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Abstract. An important goal in population genetics is to infer the history of populations
using present-day genetic data. Here, we examine the effect of highly reproductive events
(HREs) within a diploid population-genetic model, where occasionally a single pair of indi-
viduals has some number of offspring on the order of the population size. Specifically, we
study the case where the population size tends to infinity. The gene genealogy of a sample
of the population is characterized by a standard Kingman coalescent interrupted by HREs
whose times are determined by a Poisson point process. First, we present an algorithm for
simulating this model. Next, we examine specifically the expected height of the coalescent
tree conditioned on the first few HRE time points, as opposed to the whole process. Building
upon previous literature, we compute the expected pairwise coalescence time conditioned
on the first few time points. By combining (1) our knowledge of the number of time points
necessary to determine the expected height up to some small error and (2) our computation
of this height in terms of these time points, we hope to recover HREs from real-life genomic
data.
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1. Introduction

1.1. Motivation. Population genetics is a branch of genetics that studies genetic variation
within populations over time and space. One of the foundational models in this field is
coalescent theory, which traces the genealogical history of alleles within a population. It
provides a framework for understanding how all alleles at a particular locus in a population
can be traced back to a single common ancestor, known as the most recent common ancestor
(MRCA). By tracing the lineage of genes back through generations, coalescent theory helps us
reconstruct the gene genealogy, offering insights into the evolutionary history of populations.

Coalescent theory is particularly useful in studying the effects of demographic events, such as
population bottlenecks or periods of reduced genetic diversity, which can significantly impact
the structure of a population’s gene pool. An example of such a population bottleneck might
be a “big family” event, where a small number of individuals contribute disproportionately
to the gene pool of future generations. Such events, often influenced by random genetic
drift or selection, can lead to reduced genetic variation and increased relatedness within a
population, ultimately shaping its genetic landscape.

In this report, we will explore a multiple merger coalescent model that is characterized by big
family events. Our focus will be on analyzing specific parameters of the model’s coalescent
tree, with particular attention to its height, which represents the time to the most recent
common ancestor. We hope that the height is discernable from genomic data, so that we can
answer the question: can we recover big family events in population history by examining
genomic data?

1.2. Model introduction. We will be using a “bursts of coalescence model” as defined
in (DFBW24). In the discrete case, this model is characterized by two different types of
reproduction, where population size N is finite and generations are nonoverlapping. In each
generation, with some small probability αN , there is some highly reproductive (HR) couple
whose offspring are a fraction ψ of the population in the next generation. Call each of
these events HREs (Highly Reproductive Events). Otherwise, the classic diploid biparental
Wright-Fisher model occurs with probability 1−αN . Figure 1 and 2 each display an example
of a Wright-Fisher and an HRE generation, respectively.

Figure 1. Wright-Fisher generation, N = 7

Figure 2. HRE generation, N = 7, [ψN ] = 5



RECONSTRUCTING POPULATION HISTORIES THROUGH THE CONDITIONAL GENEALOGY 3

2. Theory and Methods

2.1. Limiting case as N → ∞. As the population size tends to infinity, we sample n loci
from distinct individuals in generation g = 0 and trace down their lineage.

Here, the big family events occur according to a Poisson process t⃗ = t1, t2, · · · , ti, · · · with
some rate λ. In between these events, the standard Kingman coalescent occurs.

The Kingman coalescent is the limiting case of the Wright-Fisher model. Under a diploid
population, coalescence behavior is characterized as such: each pair of lineages coalesces
with rate 1

2
, independently of other pairs.

Figure 3 is an example of a coalescent tree of the limiting HRE model. HRE events are
shown using dotted lines.

Figure 3. HRE model coalescent tree (n = 20, λ = 3, ψ = 0.75). Dotted
lines starting from bottom are t1, t2, t3.

Coalescence behavior at each tk is determined by the following:

(1) Each ancestral line is part of the big family with probability ψ.
(2) Of the ancestral lines in the big family, each has an equal probability of coalescing

into four different “buckets”.

This characterization follows from the discrete case. Each child gene is inherited uniformly
at random from the available parent genes, so if a child is in a big family, one of their genes is
equally likely to be inherited from any of the 2 parents’ 4 genes. Each “bucket” corresponds
to a gene (see Figure 4).

More rigorously, we can denote the number of lineages entering (not exiting) each tk as nk.
For example, in Figure 3, n1 = 15. Then coalescence behavior can also be described as such:

(1) The number of lines that are part of the big family at a point tk is distributed
according to m ∼ Binom(nk, ψ).
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Figure 4. Each offspring gene is inherited randomly from 4 parent genes.

(2) Of the m lines, (m1,m2,m3,m4) ∼ Mn(m, (1
4
, 1
4
, 1
4
, 1
4
)), where Mn denotes the multi-

nomial distribution. Then, mi lines coalesce together for i = 1, · · · , 4.

Note that under this behavior, some ancestral lines may not be included in the big family,
or they might be the only ancestral line coalescing in a gene “bucket”. This is more apparent
when there are few remaining lines. For example in the second time point t2 of Figure 3,
where 4 lines pass through the HRE without coalescing.

Additionally, note that we can ignore edge cases such as: ancestral lines coming from the
same individual cannot coalesce into the same gene; or ancestral lines coalescing into the
same parent but different genes will be unable to coalesce in the next generation. These edge
cases become negligible as N → ∞. Throughout this report, we will examine the limiting
case exclusively.

2.2. Simulation algorithm. According to the coalescence behavior we outlined in the pre-
vious section, we simulated an HRE tree with n tips (nodes) through an algorithm outlined
below:

(1) Initialize tcurr � 0. Initialize a list of n nodes where ncurr � n is the length of this
list. Assume ncurr updates with the length of the list.

(2) Sample ∆t from Exp(λ).
(3) Until the next HRE time point tnext � tcurr +∆t, coalesce the ncurr nodes according

to the Kingman process (i.e. each pair of nodes coalesces according to an exponential
with rate 1

2
).

(4) At tnext, sample m from Binom(ncurr, ψ), where ncurr is the number of nodes left.
(5) Sample (m1, · · · ,m4) from Mn(m, (1

4
, 1
4
, 1
4
, 1
4
)).

(6) Permute the existing ncurr nodes. Coalesce the first m1 nodes, then the next m2

nodes, etc.
(7) Repeat steps 2 through 6 until there is only 1 node left.

Permuting the list of nodes to coalesce randomizes which ancestral lines are chosen. This is
assuming panmixia (uniform random fertilization).

2.3. Notation. It is important to differentiate between the HRE coalescent and the King-
man coalescent. Let Hn be the height of a HRE tree with n tips. Let H(κ)

n be the height of
a Kingman tree with n tips, where both are random variables. Then E[Hn] is the expected
height averaging over all t⃗, while Et⃗[Hn] is the expected height conditioned on some fixed t⃗.
Note that E[Hn] < E[H(κ)

n ] and Et⃗[Hn] < E[H(κ)
n ] for any t⃗. HREs only speed up the process

of coalescence, never slowing it down.
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The Kingman process here is the limiting case of the diploid Wright-Fisher model. As it is
the diploid case, each pair of nodes coalesces with rate 1

2
(as opposed to rate 1 in the haploid

model). Thus, time to coalesce from k to k − 1 nodes is distributed as Tk ∼ Exp(1
2
·
(
k
2

)
).

Then

E[H(κ)
n ] = E

[
n∑
k=2

Tk

]
=

n∑
k=2

E[Tk] =
n∑
k=2

4

k(k − 1)
= 4

(
1− 1

n

)
.

In expectation, the height of any coalescent tree is always less than 4.

In addition, it is necessary to introduce another notion of expectation EEE[·], which denotes the
average with respect to randomness of the big family times. Et⃗[·] averages with respect to
randomness of the coalescent tree while fixing the big family times. Finally, EEE[Et⃗[·]] averages
over both the randomness of the coalescent tree and the randomness of the big family times.

3. Results

We wish to study the conditional coalescent under the HRE model. This involves condition-
ing on the pedigree, i.e. conditioning on the Poisson process. However, conditioning on an
infinite-dimensional vector t⃗ is not well-defined, so we wish to restrict the dimension.

This begs two questions:

(1) How many Poisson points ti do we need to sufficiently estimate Hn?
(2) Given we only need k Poisson points, can we recover these k points from expected

Hn?

With respect to (2), we hope to be able to recover Hn from data, from which we hope to
recover the population history in terms of (t1, · · · , tk).

3.1. Proving convergence. Below is a formulation and proof of the convergence of the
expected height of the tree conditioned on k time points to the expected height conditioned
on all time points.

Lemma 1 (Convergence). Generate t⃗ = (t1, t2, · · · ) through a Poisson process with rate λ,
where t1 < t2 < · · · . Fix t⃗. Then

hk := Et1,··· ,tk [Hn]

converges as k → ∞. Define its limit to be h∞ := Et⃗[Hn].

Proof. We assume that t1 < t2 < · · · , and that tk
k→∞−−−→ ∞.

Recall that {hk} is Cauchy if ∀ε > 0,∃N s.t. ∀j, k ≥ N , |hj − hk| < ϵ. WLOG take j ≤ k.
Then we have:

hj = Pt1,··· ,tj(Hn ≤ tj) · Et1,··· ,tj [Hn|Hn ≤ tj] + Pt1,··· ,tj(Hn > tj) · Et1,··· ,tj [Hn|Hn > tj]

hk = Pt1,··· ,tj(Hn ≤ tj) · Et1,··· ,tj [Hn|Hn ≤ tj] + Pt1,··· ,tj(Hn > tj) · Et1,··· ,tk [Hn|Hn > tj]

Note that if we condition on the first k points in the process, if we only wish to know if the
process stops at, before, or after tj, only the first j points will affect the outcome. This can
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be seen in blue. Thus, we have

(1) |hj − hk| = Pt1,··· ,tj(Hn > tj) ·
∣∣∣Et1,··· ,tj [Hn|Hn > tj]− Et1,··· ,tk [Hn|Hn > tj]

∣∣∣
By Markov’s inequality,

Pt1,··· ,tj(Hn > tj) ≤
Et1,··· ,tj [Hn]

tj
<

E[H(κ)
n ]

tj
=

4(1− 1
n
)

tj

Now consider the second factor in (1). Suppose the number of ancestral lines left at time
tj is nj. Then by the Markov property, the remaining height of the tree is less than the
height of a Kingman tree in expectation, regardless if we are conditioning on k−j more tips.
E[Hnj ] < E[H(κ)

nj ] = 4(1− 1
nj
) ≤ 4(1− 1

n
) for all nj ≤ n.

Thus, Et1,··· ,tj [Hn|Hn > tj] and Et1,··· ,tk [Hn|Hn > tj] must both be contained in the interval
[tj, tj + 2(1− 1

n
)). Back to (1), we now have

|hj − hk| <
4(1− 1

n
)

tj
· 4
(
1− 1

n

)
=

16(1− 1
n
)2

tj

As tj goes to infinity, |hj − hk| goes to 0. Thus, the sequence is Cauchy and converges. □

Lemma 1 proves convergence in the quenched case. The corollary below proves convergence
in the annealed case, i.e. when we do not condition on a specific t⃗. We will add a superscript
to ht⃗k to clarify its dependence on t⃗. We also use EEE[·] to average over all t⃗.

Corollary 1. EEE[|ht⃗k − ht⃗∞|] converges to 0 as k → ∞. Thus, ht⃗k converges in L1 to ht⃗∞.

Proof. EEE[|ht⃗k − ht⃗∞|] < EEE[16(1−
1
n
)2

tk
] by Lemma 1 and monotonicity of x on the domain (0,∞].

On average, over all vectors t⃗ where each vector is generated through a Poisson point process
with rate λ, tk is distributed according to Γ(k, λ). Thus,

EEE
[
1

tk

]
=

∫ ∞

0

1

x

λkxk−1e−λx

Γ(k)
dx

=
Γ(k − 1)

Γ(k)
λ

∫ ∞

0

λk−1xk−2e−λx

Γ(k − 1)
dx

=
λ

k − 1

Notice the second integral is the integral of the pdf of a Γ(k − 1, λ) random variable, which
evaluates to 1.

Thus, we have that EEE[|ht⃗k−ht⃗∞|] < 16λ(1− 1
n
)2

k−1
. Clearly, this converges to 0 as k goes to infinity.

Thus, ht⃗k converges in L1 to ht⃗∞. □

In summary, we have the bounds:

|ht⃗k − ht⃗∞| <
16(1− 1

n
)2

tj
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EEE[|ht⃗k − ht⃗∞|] <
16λ(1− 1

n
)2

k − 1

3.2. Tightening the bound. Now that we have proved convergence, how many time points
is enough to keep hk and h∞ sufficiently close? In other words, how large should we take k
to bound the error between hk and h∞?

Define τε := inf{k : EEE[|ht⃗k − ht⃗∞|] < ε}. This value determines the first k for which the error
in the annealed case is below ε. If we can bound the τε by some value below, we can answer
that question.

Our bounds are quite weak currently. This is primarily due to our use of Markov’s inequality
in Lemma 1. We present a direct calculation using Tavaré’s gnm(t) that tightens the bound
in the annealed case.

Lemma 2 (Tavaré bound).

EEE[|ht⃗k − ht⃗∞|] < 12
n+ 1

n

(
2λ

2λ+ 1

)j
Proof. We specifically wish to tighten the bound on Pt1,··· ,tk(Hn < tk), which was previously
bounded with Markov’s inequality.

Fix tj ≥ 0. Clearly, Hn > tj if and only if all n lineages have not coalesced into one lineage
by time tj, so by definition of the functions gnm(t) of (Tav84, Eq. 6.2),

Pt1,··· ,tj(Hn > tj) < 1− gn1(tj/2)

=
n∑
k=2

e−k(k−1)tj/4
(−1)k(2k − 1)n(k)

n(k)
(2)

where n(k) = n(n− 1) · · · (n− k+1), n(k) = n(n+1) · · · (n+ k− 1) denote the falling/rising
factorials respectively. Here, time is scaled by 1/2 as we are using the diploid case of
Kingman. Now, it can be easily verified that (2) is an alternating sum with terms decreasing
in magnitude, so,∣∣∣∣∣

n∑
k=2

e−k(k−1)tj/4
(−1)k(2k − 1)n(k)

n(k)

∣∣∣∣∣ <
∣∣∣∣e−tj/23(−1)2n(2)

n(2)

∣∣∣∣ = 3e−tj/2
n+ 1

n− 1

Since under the big family model, tj ∼ Gamma(j, λ), we have

(3) EEE[Pt1,··· ,tj(Hn > tj)] < EEE
[
3e−tj/2

n+ 1

n− 1

]
= 3

n+ 1

n− 1

(
2λ

2λ+ 1

)j
.

Now, recall equation (1) of Lemma 1. Taking the expectation over all t⃗, we have

|ht⃗j − ht⃗k| = Pt1,··· ,tj(Hn > tj) ·
∣∣∣Et1,··· ,tj [Hn|Hn > tj]− Et1,··· ,tk [Hn|Hn > tj]

∣∣∣
EEE[|ht⃗j − ht⃗k|] < 3

n+ 1

n− 1

(
2λ

2λ+ 1

)j
· 4(1− 1

n
)

= 12
n+ 1

n

(
2λ

2λ+ 1

)j
.
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□

This bound may be poor for small j if λ is large. To get around this, call the rightmost
expression of (3) Cn,j, and look for nonnegative constants c, c̃ with c + c̃ = 1 such that
cCn,j + c̃C̃n,j is minimal, where C̃n,j is any other upper bound on EEE[P(Hn > tj)]. For
instance, C̃n,j may be taken to be the one derived from applying Markov’s inequality to
P(Hn > tj).

3.3. Finding an expression for height. We wish to find an expression for Et1,···tk [Hn]. In
particular, we will examine the n = 2 case.

From (DFBW24, Lemma 1), we have H2 ∼ Exp(1
2
+λψ

2

4
) in the annealed case, i.e. not fixing

a specific t⃗.

Lemma 3 (Expectation of H2, annealed). Let 0 ≤ ψ ≤ 1. Let H2 be the height of a HRE
tree with n = 2 tips, where t⃗ is determined by a Poisson process with rate λ > 0. Then

EEE[Et⃗[H2]] =
1

1
2
+ λψ

2

4

Proof. Let Pt⃗(H2 > t) be the conditional, limiting, complementary cumulative distribution
function as found in (DFBW24, Theorem 1). Note that Y (t) is a step function, representing
how many Poisson process points have occurred up to time t. Y (t) is constant on the interval
(ti, ti+1) for all i.

Et⃗[H2] =

∫ ∞

0

Pt⃗(H2 > t)dt

=

∫ ∞

0

e−t/2(1− ψ2

4
)Y (t)dt

=
∞∑
i=0

−2e−t/2
(
1− ψ2

4

)i ∣∣∣ti+1

ti

=
∞∑
i=0

−2

(
1− ψ2

4

)i (
e−ti+1/2 − e−ti/2

)
(4)

As t⃗ is generated by a Poisson process with rate λ, ti ∼ Γ(i, λ). Let MX be the moment
generating function for a random variable distributed according to X.

Averaging over all t⃗ in (4) gives

EEE[Et⃗[H2]] =
∞∑
i=0

−2

(
1− ψ2

4

)i (
EEE[e−ti+1/2]−EEE[e−ti/2]

)
=

∞∑
i=0

−2

(
1− ψ2

4

)i (
MΓ(i+1,λ)(−1/2)−MΓ(i,λ)(−1/2)

)
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=
∞∑
i=0

−2

(
1− ψ2

4

)i((
1 +

1

2λ

)−(i+1)

−
(
1 +

1

2λ

)−i
)

=
∞∑
i=0

−2

(
1− ψ2

4

)i(
− 1

2λ

)(
1 +

1

2λ

)−(i+1)

=
1

λ(1 + 1
2λ
)

∞∑
i=0

(
1− ψ2

4

1 + 1
2λ

)i

=
1

λ+ 1/2
· 1

(1+ 1
2λ

)−(1−ψ2

4
)

1+ 1
2λ

=
1

1
2
+ λψ

2

4

.

This completes the proof. □

Lemma 4 (Expectation of H2, conditioned on the first k Poisson points). Let 0 ≤ ψ ≤ 1.
Let H2 be the height of a HRE tree with n = 2 tips, where t⃗ is determined by a Poisson
process with rate λ > 0. Then Et1,··· ,tk [H2] is a linear combination of {e−ti/2}i=0,··· ,k.

Proof. Define t⃗′ = (tk+1−tk, tk+2−tk, · · · ). Note t⃗′ is distributed identically to t⃗, i.e. according
to a Poisson process with rate λ. We rearrange the first sum in the calculation below.

Et1,··· ,tk [H2] =
k−1∑
i=0

−2

(
1− ψ2

4

)i (
e−ti+1/2 − e−ti/2

)
+ E

[
∞∑
i=k

−2

(
1− ψ2

4

)i (
e−ti+1/2 − e−ti/2

)]

= −2
k−1∑
i=0

(
1− ψ2

4

)i (
e−ti+1/2 − e−ti/2

)
+

(
1− ψ2

4

)k
e−tk/2 · E[E t⃗′ [H2]]

= 2− ψ2

2

k−1∑
i=1

(
1− ψ2

4

)i−1

e−ti/2 − 2

(
1− ψ2

4

)k−1

e−tk/2 +
(1− ψ2

4
)k

1
2
+ λψ

2

4

e−tk/2

= 2− ψ2

2

[
k−1∑
i=1

(
1− ψ2

4

)i−1

e−ti/2

]
−

(2λ+ 1)ψ
2

4

1
2
+ λψ

2

4

(
1− ψ2

4

)k−1

e−tk/2

□

The calculation methods in Lemma 3, Lemma 4 could be used to find expectations for ϕ(H2)
for any ϕ continuous, in particular ϕ(t) = e−ut.

Lemma 5 (Expectation of e−uH2 , annealed). For any u ∈ (0,∞), 0 ≤ ψ ≤ 1, H2 and t⃗
defined as before, then

EEE[Et⃗[e−uH2 ]] =
1
2
+ λψ

2

4

1
2
+ λψ

2

4
+ u
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Proof. Proof similar to Lemma 3; see Appendix. □

Lemma 6 (Expectation of e−uH2 , conditioned on first k Poisson points). For any u ∈ (0,∞),
0 ≤ ψ ≤ 1, H2 and t⃗ defined as before, then Et1,··· ,tk [e−uH2 ] is a linear combination of
{e−ti(1/2−u)}i=0,··· ,k.

Proof. Proof similar to Lemma 4; see Appendix. The expression is

Et1,··· ,tk [e−uH2 ] = 1− u

u+ 1/2
+

u

u+ 1/2
· ψ

2

4

k−1∑
i=1

(
1− ψ2

4

)i−1

eti(−1/2−u)

+
u

u+ 1/2
·
1/2 + (λ+ u)ψ

2

4

1/2 + λψ
2

4
+ u

(
1− ψ2

4

)k−1

etk(−1/2−u)

□

3.4. Proving statistical identifiability of an estimator. In future work, we hope to use
Lemmas 3-6 to estimate t1, · · · , tk for some k.

4. Discussion

In this report, the main object of interest was the height of the coalescent tree. However,
there are other statistics from which we can extract additional information. One of these
statistics is the site frequency spectrum.

4.1. Site frequency spectrum. The site frequency spectrum (SFS) is a summary statistic
that aligns with the infinite sites model of mutation.

The infinite sites model is a mathematical model of mutation such that a mutation hap-
pens at each site in a DNA sequence at most once (i.e. there is no recombination) and
each site has at most two different nucleotides. These assumptions can be interpreted as the
evolution of long DNA sequences with very low mutation rate, such that each nucleotide can
mutate at most once.

Assuming we know the ancestral allele at each polymorphic site (a site where there is more
than one nucleotide, also known as a segregating site), we can count the number of sites
ξi where there are i mutant alleles and n− i ancestral alleles. These ξi can then be plotted
in the site frequency spectrum. This case, where we know the ancestral allele is called the
unfolded SFS, while the opposite case is called the folded SFS. If we do not know the
ancestral allele, we simply count the number of minor alleles at each polymorphic site. Then
we have ηi =

ξi+ξn−i
1+δi,n−i

for 1 ≤ i ≤ [n/2].

Two other statistics of note are S, the number of segregating sites in a sample, and π, the
average difference between pairs of sequences in a sample. Note that S =

∑n−1
i=1 ξi, the sum

of the values in an SFS. π = 1

(n2)

∑n−1
i=1

∑n
j=i+1 kij, where kij is the number of differences

between sequence i and j. The SFS can be thought of as an intermediate between S and π.
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4.2. Branch frequency spectrum. For clarity, I will refer to the spectrum obtained from
a coalescent tree as the branch frequency spectrum, although it is often referred to as an
SFS as well.

The branch frequency spectrum is calculated as such: each si is the sum of the lengths of each
branch that subtends i tips. Under the infinite sites model, mutations occurs on a branch
at a rate of θ/2 per unit length. Any mutation that occurs on a branch that subtends i tips
will manifest itself in exactly i sequences. Thus, the number of sites which have i mutant
alleles will be proportional to the sum of the lengths of the branches that subtend i tips. In
addition, the total length of the tree is proportional to the number of total mutations, which
is equal to the number of segregating sites S under the infinite sites model.

In this way, the branch frequency spectrum is related to the site frequency spectrum, and
both statistics summarize the same information but from different starting points.

(a) Unconditional BFS (b) Conditional BFS

Figure 5. Branch frequency spectra for HRE vs. Kingman coalescents, n =
20 (each plot shows si vs. i)

Figure 5a shows in blue the average of branch frequency spectra over all Poisson processes t⃗
with λ = 1, ψ = 0.75. Figure 5b generates and fixes a specific Poisson process with the same
parameters, specifically t⃗ = [0.28, 0.54, 0.95, 1.97, · · · ]. One can see that the values in 5b
are closer to the expected Kingman spectrum values. In both spectra, the HRE spectrum is
lower in value at all points compared to the expected Kingman spectrum. This is reasonable,
as an HRE tree will always coalesce more quickly than a Kingman tree.

In future work, these si can be examined as opposed to Hn.
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5. Conclusion

In this report, we explored the multiple merger coalescent model, focusing on "big family"
events and their impact on the coalescent tree structure. Specifically, we aimed to under-
stand how much population history is necessary to accurately approximate the time to the
most recent common ancestor (MRCA), as well as investigate the possibility of recovering
population histories from genomic data.

We addressed two core questions:

(1) How much of the population history do we need to accurately examine
time to MRCA? Specifically, how many Poisson points of t⃗ do we need to approx-
imate Hn up to some error?

(2) Can we recover population histories from given data? Specifically, if we only
need k Poisson points, can we recover these k points from expected Hn?

We made significant progress on question (1) and the beginnings of question (2). Future
work includes:

• Tightening bounds to reduce the number of time points required.
• Proving statistical identifiability of an estimator for time points ti.
• Applying this estimator to real-world data.
• Examining other statistics, such as the branch frequency spectrum.

In conclusion, we have made promising progress toward understanding the genealogical struc-
ture of populations subject to "big family" events. The insights gained from this work pave
the way for more accurate reconstructions of population history and the development of
tools to detect and analyze significant demographic events. While there is still much to
explore, particularly in the realm of statistical identifiability and real-world application, the
framework we have established provides a solid foundation for future research in this area.
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Appendix

Proof of Lemma 5.

Proof.

Et⃗[e−uH2 ] =

∫ ∞

0

P t⃗(e−uH2 > t)dt

=

∫ 1

0

P t⃗(H2 <
− ln t

u
)dt

=

∫ 1

0

1−

(
e

ln t
2u

(
1− ψ2

4

)Y (− ln t
u

)
)
dt

= 1−
∫ 1

0

t
1
2u

(
1− ψ2

4

)Y (− ln t
u

)

dt

= 1−
∞∑
k=0

u

u+ 1/2
t

1
2u

+1

(
1− ψ2

4

)k ∣∣∣t=e−utk
t=e−utk+1

= 1− u

u+ 1/2

∞∑
k=0

(
1− ψ2

4

)k (
etk(−1/2−u) − etk+1(−1/2−u))

Taking the expectation of this, we can plug in −1/2−u into the gamma moment generating
functions. We have

EEE[Et⃗[e−uH2 ]] = 1− u

u+ 1/2

∞∑
k=0

(
1− ψ2

4

)k((
1 +

1/2 + u

λ

)−k

−
(
1 +

1/2 + u

λ

)−(k+1)
)

=
1
2
+ λψ

2

4

1
2
+ λψ

2

4
+ u

Summing over the resulting geometric series, we have the moment generating function of an
exponential random variable with rate 1

2
+ λψ

2

4
, consistent with (DFBW24, Lemma 1).

□

Proof of Lemma 6.

Proof.

Et1,··· ,tk [e−uH2 ] = 1− u

u+ 1/2

k−1∑
i=0

(
1− ψ2

4

)i (
eti(−1/2−u) − eti+1(−1/2−u))(5)

− E

[
u

u+ 1/2

∞∑
i=k

(
1− ψ2

4

)i (
eti(−1/2−u) − eti+1(−1/2−u))](6)
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Rearranging the top expression, we have

(5) = 1− u

u+ 1/2
+

u

u+ 1/2
· ψ

2

4

k−1∑
i=1

(
1− ψ2

4

)i−1

eti(−1/2−u)

+
u

u+ 1/2

(
1− ψ2

4

)k−1

etk(−1/2−u)

Evaluating the bottom expression, we have

(6) = − u

u+ 1/2

(
1− ψ2

4

)k
etk(−1/2−u)EEE[1− Et⃗′ [e−uH2 ]]

= − u

u+ 1/2

(
1− ψ2

4

)k
etk(−1/2−u) u

1
2
+ λψ

2

4
+ u

Summing the two expressions, we have our final expression

(5) + (6) = 1− u

u+ 1/2
+

u

u+ 1/2
· ψ

2

4

k−1∑
i=1

(
1− ψ2

4

)i−1

eti(−1/2−u)

+
u

u+ 1/2
·
1/2 + (λ+ u)ψ

2

4

1/2 + λψ
2

4
+ u

(
1− ψ2

4

)k−1

etk(−1/2−u)

□
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