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Abstract. Serial passages experiments provide valuable insights on the dynamics of a
virus’s evolution over time, but are often costly and require materials that can be difficult
to obtain. We created a stochastic model for such experiments to account for the proba-
bilistic nature of virus evolution. We gathered information from previous experiments to
develop realistic assumptions and used a binary branching process where the branching rate
is inversely proportional to the length of the virus to build a simulation for virus replication
in host cells. We then modeled the process for two special cases, one of which is a sim-
ple birth-death process modeled by a continuous-time Markov chain that converges to an
ordinary differential equation. We modeled the second case with a more complex stochas-
tic equation and simulation statistics suggest that it will converge to a partial differential
equation.

1. Background and Motivation

Virus evolution is rapid, extensive, and often difficult to track. Gaining insights on how
genomes change as they adapt to different host environments allows scientists to better un-
derstand how viruses work, which can lead to advancements in vaccines, medications, and
cures. There have been many promising experiments done to observe the evolution trends of
different viruses. In particular, serial-passage experiments have revealed interesting insights.
We focus on simulating virus replication in the context of a serial-passages experiment and
developing a model that will ultimately show us a deterministic outcome for virus evolution
in the long run.

In a typical serial passages experiment, we begin with N virus genomes that are intro-
duced into a culture of host cells. These genomes are M ∈ N nucleotides long. They undergo
replication within the host cells, where mutations can occur. The offspring may have less
(deletion), more (insertion), or different (substitution) nucleotides than the parent. If dele-
terious mutations occur, the offspring are unable to survive, reproduce, or exit host cells.
We refer to the genotypes that cause virus particles to lose such abilities as DIPS (defective
interfering particles), while the functional genotypes are referred to as WT (wild type) par-
ticles. We model this within-host cell replication process in this paper.

We only consider a particle a DIP if it loses the enzyme that allows a virus to replicate
in a new host cell called the RNA-dependent RNA polymerase (RdRP). If a DIP enters
a host cell alone, it will not be able to replicate, but if it enters a host cell togther with
a WT particle, it will replicate normally. If a particle becomes a DIP, all of its offspring
will also be DIPs, i.e. offspring cannot have the RdRP enzyme if the parent does not have it.
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After a fixed amount of time, a subset of the free virions, i.e. the particles that have exited
the host cell, are selected as the new initial population for the next round of passages. This
subset is called the bottleneck and is often a fixed percentage of the free virions. Through
repeated passages, researchers observe which genotypes become more prevalent, providing
insights into the fitness of different genetic variants. It is important to note for this paper that
the number of nucleotides, i.e. the length, of a genome heavily impacts its rate of replication.

Serial passage experiments have many drawbacks, including time, cost, and availibility of
materials. One key drawback is that scientists are not able to see the genotypes of every
virion, as doing so would destroy the particle, preventing it from being selected for the bot-
tleneck. This is why creating mathematical models to simulate serial passages is crucial, as
these models can provide insights into viral evolution and genotype dynamics without the
need for extensive experimental resources. It is also important to account for the stochastic
nature of virus evolution, as events such as mutations are rarely predictable and can signifi-
cantly impact the evolutionary trajectory of viral populations.

To address these challenges, we have developed a stochastic model that uses a continuous-
time binary branching process in order to simulate within-host cell replication in serial pas-
sages. The replication process is the most crucial part of a serial passages experiment because
it is the only part that is not controlled by the researcher. Our model focuses specifically
on the length of the virus particles during replication. We look at the relationship between
a virus particle’s replication rate and its length as well as deletions and instertions of nu-
cleotides during the replication process. These mutations impact the length of the genomes,
which in turn impacts the replication rate. All of these factors together impact the virus’s
overall fitness over time.

2. Model Description

In this paper, we consider a continuous-time binary branching process that models virus
evolution over time.

2.1. Within-Host Cell Model. Here, we specifically focus on the number of nucleotides,
i.e. the length, of the virions as well as the existence of the replication enzyme, which we
will refer to as E. The model works as follows:

(1) At time t = 0, we begin with one particle inside of one host cell. We assume that the
inital particle has E, which is exactly one nucleotide long.

(2) When this particle replicates, it gives birth to exactly one offspring. Deletion or
insertion may occur during replication, so the offspring and parent can have different
lengths.

(3) If deletion occurs, then E may get deleted. If a particle loses E and becomes a DIP,
then its offspring will also be a DIP. Even if insertion occurs, every particle with a
DIP ancestor will be a DIP.

(4) The replication process continues, now with two particles. A particle is born each
time replication occurs.

(5) Each particle can die at rate µ, which is the only way for it to stop replicating.
(6) At a chosen time t, we observe the mutations that have occurred.
(7) This process is repeated multiple times to represent replication in multiple host cells.
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This process is a continuous time Markov chain with state space S. We call the length
of the i-th particle Li. The i-th particle is represented by sequence of length Li ∀i. The
state space for an individual particle is S = {1, 2, . . . }X{FS, DS}, where DS is a defective
sequence (i.e. a DIP particle) and FS is a functional sequence (i.e. a WT particle). The
state space for the whole Markov chain is S = Sj, where j is the number of particles (state)
of the process at time t.

When a particle replicates, we first need to decide whether insertion or deletion occurs.
Let Y ∼ Bernoulli(σ). Y decides whether insertion (with probability σ) or deletion (with
probability 1 − σ) occurs. We assume that deletions of nucleotides occur independently
and are identically distributed (i.i.d.). Therefore, this event follows a binomial distribution.
With deletion probability p, the distribution of deletion is X ∼ Bin(Li, p). Thus, if deletion
occurs, then the length of the offspring of the ith particle is Li −X. Note that for the ith
particle, if deletion occurs, then E is deleted with probability

(
X−1
Li−1

)
/
(
X
Li

)
. If insertion occurs,

then the length of the offspring of the ith particle is exactly Li +1. Note that deletion must
occur in order for a particle to become a DIP.

When a virus is longer, it has a higher replication time. In this model, the replication time
follows an exponential distribution where the maximum rate λ is inversely proportional to
the length of the virus. For the ith particle, we have Tbirth ∼ Exp( λ

Li
). The death time of the

virus follows an exponential distribution with rate µ, so for each particle, Tdeath ∼ Exp(µ).
We use t to refer to the time within each serial passage and T to refer to the time at which
we choose to stop the replication process. Figure (1) depicts an example of the branching
process within a host cell. Refer to Table 1 for the values we use for the variables in this
paper.

Variable Value Description
σ 0.9 The probability that insertion will occur.
λ 0.5 The replication rate of a virus particle.
µ 0.001 The death rate of a virus particle.
p 0.03 The probability that one nucleotide will be deleted.

Table 1. Constant Variables

2.2. Serial Passages. To model the whole serial passages experiment, we use the within-
host cell model as well as a bottleneck percentage. Suppose we have N host cells, N particles,
and exactly one particles enters each host cell. Then we simulate the within-host cell model
N times and choose a bottleneck percentage of free virions to use for the next serial passage.
If the bottleneck percentage results in b particles being chosen, then we take b host cells
(assuming each particle enters exactly one host cell) and simulate the within-host cell model
b times. Then, we use the same bottleneck percentage of free virions and continue this
process as many times as desired. This paper focuses on the within-host cell model, but
future research may explore the serial passages model.
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Figure 1. Particle 0 is the initial particle with initial length L0. Each vertical
arrow represents replication time with rate λ/Li for particle i. Each dotted
line represents replication and the birth of a new particle. Particle i is the
ith particle born with length Li. Notice that here, particle 1 died before the
stopping time, T , so only particles 0, 2, 3, and 4 remain. Some of these particles
may be longer than particle 0 and some may be shorter. If a particle is shorter
than particle 0, it may be a DIP. Our model and this diagram use ideas from
the continuous time binary branching process for coalescence [Lam18] [LS13].

3. Simulation

We created a program for the within-host cell model using python and simulated a special
case, which is a slightly modified version of the model. In our simulation, we suppose σ = 0.
This just means that insertion cannot occur. So each time a particle replicates, the length
of the offspring will definitely be less than or equal to the length of the parent.

Our simulation shows us the distribution of lengths over time. We start with one particle
of length 50. Over time, the average length decreases. Figure (2) depicts the results at 3
time points from 2 randomly chosen runs of our simulation.

As you can see, even though the images are not identical, the overall shape of the curves
looks very similar. Note that the graphs from the simulations look similar, just not exactly
at the same time. This is because we started with one particle, and its replication time is
modeled with an exponential random variable. This means that the replication times of the
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Figure 2. Here, we see 3 randomly chosen times from two randomly chosen
simulations. We begin our simulation at t = 0 with one particle of length 50, so
M = 1 and lmax = 50. We use the values from table (1) for the parameters, so
µ = 0.001, λ = 0.5, and p = 0.03. The only difference is that insertion cannot
occur, so we set σ = 0. On each graph, the x-axis represents the lengths
and the y-axis represents the number of particles of each length x. The three
images in the top row are snapshots of 3 different times from one simulation
and the bottom row represents 3 different times from a second simulation.

initial particles from both simulations can vary greatly. However, because of the law of large
numbers, we will see that for a large enough M , the expected replication time for the initial
particles will be lmax/λ every time. This will eliminate the difference in times.

From these results, we predict that as our initial population M and our maximum length
lmax approach infinity, the bars on the graph will get infinitely close together and by the law of
large numbers, ultimately converge to a distribution that we can model with a deterministic
equation. In order to successfully find this equation and prove that our stochastic model
will converge to it, we must first find a way to mathematically quantify the distribution of
lengths (number of particles of length L ∀L ∈ [0, lmax]) at every time t.

4. Modeling With Stochastic Equations

4.1. Simplified Birth-Death Process Equation. As a starting point in finding our sto-
chastic equation, we explored the ideas from equations that describe the following birth
death-process. Suppose λ is constant. In the context of the model, this is the case where
L does not change. Suppose λ > µ. We can model the number of individuals in a host cell
with the ordinary differential equation

dy(t)

dt
= (λ− µ)y(t),

where y(t) is the number of individuals at time t.
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If the initial number of particles is small, it is very likely that the population will go
extinct very quickly. For instance, if we start with 1 individual, the probability, q1, that the
population will go extinct is

q1 =
µ

λ+ µ
+

λ

µ+ λ
(q1)

2 ⇐⇒ q1 =
λ

µ
.

We want our initial number of particles M to be large enough so that that the population
does not go extinct. Let qk be the probability that the population will go extinct if we start
with k particles

Lemma 1. ∃M s.t. ∀k ≥ M , qk = 0

Proof. If we start with 1 particle, we know that

(1) q1 =
λ

µ
.

Since each round of replication is independent, we can say that

(2) qk = (q1)
k ⇐⇒ qk =

(µ
λ

)k
Since we assumed that λ > µ, we know that lim

k→∞

(
µ
λ

)k
= 0, so we can conclude that ∃M > 0

s.t. ∀k ≥ M, qk = 0. □

Going forward, we assume that our initial population M is large enough so that the virus
does not go extinct. We consider the case where the population does not go extinct.

Let M ∈ N be the initial population large enough so that qM ≈ 0. Let
(
Y

(M)
t

)
t∈R+

be

the continuous time Markov chain that describes the within-host cell birth-death process of
the virus starting at Y M

0 = M . The possible population at any time t, i.e. the state space
S = {0, 1, 2, ...}.

Let Nλ be a Poisson Process with rate λ that models birth and let Nµ be a Poisson Process
with rate µ that models death. By the law of large numbers, we know that Y M

t converges
to its expected value as M → ∞, so Y M

t solves the equation

Y M
t − Y M

0 = Nλ

(∫ t

0

λ · Y (M)
s ds

)
−Nµ

(∫ t

0

µ · Y (M)
s ds

)
.

When we divide this equation by M to normalize it, we get

Y M
t

M
=

Y M
0

M
+

1

M
· Nλ

(∫ t

0

λ ·M · Y
(M)
s

M
ds

)
− 1

M
· Nµ

(∫ t

0

µ ·M · Y
(M)
s

M
ds

)
.

As M → ∞, by the law of large numbers,

Y
(M)
t

M
=

Y
(M)
0

M
+ (λ− µ)

(∫ t

0

Y
(M)
s

M
ds

)
.
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So, if Y
(M)
0

M
→ 0 as M → ∞, we know that

Y
(M)
t

M
=

Y
(M)
0

M
+ (λ− µ)

(∫ t

0

Y (M)
s ds

)
→ (λ− µ)

∫ t

0

y(s)ds+ y(0) = y(t).

Since (Y
(M)
t )t∈R+ is a valid continuous time Markov chain for the within-host cell birth-

death process that converges to y(t), we can use the ODE dy(t)
dt

= (λ − µ) · y(t) to analyze
the long term behavior of the virus. It is much easier to analyze this simple ODE than a
simulation, so this method can give us better and more precise results.

This birth-death process is much simpler than our model, but we use a similar idea for
our model, specifically the special case that we simulated in section (3). Following the same
outline as for the birth-death process, we look to accomplish these steps:

(1) Find a stochastic equation that gives us the number of particles of each length at
time t ∀t ≥ 0.

(2) Find a deterministic equation (in our case, a partial differential equation) that de-
scribes the long-term behavior of the virus

(3) Prove that our equation in step (1) converges to a solution for our equation in step
(2) as the initial number of particles and the initial length (maximum length) both
approach infinity.

Accomplishing these steps allows us to be able to analyze the long-term behavior of the
virus deterministically rather than stochastically, as well as use an equation rather than a
simulation.

4.2. Stochastic Equation for our model. We consider the same special case of our model
that we simulated in section (3). For every time t, we focus on keeping track of how many
particles there are of each possible length k ∈ L, where L = {0, 1, . . . , lmax}, where lmax is
the maximum possible length of a virus. Suppose insertion cannot occur, i.e. σ = 0. We
ignore the DIPs here.

Our first task is to accomplish step 1: find a stochastic equation that gives us the number
of particles of each length at time t ∀t ≥ 0. We use the following stochastic equation to
model the number of virions of each length L at time t:

µlmax,M
t =

1

M
·
lmax∑
k=1

fk(t) · δ k
lmax

,

where µlmax,M
t is a measure on the distribution of lengths.

Figure (3) gives us an example of the distribution of lengths for some time t. µM,lmax
t sums

the height of each vertical bar to give us the total number of particles at time t. In the
graph,

• x ∈ [0, 1], where x = k
lmax

for some length k ∈ L.
• y = ft(k), which is the number of particles of length k.
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y = fk(t)

x = k
lmax

a

Figure 3. This graph depicts the length distribution at some time t. For
example, node a is positioned at x = k

lmax
with height fk(t). This means that

there are fk(t) particles of length k at time t.

Note that δ k
lmax

is a Dirac Delta measure on [0, 1] that excludes any k where f(k) ≤ 0 and
works as follows. Let [a, b] ⊂ [0, 1] be an interval that includes every x ∈ [0, 1] s.t. f(x) > 0.
Then

µlmax,M
t ([a, b]) =

1

M
·
lmax∑
k=1

fk(t) · δ k
lmax

([a, b]),

where

δ k
lmax

([a, b]) =

{
1 if k

lmax
∈ [a, b]

0 if k
lmax

/∈ [a, b]
=

{
1 if lmax · a ≤ k ≤ lmax · b
0 otherwise

So our equation can be rewritten as

µlmax,M
t ([a, b]) =

1

M
·

∑
a·lmax≤k≤b·lmax

fk(t).

For every k ∈ [a, b], fk(t) gives us the number of particles of length k at time t. Together,
δ k

lmax
tells us whether we have a bar of length k and fk(t) gives us the height of the bars that

do exist. The measure µlmax,M
t adds up all of the heights and gives us the total number of

particles of every length at time t

Finding µlmax,M
t can be tricky and multiple methods can be used to achieve it. We explored

the possibility of using an infinitesimal generator.

Definition 4.1. For a continuous time Markov process {X(t)}t≥0 with state space S, the
generator A is the operator that acts on a function f defined on S. For a state x ∈ S, A is
defined as

Af(x) = lim
t→0

E[f(X(t))|X(0) = x]− f(x)

t.

More simply, Af(x) represents the instantaneous rate of change of the expectation of f
given that the process is currently at state x.
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We can use this concept to find µlmax,M
t , as shown in the following example. For this

example, we go back to our original model where σ = 0.9, i.e. deletion and insertion can
both occur. We do this in order to show a more complex example that can be easily simplified.
Suppose that a continuous time Markov chain has a state space S and jumps from state i
to state j with rate qij ∀i, j ∈ S where i ̸= j. Then the generator L is an operator s.t.
∀f : S → R,

L f(i) =
∑
j∈S

(f(i)− f(j)) · qij.

We apply this to the following state. Suppose we have one particle of length L that is a
DIP. With probability σ, its offspring will have length L+ 1 and with probability 1− σ, its
offspring will have length L −X. Since the particle is already a DIP, its offspring will also
be a DIP. Note that for any x ∈ {0, L}, P (X = x) =

(
L
X

)
· px · (1− p)L−x. With death rate

µ and birth rate λ
L
, our generator is

Lf((L,DS)) =(f(∅)− f((L,DS)) · µ+ f((L+ 1,DS)) · λ
L
· σ

+
L∑

x=0

(f((L+ x,DS))− f((L,DS))) · λ
L
· (1− σ)

(
L

x

)
· px · (1− p)L−x.

This process can be done for every state and can give us µlmax,M
t ∀t ≥ 0 and ∀M, lmax > 0.

Recall that in section 4.1, the stochastic equation normalized by M converges to a simple
ordinary differential equation. As mentioned in section 3, we predict that the distribution of
lengths over time will converge to a deterministic equation as the initial number of particles
and the initial length both increase. Connecting this prediction from the simulation to our
equation in section 4.2, we think that lim

t→∞
µlmax,M
t = u(t, x), where u(t, x) solves a partial

differential equation such that x is the length distribution and t is time.

5. Future Direction

5.1. Partial Differential Equation. Recall that in section 4.1, we mention three steps
that we need to take in order to be able to deterministically analyze the behavior of the
virus. We found a stochastic equation that gives us the total number of viruses of each
length at time t. We call this step (1) in section 4.1. Our next steps are to find a partial
differential equation with solution u(t, x), where t is time and x is the length distribution,
and prove that µlmax,M

t converges to u(t, x) as M → ∞ and lmax → ∞. In the future, we
plan use the following outline to accomplish these steps:

• Suppose that our initial condition µM,lmax
0 converges to ϕ(x)dx as M, lmax → ∞ for

any density function ϕ(x)dx.
• We want to show that for any time t ∈ (0,∞), µM

t → u(t, x) as M, lmax → ∞, where
u(t, x) solves a partial differential equation with initial condition ϕ(x).

u(t, x) is a deterministic equation, meaning there is no probability involved, so we will get
the same result each time. Using u(t, x) to analyze the within-host cell virus evolution is
much more efficient than using the simulation, as we can make many observations about the
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behavior of the virus and find solutions for the equation that we can use to understand the
virus better.

5.2. Including DIPS and Improving our Model. We do not include the replication
enzyme E in our stochastic model, as it gets complicated very quickly when it is included.
In the future, we plan to modify our stochastic equation to take E into account. We also
simplify the model by setting σ = 0 for our work in sections 3 and 4.2, so we plan to change
the value of σ in the future, which will allow an offspring to be longer than its parent.

There are also other important genes that that allow virus particles to perform certain
tasks. Particles that lack these genes are considered DIPs, so E is not the only nucleotide
that controls whether a sequence is defective (DS) or functional (FS). These genes allow
virus particles to exit the host cell (we call this the package gene), replicate on their own,
and many other crucial tasks. In the future, we hope to incorporate these genes in our model.

Virus evolution is very complicated and is difficult to simulate realistically. Like any math-
ematical model, we chose multiple assumptions to use in our model and chose our parameters
from past research. This model can continuously be changed and adapted to better model
the replication process for an actual virus. Creating this model is an ongoing process and
as we progress in our research and learn more about virus evolution, we hope to make our
model as realistic as possible.

5.3. Serial Passages Model. We focus specifically on within-host cell replication because
it is the most complex and probabilistic component of a serial passages experiment. In the
future, we plan to use our within-host cell model to simulate a full serial passages experiment.
Past experimental research for plaque-to-plaque transfers, which is similar to serial passages
experiments have resulted in what appears to be a stationary distribution for the number of
virus particles [LEDM02]. Going forward, we will analyze the long-term behavior of a serial
passages experiment using our model, which can possibly result in a stationary distribution
as well.

6. Term Glossary

• Serial Passages: " In a serial-passage experiment, a cell culture or live host is inoc-
ulated by viral (or other) pathogens, usually already well adapted to different cell
types or hosts. A pathogen’s growth under the restrictive host environment leads
to within-host selection for advantageous variants, either present as a minority in
the founder population or generated from error-prone replications. After a certain
amount of time (approximately days) of such growths, a small subset of the resulting
pathogen population is sampled and used to inoculate a fresh new medium or host,
initiating a subsequent round of the passage [WR14]."

• Wild Type (WT) Particles: "A phenotype, genotype, or gene that predominates in
a natural population of organisms or strain of organisms (Merriam-Webster dictio-
nary)." WT particles are not missing any important genes.

• RNA-dependent RNA polymerase (RdRP): The RdRP is an important enzyme that
allows a virus particle to replicate on its own, without the presence of any other
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virus particles. If a virus particle lacks the RdRP enzyme, it is considered a defective
interfering particle [KSPS20].

• Defective Interfering Particles (DIPs): "Defective interfering particles are particles
containing degenerate forms of the virus genomes that are non-replicative per se, but
remain infectious by complementation with wild-type virus [RLV18]."

• Continuous Time Binary Branching Process: Each individual either gives birth to an
individual with rate λ or dies with rate 1. The birth and death rates are modeled
with exponential random variables with rates λ and 1, respectively. "If the rate λ
exponential random variable happens before the rate 1 exponential, then the individ-
ual is replaced by two individuals. If the rate 1 exponential random variable happens
before the rate λ exponential then the individual dies with no offspring. Every new
individual gets two independent exponential random variables attached to it (one
with rate λ and the other with rate 1) and so on [Sch14]."

7. Variable Glossary

• t: the time, where t = 0 is when the particle enters the host cell.
• T : the time at which the within-host cell experiment is stopped, which is chosen by

the researcher.
• E: the replication enzyme.
• λ: the birth rate of a particle with length 1.
• λ

L
: the birth rate of a particle with length L.

• Tbirth: an exponential random variable with rate λ
Li

describing the birth rate of one
particle of length Li.

• µ: the death rate of a particle.
• Tdeath: an exponential random variable with rate µ that describes the death rate of

one particle.
• S: the state space of one virus particle.
• S: the state space of many virus particles.
• σ: the probability that insertion will occur.
• Y : a Bernoulli random variable with rate σ describing the probability that either

insertion or deletion will occur.
• p: the probability of deletion for each nucleotide.
• X: a binomial random variable with parameters Li and p that describes the proba-

bility of x ∈ [0, Li] particles being deleted for a particle with length Li.
• L: the number of nucleotides that make up a virus particle, which we call the length

of the virus particle.
• L0: the length of the initial particle(s).
• Li: the length of the i-th particle born.
• lmax: the maximum possible length of a virus particle.
• M : the initial number of particles that enter one host cell.
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