrix M . To do so, we define a matrix T where the ijth entry is the intersection of the ith
basis curve with the image of the jth basis curve under M . Then ρ(M) = Ω−1T .
Sometimes this is unnecessary, if we can see visually where a curve is sent, e.g., when M

is acts as a horizontal shear map. For instance, after applying
[
1 2n
0 1

]
, it will be clear

that each curve is simply mapped to itself, thus ρ(

[
1 2n
0 1

]
) = I. Similarly, when applying[

1 n
0 1

]
it is clear that our curves along the top and bottom are fixed, while the center curves

(from our depiction of the transformation above) are each shifted to their counterpart n
2

to
the right. For instance, αn 7→ αn+n

2
, and α2n−2 7→ αn−2+n

2
(taking into account that the

indexing only goes up to 2n− 2 and we must ’wrap around’). From this one can write down
a matrix for the transformation.
By contrast, when computing the representation of

[
1 0
1 1

]
, it is not easy to simply visualize

this and we must count intersections and multiply by the inverse of the intersection form. For

instance, we computed the representation of
[
1 0
1 1

]
on X4 by transforming each curve one

by one and finding their intersections with the original basis curves. The resulting matrix of
intersections (what we called T above) was

T =



1 0 0 −1 0 1 0 −1 0 1 −1 0
0 1 0 0 −1 0 0 1 0 0 −1 0
−1 0 1 0 0 −1 1 0 0 −1 0 1
1 −1 0 1 0 0 1 −1 0 1 0 0
0 1 −1 0 1 0 −1 0 1 0 0 −1
−1 0 1 −1 0 1 −1 0 1 −1 0 1
−1 0 1 −1 0 1 1 −1 0 1 0 0
1 1 0 0 0 0 1 1 0 0 0 0
0 0 −1 0 1 −1 −1 0 1 −1 0 1
−1 −1 1 1 0 0 −1 −1 1 1 0 0
0 1 0 0 −1 0 0 0 −1 0 1 −1
0 0 −1 −1 1 1 0 0 −1 −1 1 1
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while

Ω =



0 1 0 −2 0 1 0 0 0 0 0 0
−1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 −2 0 0 0 0 0 0
2 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
−1 0 2 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 2 0 −1
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 2
0 0 0 0 0 0 −2 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −1
0 0 0 0 0 0 1 0 −2 0 1 0


,

allowing us to compute

ρ

([
1 0
1 1

])
= Ω−1T =

1

4



1 −3 1 1 1 1 1 −3 1 1 1 1
−1 3 −1 −1 3 −1 −1 −1 3 −1 −1 −1
−2 −2 2 −2 2 2 −2 −2 2 −2 2 2
−2 2 −2 2 2 −2 −2 2 2 −2 2 −2
−1 −1 −1 −1 3 −1 −1 −1 −1 −1 3 −1
1 1 −3 1 1 1 −3 1 1 1 1 −3
3 3 −1 −1 −1 −1 3 3 −1 −1 −1 −1
1 −3 1 1 1 1 1 1 1 1 −3 1
2 2 2 2 −2 −2 2 2 2 2 −2 −2
−2 −2 2 −2 2 2 2 −2 2 2 −2 2
1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 3 −1 −1 −1 3 −1 −1 3


3.5. Covering Maps. For all d|n, there is a natural choice of cover p : Xn → Xd given in
the following way: beginning from the left, we can partition the n blocks of Xn into n

d
groups

of d consecutive squares. Map each of these n
d

into Xd simply by inclusion. For instance,
when n = 2k we have
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This covering map induces a homomorphism p∗ : H1(Xn) → H1(Xd), which we can eval-
uate by simply looking at the images of curves under p. Clearly any zero-holonomy curve
will remain zero-holonomy after being projected from Xn to Xd, so p∗ restricts to a map
p∗ : H

(0)
1 (Xn) → H

(0)
1 (Xd). Let’s compute this map explicitly using our basis curves.

While we will be using the same curves as before, in order to get a nice matrix form for
p∗ we will be reordering (and relabeling) our basis. We have curves α1, . . . , α2n−2 and
β1, . . . , β2n−2. The curves α1, . . . , αn−1 and β1, . . . , βn−1 (which are the curves along the
top and bottom of Xn) will continue to be called α1, . . . , αn−1 and β1, . . . , βn−1. How-
ever αn, . . . , α2n−2 will now be γ1, . . . , γn−1, respectively, and βn, . . . , β2n−2 will now be
δ1, . . . , δn−1, respectively. In terms of these new labels, the ordering of our basis will
be α1, . . . , αn−1, β1, . . . , βn−1, γ1, . . . , γn−1, δ1, . . . , δn−1, with each of these four groups cor-
responding to the natural grouping of our curves. Note that all the αi are translates of each
other, all the βi are translates of each other, et cetera.

Figure 17. New basis labeling on EW

We will find that each of these four groups behave essentially the same. That is, what holds
for the αi will also hold for the βi, γi, δi. Thus in order to avoid repeating ourselves for every
result, we will use ei as a placeholder for an arbitrary basis element. That is, e1 can stand
for α1, β1, γ1 or δ1. Note that when there are several ei in a single place, all the ei should be
interpreted as the same letter. For instance, e2 + e3 can only mean α2 + α3, β2 + β3, γ2 + γ3,
or δ2 + δ3.
In order to compute p∗, it suffices to look in Xn at each of the n

d
groups of d individually.

The first n
d
− 1 of these groups look the same, and our projection is as follows. The first

d− 1 α, β, γ, and δ curves in this group of d are mapped to the d− 1 α, β, γ, and δ curves,
respectively, in Xd. The single remaining α, β, γ, and δ curves are not mapped to a basis
curve in Xd. Recall that in constructing our basis, for each ei we were simply repeating a
pattern in every square except the last, thus obtaining d−1 of each type of curve among the
d squares of Xd. The image of our remaining curves is where the dth copy of the αi, βi, γi, δi
would have been. What remains is to express these final curves in terms of our basis.
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Lemma 3.5. In Xd, call these additional copies of each curve αd, βd, γd, δd. Then ed =
−
∑d−1

i=1 ei.

Proof. This is proven simply by counting intersections and verifying that the expressions on
both sides of the equality have the same intersection with every basis element. □

We therefore know precisely what p∗ does to each block of d in Xn in terms of terms of
the basis for Xd. To distinguish between our basis curves in Xn and Xd, denote the curves
in Xn by eni and the curves in Xd by edi . Then the first d − 1 of the eni are mapped to
the corresponding edi , and the last eni is mapped to −

∑d−1
i=1 e

d
i . In our basis, this means p∗

restricted to these blocks and restricted to just one set of ei is of the form

P =


1 0 · · · 0 −1

0 1 · · · 0
...

...
... . . . ...

...
0 0 · · · 1 −1


(d−1)×d

Recall that this is for the first n
d
− 1 blocks of d squares in Xn. The final block of d squares

does not contain this last column, as it only has d− 1 of each type of curve. Putting all this
together, we have that restricted to just the eni , p∗ is of the form

B =
(
P · · · P I(d−1)×(d−1)

)
(d−1)×(n−1)

where there are n
d
− 1 copies of P .

Then in our full basis, on all of the αn
i , β

n
i , γ

n
i , δ

n
i , we have that

p∗ =


B 0 0 0
0 B 0 0
0 0 B 0
0 0 0 B


(4d−4)×(4n−4)

where each copy of B corresponds to the α, β, γ, δ curves, respectively.
Let’s compute the kernel of p∗. We see that with the ordering of our basis that we have
chosen, p∗ is in reduced row echelon form, and in particular to find the kernel it suffices to
find the kernel of B, which is also in reduced row echelon form. Let e1, . . . , en−1 be the basis
in the domain for B. Then ed, . . . , en−1 are the free variables. Let x =

∑
xiei be an arbitrary

element. Then setting Bx = 0 gives us a set of d− 1 equations to specify all x in our basis.
Reading off the kth row of this matrix equation, we get for 1 ≤ k ≤ d− 1 that

xk +

n
d
−1∑

j=1

xjd+k −
n
d
−1∑

l=1

xld = 0.

That is,

xk =

n
d
−1∑

j=1

xld − xjd+k.

For each d ≤ i ≤ n−1 we therefore get a basis vector for the kernel: if d|i, then ei+
∑d−1

j=1 ej
is a basis vector for the kernel, and if d ∤ i, then ei − ej is a basis vector for the kernel where
1 ≤ j ≤ d− 1 is the remainder after dividing i by d. This gives the entire kernel.
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3.6. Lifting Properties. In this section, we use lifting properties to compute the KZ mon-
odromy group and certain Lyapunov exponents of surfaces that arise as covers of other
surfaces.
The following from [GJ00] holds in much greater generality, but we will state it only as we
need it here.

Theorem 3.6 ([GJ00], Theorem 2). Let S1, S2 be square-tiled surfaces with Veech groups
Γ(S1),Γ(S2), respectively. If there exists an affine covering (see [GJ00], Definition 4) ϕ :
S1 → S2, then for some g ∈ SL2(R) we have that Γ(S1) ∩ gΓ(S2)g

−1 is a finite index
subgroup of both Γ(S1) and Γ(S2).

For us, the theorem takes the following form:

Theorem 3.7. If d|n, then there is a subgroup of Γ(Xn) that has finite index in Γ(Xd), and
for any M ∈ Γ(Xn) ∩ Γ(Xd) we have the following commutative diagram:

Xn Xn

Xd Xd

M

p p

M

which induces

H
(0)
1 (Xn) H

(0)
1 (Xn)

H
(0)
1 (Xd) H

(0)
1 (Xd)

ρ̃(M)

p∗ p∗

ρ(M)

For the properties we will be studying, examining a finite index subgroup as opposed to
the full group will still yield precisely the same information. Note that for conciseness we
will speak as if we actually have the entire group as opposed to just a finite index subgroup.

Lemma 3.8. ker p∗ is a ρ̃(M)-stable subspace.

Proof. Diagram chasing. Let x ∈ ker p∗ be arbitrary. Then 0 = ρ(M)◦p∗(x) = p∗ ◦ ρ̃(M)(x),
thus ρ̃(M)(x) is in the kernel of p∗. □

Lemma 3.9. If V is a ρ̃(M)-stable subspace, then V ⊥, the orthogonal complement of V in
H

(0)
1 (Xn) with respect to the symplectic form, is also a ρ̃(M)-stable subspace.

Proof. Let Ω be the symplectic form. We know ρ̃(M) is an element of Sp(H(0)
1 (Xn)). Thus

if x ∈ V ⊥ := {x ∈ H
(0)
1 (Xn) | Ω(x, y) = 0 ∀y ∈ V }, then

∀y ∈ V, Ω(ρ̃(M)(x), y) = Ω(x, ρ̃(M)
−1

(y)) = 0,

where the last equality holds because y ∈ V =⇒ ρ̃(M)
−1

(y) ∈ V , and we have x ∈ V ⊥.
Thus ρ̃(M)(x) ∈ V ⊥, as claimed. □

Corollary 3.10. (ker p∗)
⊥ is a stable subspace of the KZ-monodromy group.
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We have a basis for the kernel of p∗, and now we will produce a basis for its complement.
The dimension of this complement is dimH

(0)
1 (Xd) = 4d − 4. For each 1 ≤ i ≤ d − 1, I

claim
∑n

d
−1

j=0 ei+jd is a basis vector in the complement. As e runs across α, β, γ, δ, this gives
us our 4d− 4 curves. These curves are trivially linearly independent, as they are each sums
of entirely disjoint collections of basis elements. Thus to show that they are a basis for
(ker p∗)

⊥, one only needs show that they are orthogonal to each basis element of the kernel,
which is easily done by inspection, as most of the curves never cross at all.

Proposition 3.11. KZ(Xn)
∣∣
(ker p∗)⊥

= KZ(Xd) (up to appropriate choice of basis).

Proof. Recall each basis vector of (ker p∗)⊥ is of the form
∑n

d
−1

j=0 ei+jd for some 1 ≤ i ≤ d− 1.

It is easy to see that p∗
(∑n

d
−1

j=0 eni+jd

)
= n

d
edi , thus if we multiply our basis by d

n
to get a new

basis of the form { d
n

∑n
d
−1

j=0 ei+jd}, then p∗ sends each of these basis elements to a distinct
basis element of Xd. Thus, with the appropriate ordering on our new basis of (ker p∗)⊥, we
have that p∗

∣∣
(ker p∗)⊥

acts by the identity. Our commutative diagram on the level of homology,
restricted to (ker p∗)

⊥, then gives the desired result.
Without specifying a basis, we know abstractly that p∗ surjective means there exists a section
σ : H

(0)
1 (Xd) → H

(0)
1 (Xn) satisfying p∗ ◦ σ = I and σ ◦ p∗

∣∣
(ker p∗)⊥

= I, thus by including σ in
our commutative diagram

H
(0)
1 (Xn) H

(0)
1 (Xn)

H
(0)
1 (Xd) H

(0)
1 (Xd)

ρ̃(M)

p∗ p∗
σ

ρ(M)

we get that for any M ∈ Γ(Xn), we have ρd(M) = p∗ ◦ ρn(M) ◦ σ, and then by restricting to
(ker p∗)

⊥ and using σ = (p∗
∣∣
(ker p∗)⊥

)−1 we get the general result. □

Example 3.12. For n = 4, d = 2, and M =

[
1 0
1 1

]
.
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Previously, we have computed

ρ2(M) =
1

2


1 −1 1 −1
1 1 −1 −1
1 1 1 1
1 −1 −1 1



ρ4(M) =
1

4



1 −3 1 1 1 1 1 −3 1 1 1 1
−1 3 −1 −1 3 −1 −1 −1 3 −1 −1 −1
−2 −2 2 −2 2 2 −2 −2 2 −2 2 2
−2 2 −2 2 2 −2 −2 2 2 −2 2 −2
−1 −1 −1 −1 3 −1 −1 −1 −1 −1 3 −1
1 1 −3 1 1 1 −3 1 1 1 1 −3
3 3 −1 −1 −1 −1 3 3 −1 −1 −1 −1
1 −3 1 1 1 1 1 1 1 1 −3 1
2 2 2 2 −2 −2 2 2 2 2 −2 −2
−2 −2 2 −2 2 2 2 −2 2 2 −2 2
1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 3 −1 −1 −1 3 −1 −1 3


Now we simply need to perform a change of basis, noting that these representations were

computed with our formerly ordered basis. Our four basis vectors for (ker p∗)
⊥ are α4

1 +
α4
3, β

4
1 +β4

3 , γ
4
1 +γ4

3 , δ
4
1+δ43, while the basis for ker p∗ itself is α4

1+α4
2,−α4

1+α4
3, β

4
1 +β4

2 ,−β4
1 +

β4
3 , γ

4
1 + γ4

2 ,−γ4
1 + γ4

3 , δ
4
1 + δ42,−δ41 + δ43. The change of basis matrix is simply writing these as

columns (using the old ordering for our basis), so we get

Q =



1 0 0 0 1 −1 0 0 0 0 0 0
0 1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1


for the change of basis matrix. Computing Q−1ρ4(M)Q gives:

1
2

−1
2

1
2

−1
2

0 0 0 0 0 0 0 0
1
2

1
2

−1
2

−1
2

0 0 0 0 0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0 0 0 0 0
1
2

−1
2

−1
2

1
2

0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 1 0 1 −1 1
0 0 0 0 −1

2
1 −1

2
0 −1

2
1 −1

2
0

0 0 0 0 −1 1 1 −1 0 1 0 −1
0 0 0 0 −1

2
0 1

2
0 −1

2
1 1

2
−1

0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 1

2
0 1

2
0 1

2
0 1

2
0

0 0 0 0 0 1 −1 1 1 −1 0 1
0 0 0 0 −1

2
1 −1

2
0 1

2
0 −1

2
1


and indeed we see that the top left corner, which corresponds to (ker p∗)

⊥, is precisely ρ2(M).

Corollary 3.13. The Lyapunov exponents of Xd lift to be Lyapunov exponents of Xn.
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This leads to a natural question: if we know the Lyapunov exponents of Xd for all d|n,
how many Lyapunov exponents of Xn do we get from this simple lift?
Note that, for instance, when n = 12, we get Lyapunov exponents from X2, X3, and X4,
but X2 and X3 both share the Lyapunov exponent 1, and all the Lyapunov exponents of X2

are also Lyapunov exponents of X4, and we want to avoid this double counting since these
exponents do not get represented multiple times.
Since the spectrum of Lyapunov exponents is symmetric (with respect to 0), it suffices to
consider only the non-negative part of the spectrum. Define Ln to be the number of non-
negative Lyapunov exponents of Xn which are not obtained by lifting Lyapunov exponents
from some Xd for d|n. Xn has gn non-negative Lyaponuv exponents, thus Ln = gn−

∑
d|n

d ̸=n

Ld

(take the total number of Lyapunov exponents and subtract off the inherited Lyapunov
exponents; notice that there will be no double counting). Note we are taking X1 = T2, so
that all Xn are said to inherit the trivial Lyapunov exponent from the torus.
We can rewrite our recurrence by gn =

∑
d|n Ld. Standard Möbius inversion then tells us

that Ln =
∑

d|n µ(d)gn
d
, where µ is the standard Möbius function. This becomes:

Ln =
∑
d|n

µ(d)gn
d

=
∑
d|n

µ(d)
(
2
n

d
− 1

)
= 2

∑
d|n

µ(d)
n

d
−

∑
d|n

µ(d)

= 2ϕ(n)− 0

= 2ϕ(n)

where we have used standard identities of µ, and ϕ is the Euler totient function. (Note∑
d|n µ(d) = 0 holds only for n > 1; when n = 1 we simply have L1 = 1).

This means the number of non-negative Lyapunov exponents that Xn does inherit from all
Xd is

gn − Ln = 2(n− ϕ(n))− 1.

Note lim inf n − ϕ(n) = 1 but lim supn − ϕ(n) = ∞, so the amount of information we are
getting varies wildly.

3.7. Arithmeticity. The KZ monodromy group KZ(X) of a translation surface is said to
be arithmetic if it is dense (under the Zariski topology) in Sp(H

(0)
1 (X)) and has finite index.

A translation surface is said to be arithmetic if its KZ monodromy group is arithmetic.
It is known that EW is non-arithmetic, thus KZ(X2) is not dense in Sp(H

(0)
1 (X2)). In other

words, the elements of KZ(X2) satisfy a non-trivial algebraic equation other than those
obtained from the defining equation of Sp(H(0)

1 (X2)), namely AΩAT = Ω, where Ω is the
symplectic intersection form.
For 2|n, our proposition earlier tells us H

(0)
1 (Xn) decomposes into two components that are

orthogonal with respect to Ω, which means Ω itself decomposes as a block-diagonal matrix,
and the condition AΩAT = Ω thus also decomposes into these blocks. Note Ω

∣∣
(ker p∗)⊥

is

precisely n
2

times the intersection form of H(0)
1 (X2), which one can check by inspection.
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3.7.1. Representation of the Automorphism Group. For n > 2, the group of automorphisms
of Xn (Aut(Xn)) is cyclic and generated by the automorphism sending the top left square
down to the bottom left. This uniquely determines an automorphism by positioning the
remaining squares in the correct relative positions. If the top row of squares is numbered 1
through 2n and the bottom row 2n + 1 to 4n, then we know square 2 must remain to the
right of square 1, square 3 to the right of square 2, and so on, thus the entire top row moves
to the bottom. Square 2n+3 must be above square 1, and then again we simply proceed to
the right in ascending order with 2n+ 4, 2n+ 5...
We can compute a representation of Aut(Xn) given as the map each automorphism induces
on the zero-holonomy subspace. That is, it is precisely the same procedure done before for
elements of the Veech group. Call this representation ρ.
Since the automorphism group is finite, we can decompose ρ into irreducible real represen-
tations. In particular, if IrrR(Aut(Xn)) is the collection of irreducible real representations of
the automorphism group, let {Va}a∈IrrR(Aut(Xn)) be the corresponding set of vector spaces for
each representation. Then we have

ρ =
⊕

a∈IrrR(Aut(Xn))

la⊕
i=1

a

and

H
(0)
1 (Xn) ≃

⊕
a∈IrrR(Aut(Xn))

V la
a ,

where la is defined to be the multiplicity with which the irreducible representation a appears
in ρ. We then define Wa := V la

a , called isotypical components.
What are the irreducible real representations of Aut(Xn)? The irreducible complex represen-
tations of Aut(Xn) = Z2n are precisely the 2n one-dimensional representations corresponding
to each 2nth root of unity. From this we find that we have two one-dimensional real rep-
resentations corresponding to the two real 2nth roots of unity (±1). To get the remaining
real representations, we group each 2nth root of unity with its conjugate to obtain n − 1
two-dimensional real representations. Thus we say that either a ∈ Irr(Aut(Xn)) is real if
it is a representation corresponding to ±1 or we say a is complex if it is a representation
corresponding to a conjugate pair of non-real roots of unity.
We will use the following proposition from Matheus–Yoccoz–Zmiaikou [MYZ13], from which
the notation we just used was taken.

Proposition 3.14. ([MYZ13], Propositions 3.16, 3.17)
If a is real, Sp(Wa) ≃ Sp(la,R).
If a is complex, Sp(Wa) ≃ UC(p, q) for some p+ q = la, where UC(p, q) is the pseudo unitary
group over C.

We would therefore like to compute the representation ρ of Aut(Xn). Fortunately, it suffices
to determine how ρ acts on just the generator of Aut(Xn). Denote by σn the generator
of Aut(Xn), and its representation ρ(σn). One can verify that the representation that is
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induced by σn on H
(0)
1 (Xn) is as follows:

αi 7→ −δi

βi 7→ −γi−2; β1 7→ −γn−1; β2 7→ γ1 + · · ·+ γn−1

γi 7→ −βi+1; γn−1 7→ β1 + · · ·+ βn−1

δi 7→ −αi−1; δ1 7→ α1 + · · ·+ αn−1

Thus if we let

ρ(σn) =


0 0 0 Dn

0 0 Cn 0
0 Bn 0 0
An 0 0 0

 ,

(so that An corresponds to where αi are sent, Bn where βi are sent, etc.) we have that

An = −In−1

Bn =

[
0⃗n−2 Dn−1

−1 (e1)
T
n−2

]
Cn =

[
0⃗Tn−2 1

−In−2 1⃗

]
Dn =

[
1⃗n−2 −In−2

1 0⃗Tn−2

]
where (ei)j is the j-tuple consisting of a 1 in the ith position and 0’s everywhere else. 0⃗j and
1⃗j are the j-tuples consisting of all 0’s and all 1’s, respectively.
Unfortunately, while we are using subscripts to denote the dimensions of each of these com-
ponents, An, Bn, Cn, Dn are actually n− 1 by n− 1 matrices.
In order to determine which irreducible representations make up ρ, it suffices to determine
the eigenvalues of ρ(σn). The eigenvalues are the roots of the characteristic polynomial,
which by definition is pn(t) := det(tI4n−4 − ρ(σn)). That is, we want to find the determinant
of 

tIn−1 0 0 Dn

0 tIn−1 Cn 0
0 Bn tIn−1 0
An 0 0 tIn−1

 .

In the following, we compute pn(t).

Theorem 3.15. pn(t) = det(t2In−1 +Dn)
2 =

(
t2n−1
t2−1

)2

.

Proof. We invoke the fact that

det

[
P Q
R S

]
= det(P ) det(S −RP−1Q).

Thus let
P = S =

[
tIn−1 0
0 tIn−1

]
Q =

[
0 Dn

Cn 0

]
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R =

[
0 Bn

An 0

]
so that

tI4n−4 − ρ(σn) =

[
P Q
R S

]
.

Now, P−1 = t−1I2n−2, so

S −RP−1Q = tI2n−2 − t−1RQ = t−1I2n−2(t
2I2n−2 −RQ) = P−1(t2I2n−2 −RQ),

which gives

det(P ) det(S −RP−1Q) = det(P ) det(P−1) det(t2I2n−2 −RQ) = det(t2I2n−2 −RQ).

RQ =

[
0 Bn

An 0

] [
0 Dn

Cn 0

]
=

[
BnCn 0
0 AnDn

]
.

Trivially AnDn = −Dn. Next,

BnCn =

[
0⃗n−2 Dn−1

−1 (e1)
T
n−2

] [
0⃗Tn−2 1

−In−2 1⃗

]
=

[
0⃗n−20⃗

T
n−2 +Dn−1(−In−2) 0⃗n−2(1) +Dn−11⃗n−2

(−1)⃗0Tn−2 + (e1)
T
n−2(−In−2) (−1)(1) + (e1)

T
n−21⃗n−2

]
=

[
−Dn−1 (en−2)n−2

−(e1)
T
n−2 0

]
= −Dn

where the only nontrivial term there is Dn−11⃗n−2, but notice that this is just the column
vector where the ith entry is the sum of the entries in the ith row of Dn−1, and notice that
every row of Dn−1 has precisely a 1 and a −1 except for the last which only has a 1, thus
every entry is zero except the last, which is one. One then also checks that our resulting
block matrix is precisely −Dn.
Thus

pn(t) = det(t2I2n−2 −RQ) = det

[
t2In−1 +Dn 0

0 t2In−1 +Dn

]
= det(t2In−1 +Dn)

2.

We have

t2In−1 +Dn =



t2 + 1 −1 0 · · · · · · 0

1 t2 −1
. . . . . . 0

1 0 t2 −1
. . . ...

...
... . . . . . . . . . 0

1 0 · · · 0 t2 −1
1 0 · · · · · · 0 t2





26 FILOZOV AND RICH

To take the determinant of this matrix, expand by minors along the top row. We get

det(t2In−1 +Dn) = (t2 + 1)t2(n−2) + det



1 −1 0 · · · · · · 0

1 t2 −1
. . . . . . 0

1 0 t2 −1
. . . ...

...
... . . . . . . . . . 0

1 0 · · · 0 t2 −1
1 0 · · · · · · 0 t2


n−2

Define

Mn−2 := det



1 −1 0 · · · · · · 0

1 t2 −1
. . . . . . 0

1 0 t2 −1
. . . ...

...
... . . . . . . . . . 0

1 0 · · · 0 t2 −1
1 0 · · · · · · 0 t2


n−2

.

Then by expanding along the top row we get Mn−2 = t2(n−3)+Mn−3. It is trivial to compute
M2 = t2 + 1, from which we get

Mn−2 =
n−3∑
j=0

t2j.

Thus

det(t2In−1 +Dn) = (t2 + 1)t2(n−2) +Mn−2 =
n−1∑
j=0

t2j =
t2n − 1

t2 − 1
.

Finally we can conclude

pn(t) = det(t2In−1 +Dn)
2 =

(
t2n − 1

t2 − 1

)2

.

□

Corollary 3.16. The eigenvalues of ρ(σn) are precisely two copies of every non-real 2nth
root of unity.

Thus we see that ρ consists of two copies of every two-dimensional real representation of
Aut(Xn).
Recalling Proposition 2.16, we have

H
(0)
1 (Xn) =

⊕
a complex

Wa,

with Wa = V 2
a and Sp(Wa) ≃ UC(p, q) for some p+ q = 2.

With further investigation, one can pin-down what p and q are. (To appear in a future
project.) Regardless, at this point we know dim(UC(p, q)) = (p+q)2, thus dim(Sp(Wa)) = 4.

As a consequence, we show that no member in our family of surfaces is arithmetic.

Theorem 3.17. Let Xn be a covering of Eierlegende Wollmilchsau constructed as in Fig-
ure 16. Then no Xn is arithmetic.
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Proof. We have KZ(Xn)
∣∣
Wa

⊆ Sp(Wa), thus KZ(Xn)
∣∣
Wa

⊆ Sp(Wa), where this closure is
taken in the Zariski topology. This means when restricted to each Wa, the Zariski closure of
the KZ monodromy group has dimension at most 4. There are n− 1 copies of Wa, thus the
Zariski closure of the KZ monodromy group has dimension at most 4n − 4. But H

(0)
1 (Xn)

has dimension 4n − 4, thus Sp(H
(0)
1 (Xn)) has dimension 2(2n − 2)2 + (2n − 2) > 4n − 4,

thus KZ(Xn) cannot be dense in Sp(H
(0)
1 (Xn)) for any n, and so no member of this family

is arithmetic. □

We can specify things further through our liftings. Recall that for any n and any d|n, with
p : Xn → Xd our covering map, we have KZ(Xn)

∣∣
(ker(pd)∗)⊥

≃ KZ(Xd) and ρ(σn)
∣∣
(ker(pd)∗)⊥

≃
ρ(σd) (the latter is not explicitly given by what we have done, but can be seen by inspection).
This means that the portion of KZ(Xn) which we know least about is

⋂
d|n

d<n

ker(pd)∗, and that

our two decompositions of H
(0)
1 (Xn) (one based on the kernels of the maps induced from

our coverings and the other based on the irreducible real representations making up the
representation of our automorphism group) will agree in the sense that one is a refinement
of the other.
That is, each Wa for a ∈ Irr(Aut(Xn)) is precisely either a subspace of some (ker(pd)∗)⊥ or of⋂

d|n
d<n

ker(pd)∗, and we know that Wa is a subspace of (ker(pd)∗)⊥ if and only if a is a non-real

2dth root of unity. This means (ker(pd)∗)
⊥ consists precisely of the Wa corresponding to a

a non-real 2nth root of unity but not a 2dth root of unity for any d. How many such a are
there?
Every 2nth root of unity is some power of ζ2n, a primitive 2nth root of unity. That is,
ζ2n, ζ

2
2n, . . . , ζ

2n
2n is the complete list of 2nth roots of unity. For m ∈ {1, . . . , 2n}, we have

that ζm2n is a primitive 2n
gcd(m,2n)

th root of unity, and by extension it is a 2dth root of unity if
2n

gcd(m,2n)
divides 2d. We want to know for how many m we do not get a 2dth root of unity,

so we want to find when 2n
gcd(m,2n)

does not divide 2d? We know 2n
gcd(m,2n)

always divides 2n.
Thus it is either n, 2n, a proper divisor of n, or twice a proper divisor of n.
There are two cases. First, suppose n even. This means that n is of the form 2d for d a
divisor of n. Looking at the four possibilities we listed, this means the case of 2n

gcd(m,2n)
= n

falls under 2n
gcd(m,2n)

being a twice a proper divisor of n. Thus we have three possibilities:
2n

gcd(m,2n)
is 2n, a proper divisor of n, or twice a proper divisor of n. In the latter two cases,

we established that this means ζm2n is a 2dth root of unity. In the former case, it means ζm2n is
a primitive 2nth root of unity. Thus the 2nth roots of unity that are not 2dth roots of unity
are precisely the primitive 2nth roots of unity, of which there are ϕ(2n) = 2ϕ(n).
If n is odd, n is not of the form 2d for d a proper divisor of n. Thus by going through
the same cases, we see that any ζm2n which is not a 2dth root of unity is precisely either a
primitive 2nth root or a primitive nth root. There are ϕ(2n) of the former and ϕ(n) of the
latter. Thus we have ϕ(2n) + ϕ(n) = 2ϕ(n) such roots.
We see, then, that in either case we have 2ϕ(n) distinct roots of pn(t) that are not roots of
any pd(t).
Another way we could have arrived at this result is as follows: We computed earlier that
the number of non-negative Lyapunov exponents found in

⋂
d|n

d<n

ker(pd)∗ is 2ϕ(n). Thus
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the dimension of this space is 4ϕ(n). We know this subspace can be partitioned into 1-
dimensional irreducible complex representations that come in conjugate pairs, and that each
one appears exactly twice. Thus there must be 2ϕ(n) distinct complex representations, that
is, 2ϕ(n) distinct complex roots of pn(t).
(A third way we could have arrived at this result would be to simply emulate our proof
concerning the number of Lyapunov exponents that are lifted into this subspace; we would
have obtained precisely the same recurrence relation)
So, we know we have 2ϕ(n) distinct complex roots of pn(t) corresponding to this subspace,
which gives us ϕ(n) 2-dimensional irreducible real representations each with multiplicity 2.
Thus the closure of the KZ monodromy group restricted to this subspace has dimension
bounded above by 4ϕ(n), while Sp(

⋂
d|n

d<n

ker(pd)∗) has dimension 8ϕ(n)2 + 2ϕ(n).

All together, we have shown that each component in our decomposition of H(0)
1 (Xn) (the

decomposition using the kernels of p∗) by itself fails to be arithmetic.
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