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Abstract. Fibonacci numbers occur naturally in the number of clockwise and anticlock-
wise spirals present in the formations of leaves and seeds of many plants. The physical
structure of these natural arrangements can be modelled by deformable unit area cylindri-
cal lattices with a generating helix where lattice points represent the location of the plants’
leaves or seeds. The number of clockwise and anticlockwise spirals (m,n) are called the
parastichy pair of this lattice. All possible lattices can be generated by two parameters, x
and y, which are dependent on the divergence angle of the generating helix, the circum-
ference of the cylinder and chosen height intervals. We thus have a moduli space of all
possible lattices which is tessellated by the parastichy pairs. The energy function of lattices
is a function on this moduli space, and we can analyze local minimum trajectories on this
function to indicate lattices which are naturally occurring. In this report, we further discuss
the mechanics of this model and present potential future steps to further understand the
natural phenomenon driving these pattern formations.

1. Introduction

The Fibonacci numbers are formed by a recursive sequence that is defined as follows:

a0 = 0, a1 = 1, an = an−1 + an−2

Thus yielding the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

The Fibonacci sequence of numbers has been widely observed in the natural world. The
spirals of leaves and seeds on plants is just one example of this. The study of the arrangements
of leaves on plant stems is called phyllotaxis. There exists many types of phyllotaxis, but
in this report, we will only observe spiral phyllotaxis.

Among the plants that demonstrate spiral phyllotaxis are pine cones, sunflowers and
pineapples. When examining these plants, one can observe their spirals through many con-
texts but for our research, we examine the fact that there will be certain numbers of spirals
in the clockwise and anticlockwise direction. Figure 1 below demonstrates how we will be
counting these spirals and one occurrence of Fibonacci numbers in the number of spirals.
The red lines follow the anticlockwise spirals, of which there are 13, and the blue lines follow
the clockwise spirals, of which there are 8. Since this pine cone has 8 spirals in one direction
and 13 spirals in the other, we will label this pine cone with the parastichy pair (8, 13),
which you may note to be consecutive Fibonacci numbers.

Parastichy pairs will be how we label all structures that we want to count the number of
spirals on. In all parastichy pairs (m,n), we will order the numbers in the pair such that
m ≤ n. For our purposes, if the number of clockwise and anticlockwise spirals are switched,
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Figure 1. Pine cone with spirals shown in red and blue

we still want to label those structures the same. Our claim that we seek to find results for
is that consecutive Fibonacci number parastichy pairs occur naturally due to the structures
with these pairs being the ones which locally minimize the energy required to form them.
It is reasonable to imagine that growth by some amount left or right will require the same
amount of energy, so we can label all structures by their number of spirals, regardless of
which direction has more spirals.

The observation of Fibonacci numbers in the number of spirals in plant leaf formation is
not a recent discovery. Leonardo da Vinci observed this pattern in one of his journals in 1503.
More recently, D’Arcy Thompson, a Scottish mathematical biologist, made further inquiries
in his 1917 book On Growth and Form.[1] In 1998, Hyun-Woo Lee and Leonid Levitov,
physicists from MIT, published a journal article where they propose a method by which this
behavior can be modelled. It was our goal to use their model to develop mathematical tools
and to prove results about this phenomenon.

2. Model

Lee and Levitov’s model starts by modelling the stem of a plant by a cylinder. We place
a helix upon this cylinder, this helix represents the path along which new leaves grow. Thus
you can imagine that when the first leaf of on a plant grows, it will be at the base of cylinder
on the helix. Then as each subsequent leaf grows, the previous leaves will move along this
helix, spiralling up the cylinder. We can place points along the helix at certain height
intervals, such that the height difference between each set of consecutive points is equal.[1]
Figure 2 below demonstrates one such cylinder.

Figure 2. Cylindrical lattice demonstrating model

This creates a cylindrical lattice, with parameters d, r, and a. d is the measure of the
divergence angle of the helix, in other words, the angle between the ground and the helix.
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r is the rise rate, meaning the height increase from each lattice point to the next. a is the
circumference of the cylinder.

Using this cylindrical lattice, we can convert to a planar lattice by a procedure of rolling
the cylinder out along the generating helix. This yields lattice points in a line upon a plane.
The mth lattice point along the generating helix can be found from the following formula:

rm =
adm

2π
i+ rmj

In order to create a full rank lattice, we extend the lattice points from the generating helix
left and right by a units, this yields a lattice which can be analyzed properly as it can be
observed along the generating helix and within the range of [0, a), since by extending by a
left and right, within any range of length a, there will be copies of the original lattice points
that will be placed as if you were to cut and place the cylindrical lattice flat onto the plane.
Within these a length intervals, we can observe the flatten cylinder with the extended lattice
points representing lattice points that occur after one or more revolutions of the cylinder.
This extended lattice also requires a modified formula for lattice points:

rpm = (
adm

2π
+ ap)i+ rmj

where rpm is the pth extension by a of the mth lattice point along the generating helix.

As we are using a planar lattice, it is useful to use Cartesian coordinates and thus we
change parameters from d, r, and a to x, y, and A, where x is the relative row-to-row
displacement of the generating helix, y is the height-to-circumference ratio and A is the unit
cell area, meaning the area formed by the parallelogram with vertices (0, 0), the endpoints
of two basis vectors and the endpoint of the sum of the basis vectors.[1] These parameters
have the following relations to d, r, and a:

x =
−d

2π
, y =

r

a
, A = ar

. With this change of parameters, we also have a different formula for lattice points:

rpm =
√
A(

p−mx
√
y

)i+m
√

Ayj

This formula for lattice points can generate all possible lattices by simply changing x, y, and
A. We choose to add the condition that for all lattices A = 1, this means that we re-scale
the lattice, without changing any ratios of the generating vectors, to make A = 1.[2] Since x
and y parameterize every possible lattice, it leads to the introduction of a moduli space of
all possible lattices, with each pair (x, y) representing a unique lattice. It also gives a final
lattice point formula:

rpm =
p−mx
√
y

i+m
√
yj

In Figure 3, there is one example of a lattice which we have generated using the circumference
and generating helix. The red line segments indicate the basis vectors, which have been re-
scaled to ensure A = 1.
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Figure 3. Planar lattice with generating helix vector and circumference vec-
tor

3. Main Content

3.1. Identifying Parastichy Pairs. As was previously established, the plants we are study-
ing have parastichy pairs for the number of spirals in their leaf formations. We also observe
parastichy pairs in lattices. For each lattice, we observe its shortest and second shortest vec-
tor which start from the origin and extend to a lattice point. The one additional condition
we observe is that these vectors must be linearly independent.

Once we have the two shortest linearly independent vectors, we observe what lattice points
are the endpoints of these vectors. For each of these vectors, the lattice point with be labelled
rp′m′ , the value of m′ indicates which point along the original generating helix, this point is
an extension of. This value m′ tells how many spirals there are in one direction, this is due
to the fact that, there must be m′ lines within an a length interval such that if you were to
place a copy of that shortest (or second shortest) vector upon each lattice point, the number
of lines formed by these vectors that intersect the i-axis will be m′. Alternatively, since we
start at the origin (r00), we know the points it will lie on a line with will have m values equal
to multiples of m′ so if you we to continue along the generating helix, the first point which
is a multiple of m′ would be m′, so all of the lattice points before r0m′ along the helix will
be part of a different line, however we want to only consider the lattice points within an a
length interval, however, we can simply just use the extended lattice points for any m such
that r0m is not in the desired interval. Thus if we have the shortest and second shortest
vectors, we can find the parastichy pair of any possible lattice.

Figure 4. Lattice with shortest and second shortest vectors labelled

This can begin to be seen in Figure 4 above, which shows the shortest and second shortest
vectors from the origin, if you we to place these vectors on every lattice point, you would
yield two sets of parallel lines which represent the spirals on a plant.
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3.2. Parastichy Pair Detection Algorithm. In order to determine the parastichy pairs
for all possible lattice points, we develop a Mathematica algorithm which can perform the
process for us.

xPoints = Subdivide[0, 1, 100];
yPoints = Subdivide[1/100, 1/2, 49];
gridPoints = Tuples[{xPoints, yPoints}];
mnSet = {};
For[i=1, i <= Length[gridPoints], i++,

v1 = {-gridPoints[[i,1]] / Sqrt[gridPoints[[i,2]]],
Sqrt[gridPoints[[1,2]]]};

v2 = {1 / Sqrt[gridPoints[[1,2]]],0};
range = 100;
latticePoints = Flatten[Table[m v1 + n v2, {m, -range, range},

{n, -range, range}], 1];
distanceFromOrigin[latticePoint_] :=

latticePoint[[1]]^2 + latticePoint[[2]]^2;
distances = distanceFromOrigin[#] & /@ latticePoints;
sortedIndices = Ordering[distances];
sortedPoints = latticePoints[[sortedIndices]];
matrix = {sortedPoints[[2]], sortedPoints[[3]]};
k = 4;
While[Det[matrix] == 0,

matrix = {sortedPoints[[2]], sortedPoints[[k]]}; k++];
k = k-1;
mn = If[Abs[sortedPoints[[2,2]] / v1[[2]]] <=

Abs[sortedPoints[[k,2]] / v1[[2]]],
If[Abs[sortedPoints[[2,2]] / v1[[2]]] == 0,

{1, Abs[sortedPoints[[k,2]] / v1[[2]]]},
{Abs[sortedPoints[[2,2]] / v1[[2]]],

Abs[sortedPoints[[k,2]] / v1[[2]]]}],
If[Abs[sortedPoints[[k,2]] / v1[[2]]] == 0,

{1, Abs[sortedPoints[[2,2]] / v1[[2]]]},
{Abs[sortedPoints[[k,2]] / v1[[2]]],

Abs[sortedPoints[[2,2]] / v1[[2]]]}]];
mnSet = Join[mnSet, {mn}];

];
gridMNSet = Transpose@{gridPoints, mnSet};

The above code finds parastichy pairs for each (x, y) with x and y being values equal to
an integer divided by 100 for x ∈ [0, 1] and y ∈ ( 1

100
, 1
2
]. This is just a chosen grid that we do

the parastichy pair detection on, but can be expanded or shrunk depending upon the results
you would like to yield. Additionally, the above code has a range of 100, this means when
generating the lattice, it extends the lattice 100 points along the generating helix forward
and backwards as well as extending the lattice 100 points left and right by the circumference.
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As for the actual mechanics of the algorithm, after the grid has been decided on and
the range has been determined. The algorithm subdivides the interval given then pairs all
x-values and y-values together to have ordered pairs to operate on. It then initializes the
mnSet for later use. A for loop is then began which will operate on each grid point. From
the grid point, the generating vectors are produced, this is done by plugging x and y into
the lattice point formula, with v1 being the vector along the generating helix and v2 being
the vector which extends by the circumference. These two vectors are then used to create
the lattice which extends 100 (the range) points up, down, left and right from the origin. A
distance function is then defined, which is then used to sort all distances between the origin
and lattice points. The corresponding indices to the distances are then sorted, which then
allows for the sorting of the lattice points by distance. Since the origin is one of the lattice
points, we start by looking at the second and third shortest distances. We place the points
into a matrix and then check the determinant. If the determinant is nonzero, then these
two vectors are the shortest and second shortest linearly independent vectors. If not then,
we replace the third shortest distances with the fourth then fifth and so forth until we have
linear independence. The while loop used does continue to add to our counter k once after
we achieve linear independence, so we must reduce k by 1 to get the correct index for the
second shortest vector. The algorithm then checks the height of the two vectors which, when
divided by the initial height rise from the lattice points on the generating helix, tells what
the m value of the endpoints will be. It then puts these points into a pair for storage in
mnSet. This process runs through all of the grid points and then finally combines the grid
point set and mnSet to yield a table which associates each grid point to a parastichy pair.

(x, y) (m,n) Coloring Assignment
(1
3
, 1
2
) (1, 1) Blue X

(1
2
, 1
2
) (1, 1) Blue X

(3
4
, 1
4
) (1, 2) Black Dot

(2
3
, 1
10
) (1, 3) Green X

( 7
12
, 1
10
) (1, 4) Red X

( 99
100

, 1
25
) (1, 6) Orange Dot

(5
6
, 1
100

) (1, 6) Orange Dot
(11
12
, 1
100

) (1, 12) Purple Dot
( 5
12
, 1
500

) (5, 12) Green Dot
( 7
16
, 1
500

) (7, 16) Red Dot

Figure 5. Table of Parastichy Pairings with Coloring Convention
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Figure 6. Sample Plane Coloring Based Upon Parastichy Pairs

3.3. Coloring of the Plane Using Parastichy Pairs. This algorithm that we developed
is the first step in a greater goal of determining what parastichy pairs are naturally occurring.
This can be conducted by a process requiring two objectives to be complete. As established,
there is a moduli space of all possible lattices, since our algorithm can produce the paras-
tichy pair for every lattice based upon its (x, y) pair, we create a coloring scheme for all
parastichy pairs. It was previously established in Lee and Levitov’s paper that lattices with
the same parastichy pair appear in regions, specifically regions in the shape of hyperbolic
quadrilaterals, which will tessellate the plane.[1] We call these regions, the parastichy pair
domains because within each the same parastichy pair will be present for all lattices. In our
research, a full algorithm that could complete this coloring was not fully developed but a
sample coloring can be produced via using the parastichy pair detection algorithm for some
set of grid points and then producing a coloring manually. Above are a table of sample
points with a coloring scheme (Figure 5) and an image of said points graphed with coloring
(Figure 6), these figures illustrate an intermediate step towards the complete coloring of the
plane based upon parastichy pairs.

3.4. Energy Minimizing Lattices. Once the coloring of the plane is complete, there is one
other major form of analysis we want to complete on these lattices. For the set of lattices,
we define an energy functional as follows:

Etotal =
1

2

∑
U(|rpm − rp′m′ |)

with U(r) being a generic repulsive interaction. The issue that arises with this energy
functional is that it will diverge, so we can instead look at the energy density on each cell, A,
which as we established, will always be 1, thus we can yield the following density functional:

E(x, y) =
∑

U(|rpm|)

We do have to consider one condition to ensure this sum converges. U(r) must be some
function which will decay sufficiently such so that the sum converges. For our purposes, this
will mean choosing functions such as exponential decay functions and power functions.

Once the summation is set up, we can then run the following code to determine the energy
density for all lattices.

ContourPlot[Sum[Sum[Exp[-5 Sqrt[ (p-m*x)^2 / y + m^2 * y]], {p, 0, 100}],
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{m, 0, 100}], {x, 0, 1}, {y, 0, 1}]

This code chooses to run the sum for p and m up to 100, but any suitable large choice will
yield the necessary result. It also looks at the 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The figure below
shows just the domain for 0.5 ≤ x ≤ 1 and 0 ≤ y ≤ 0.5 only summing m and p to 20.

Figure 7. Contour Plot for Energy of Lattices with x ∈ [1
2
, 1], y ∈ [0, 1

2
]

Once the energy for all lattice has been computed, we seek to find the minimum trajectory
for energy on all lattices. This means for y-value, we want to find the local minima, meaning
for every y, we want to find each x where the following is true:

∂E

∂x
= 0,

∂2E

∂x2
> 0

In order to do this, one would need to create an algorithm which does the following:

(1) For given y determine x-values for all local minima
(2) Store each determined x-value in an list of ordered pairs, paired with the y-value

given
(3) Repeat for all y-values in chosen domain
(4) Graph all stored ordered pairs, resulting in a trajectory showing all energy minima

We want to determine the minimum trajectory because this trajectory is going to show all of
the lattices which require the least energy locally to maintain. In the physical setting using
pine cones, this will mean that if a pine cone was growing more scales upon its stem and as
it grows it is going to tend towards the structure of these minimum energy lattices. Thus,
once the above algorithm is complete, it will show the lattices which are likely to naturally
occur.

This leads to the final step in determining naturally occurring parastichy pairs. If we
overlay the minimum trajectory over the parastichy pair coloring of the plane, we will see
that the trajectory moves only through certain parastichy pair domains, so we determine that
the parastichy pairs associated to these domains are the naturally occurring parastichy pairs,
which we expect to find, will be the domains associated with parastichy pairs consisting of
consecutive Fibonacci numbers.
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4. Conclusions

4.1. Final Remarks. There is still a fair amount to be completed to have a fully automated
process for determining which parastichy pairs are naturally occurring but the parastichy
pair detection algorithm serves as a major step in completing this process.
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