
THE CONVEX SUMSET PROBLEM

ADAM CUSHMAN

Abstract. The sum-product conjecture, posed in 1983 by Erdős and Szemerédi [ES83],
posits that any sufficiently large set must have a ‘relatively large’ number of distinct sums
or products between its elements. A similar conjecture extends this idea, positing that for
convex sets there must be a ‘relatively large’ number of distinct sums between its elements.
Both conjectures remain open and far from being solved. This report provides an entirely
self-contained overview of some known results, primarily focused on the latter conjecture,
and the methods used to achieve them.

1. Introduction and Motivation

For any sets A,B and binary operation · which acts on elements of A and B, we define

A ·B = {a · b : a ∈ A , b ∈ B} .

Observe the following example which motivates the study of these problems.
Let A = {1, 2, 3, · · · , n} and G = {2, 22, 23, · · · , 2n}.
Notice that A is given by an arithmetic sequence and G by a geometric sequence. We are

going to calculate |A+ A| , |AA| , |G+G| , and |GG|.
Observe that

|A+ A| = |{2, 3, · · · , 2n}|
= 2n− 1

= 2 |A| − 1,

and by the same argument,

|GG| =
∣∣{22, 23, · · · , 22n}∣∣

= 2 |G| − 1.

We have

|G+G| =
∣∣{2i + 2j : i, j ∈ {1, · · · , n}

}∣∣
For all i, j, 2i+2j is a number written in base 2. By the uniqueness of binary representations
(see appendix), we have that 2i + 2j is distinct for every choice of {i, j}. Therefore,

|G+G| ≥ |{{i, j} : i, j ∈ {1, · · · , n}}|

=

(
n

2

)
+ n

=

(
|G|+ 1

2

)
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Finally, I prove in the appendix that there exists c ∈ R+ such that

|AA| ≥ c |A|2

log (|A|)
.

Observing the trivial bounds 2 |S|−1 ≤ |S · S| ≤
(|S|

2

)
for any set S and any commutative

operation ·, it is clear that both AA and G + G are, as |A| , |G| → ∞, almost as large as
they can be, and A+ A,GG are as small as they can be.

This is the phenomenon which motivates this problem. One questions is: “does there exist
a set for which neither the sum nor the product set is large?” The sum-product conjecture
states that such a set does not exist. Another question we study in this report is: “what
determines if the sum set is large or the product set is large?” A similar conjecture which
partially addresses this question states that the sum set is large when the set itself is convex.

The rest of the report will proceed with preliminary definitions and ideas, a precise state-
ment of the main problems we’ll focus on, proving a collection of important results, and
applying these results to the conjectures we are concerned with.

2. Preliminaries

As a useful shorthand, for any natural number n, let

[n] = {1, 2, · · · , n} .
For a set S, and function f : S → R,

f(S) = {f(s) : s ∈ S} .
The study of these problems requires the notion of orders of magnitude. For any functions

f, g : R → R, write
f(x) ≫ g(x) as x→ ∞

if
∃x0, c ∈ R+ s.t. x > x0 =⇒ |f(x)| ≥ c |g(x)| ,

write
f(x) ≪ g(x) as x→ ∞

if
∃x0, c ∈ R+ s.t. x > x0 =⇒ |f(x)| ≤ c |g(x)| ,

and write
f(x) ≍ g(x) as x→ ∞

if
f(x) ≪ g(x) and f(x) ≫ g(x) as x→ ∞.

We write ≪ϵ,≫ϵ if the constant depends on ϵ. For example,

f(x) ≫ϵ g(x)
ϵ

means
∀ϵ > 0 , f(x) ≫ g(x)ϵ.

More precisely, there is some function c : R+ → R+ so

∀ϵ > 0, ∃x0 ∈ N s.t. x > x0 =⇒ |f(x)| ≥ c(ϵ) |g(x)ϵ| .
We write ≲,≳ if, along with a constant factor, there is also a logarithmic factor. That is

f(x) ≲ g(x)
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if there is some c ∈ R such that

f(x) ≪ (log (x))c g(x).

Throughout this report, the asymptotic parameter (in this case x) will always tend to
∞, so it will no longer be mentioned. Oftentimes the parameter will not even be in the
expression. For example, if for some set A we write

|A+ A| ≫ |A| ,

it is taken to mean that A is defined implicitly by |A|, and |A| is the parameter which tends
to ∞.

For any sets A,B and any binary operation · acting on elements of A and B, define the
representation function rA·B : A ·B → N by

rA·B(x) = |{(a, b) ∈ A×B : x = a · b}| .

Throughout this report the shorthand

δA,B(x) = rA−B(x) , σA,B(x) = rA+B(x) , δA(x) = δA,A(x) , σA(x) = σA,A(x)

will be used.
For any sets A,B, define the Additive Energy E(A,B) and Multiplicative Energy M(A,B)

by
E(A,B) =

∣∣{(a1, a2, b1, b2) ∈ A2 ×B2 : a1 − b1 = a2 − b2
}∣∣

and

M(A,B) =

∣∣∣∣{(a1, a2, b1, b2) ∈ A2 ×B2 :
a1
b1

=
a2
b2

}∣∣∣∣ .
Observe that

E(A,B) =
∑

x∈A−B

δA,B(x)
2

and
M(A,B) =

∑
x∈A

B

rA
B
(x)2.

This definition is symmetric in the sense that a 4-tuple (a1, a2, b1, b2) ∈ A2 × B2 is a
solution to

a1 − b1 = a2 − b2

if and only if it is a solution to
a1 + b2 = a2 + b1,

and therefore
E(A,B) =

∑
x∈A−B

δA,B(x)
2 =

∑
x∈A+B

σA,B(x)
2.

There is a similar argument for multiplicative energy. Any 4-tuple (a1, a2, b1, b2) ∈ A2×B2

with nonzero entries is a solution to
a1
b1

=
a2
b2

if and only if it is a solution to
a1b2 = a2b1.
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There are at most
4∑

i=1

(
4

i

)
= 15

4-tuples with zero entries, so

M(A,B) =
∑
x∈A

B

rA
B
(x)2 ≍

∑
x∈AB

rAB(x)
2.

We also define higher energies

En(A,B) =
∑

x∈A−B

δA,B(x)
n,

so
E(A) = E2(A),

and as a shorthand use
En(A) = En(A,A).

Similar definitions and shorthand are used for multiplicative energy.
We can relate the energies to the sizes of the sum and product sets by the Cauchy-Schwarz

Inequality.
|A| |B| =

∑
x∈A+B

σA,B(x) ≤ |A+B|
1
2 E(A,B)

1
2 ,

and
|A| |B| =

∑
x∈AB

rAB(x) ≤ |AB|
1
2 M(A,B)

1
2 .

Similar inequalities can be derived for |A−B| and
∣∣A
B

∣∣.
Let I ⊂ R be an interval. We call a function f : I → R convex if for any 2 points

x1, x2 ∈ I, with x1 ̸= x2, and any λ ∈ (0, 1),

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

A finite set A ⊂ R is convex if there is a function f : [1, |A|] → R such that

A = {f(i) : i ∈ {1, · · · , |A|}} .
A property of convex functions which will come up later, and is worth proving now, is

Lemma 2.1. Let I ⊂ R be an interval. Let f : I → R be convex. Let T ⊂ R2.
Take ℓ = {(x, f(x)) : x ∈ I} to be the graph of f . We have that

∀t1, t2 ∈ T , |(ℓ+ t1) ∩ (ℓ+ t2)| ≤ 1.

That is that translations of the graph of a convex function intersect in at most one point.

Proof. We first show that for any x1, x2 with x1 < x2 and t > 0, we have

f(x1 + t)− f(x1) < f(x2 + t)− f(x2).

Take λ1 = x1−x2

x1−x2−t
to get the result

f(x1 + t) = f(λ1x1 + (1− λ1) (x2 + t)) < λ1f(x1) + (1− λ1) f(x2 + t).

Take λ2 = −t
x1−x2−t

to get the result

f(x2) = f(λ2x1 + (1− λ2) (x2 + t)) < λ2f(x1) + (1− λ2) f(x2 + t).
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Observing that λ1 = 1− λ2 and adding the inequalities we get

f(x1 + t) + f(x2) < f(x1) + f(x2 + t),

or
f(x1 + t)− f(x1) < f(x2 + t)− f(x2).

Without loss of generality, we can consider ℓ and a single translation t0 = (t1, t2). A point
of intersection between these curves is a solution to the equation

(x1, f(x1)) = (x2 + t1, f(x2) + t2),

or {
x1 = x2 + t1

f(x1) = f(x2) + t2
,

or
f(x2 + t1) = f(x2) + t2.

A second point of intersection is a solution to

f(x3 + t1) = f(x3) + t2

where x3 ̸= x2.
Adding these equations, we see that 2 points of intersection can occur only if

f(x2 + t1)− f(x2) = f(x3 + t1)− f(x3)

which yields a contradiction.
□

A function f : I → R is concave iff −f is convex. An important symmetry to notice is
that concave sets A, defined by a concave function f satisfy

|A+ A| = |(−A) + (−A)| .
That is, any results throughout the rest of this report concerning the size of convex sets also
hold for concave sets.

The final tool we’ll introduce is dyadic partitioning. Let S ⊂ R be a finite set, f : S → R
be a function, and M be the maximum value of f(x) for x ∈ S. We partition a sum of f(x)
in the following way ∑

x∈S

f(x) =
∑

j≤log2(M)

∑
x∈S

2j−1≤f(x)<2j

f(x).

Out of the log2 (M) partitions of the sum, one of them must be the largest, so∑
x∈S

f(x) ≤ log2 (M)
∑
x∈S

2k−1≤f(x)<2k

f(x)

for some k ≤ log2 (M).
We use this notation introduce the technique. Throughout this report, we write ∆ = 2k−1,

and
D = {x ∈ S : f(x) ≍ ∆}

so that ∑
x∈S

f(x) ≪ log (M)
∑
x∈D

f(x) ≍ log (M)∆ |D| .
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This technique is useful in this problem because a factor of log (M) will be negligible in
most circumstances. This allows us to sum only over x for which f(x) is a particular order
and use this to find an upper bound.

3. Statement of Problems

We’ll now move on to precise statements of the mentioned problems, and statements of
the most modern results.

The idea that there does not exist a set with a small sum and product set is stated precisely
as

Conjecture 3.1 (Sum-Product Conjecture). For every finite set A ⊂ R,

max (|A+ A| , |A · A|) ≳ |A|2

The idea that convexity opposes additive structure is stated precisely as

Conjecture 3.2 (Convex Sumset Conjecture). For finite and convex set A,

|A+ A| ≳ |A|2

Both of these conjectures are sharp in the sense that the power of log is not negligible. In
the appendix I prove that

|log ([n]) + log ([n])| = |[n] · [n]| = o(n2).

To date, the best results for both of these conjectures are proven in [RS21].

Theorem 3.3. For finite sets A ⊂ R,

max (|A+ A| , |A · A|) ≳ |A|
4
3
+ 2

1167

and

Theorem 3.4. For finite and convex sets A ⊂ R,

|A+ A| ≳ |A|
30
19

These results will not be covered in this report. In this report, the strongest results proven
are

Theorem 3.5. For finite sets A ⊂ R,

max (|A+ A| , |AA|) ≳ |A|
4
3 .

Theorem 3.6. For finite and convex sets A ⊂ R,

|A+ A| ≳ |A|
20
13 .

and

Theorem 3.7. For finite and convex sets A ⊂ R,

|A− A| ≳ |A|
8
5 .

Theorem 3.5 is the weakest amongst these results, although it is still near the best known
result. Theorem 3.7 gives the best known exponent on |A|, and Theorem 3.6 is obtained by
a slight variation on the same methods.
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4. Graphs and the Crossing Number Inequality

A profoundly useful theorem in the study of sum-product conjectures is the Szemeredi-
Trotter theorem, a statement about systems of points and lines.

The easiest way to prove this theorem is through the use of the crossing number inequality,
a statement about how planar a given graph can be. The purpose of this section is to give
a proof of the crossing number inequality. Due to the brevity of this section, the definitions
and proofs given will not be as rigorous as they should be.

The first paper to employ the crossing number inequality to proving the Szemeredi-Trotter
theorem is [SZE97]. This argument was largely taken from [Tao07].

There are pictures included to help illustrate some ideas.
A graph G is a pair G = (V,E) where each e ∈ E is of the form e ⊂ V with |e| = 2. We

call the set V the vertices, and the set E the edges. A drawing is a representation of a graph
with vertices as points in the plane and edges as curves between their respective vertices.
For example:

Figure 1. A drawing of a graph with V = {A,B,C} and E =
{{A,B} , {B,C} , {A,C}}

A graph is connected if for any 2 vertices, there exists a sequence of edges which join them.
Note that connectedness is a property of a graph and not of the drawing of a graph.

There are infinitely many ways to draw any given graph. A crossing in a drawing of a
graph is an intersection between 2 curves which represent edges. The crossing number of a
graph is the minimum number of crossings a drawing of the graph can have. Denote this by
cr(G). A graph G is called planar if its crossing number is 0.

A precise statement of the Crossing Number Inequality is

Theorem 4.1. Let G = (V,E) be a connected graph. If |E| ≥ 4 |V | then

cr (G) ≫ |E|3

|V |2
.

For a drawing of a planar graph, we call any region of the plane which is bounded by
edges a face. We also call the unbounded region of the plane a face. Here is an example of
a drawing of a planar graph with labelled faces:

Figure 2. Drawing of Planar Graph with Labeled Faces fi
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Observe that any non-planar graph G = (V,E) can be turned into a planar graph by
removing at most cr (G) edges from E. Therefore, a bound on the number of edges a graph
can have and remain planar yields a bound on the crossing number for any graph. A famous
theorem relating the vertices and edges of planar graphs is

Theorem 4.2 (Euler’s Formula for Planar Graphs). Let G = (V,E) be a connected planar
graph, with |V | ≥ 1, and consider some drawing with 0 crossings. Let F be the set of all
faces of this drawing.

|V | − |E|+ |F | = 2.

Proof. We prove this by induction on the number of edges. For the base case, |E| = 0, G
consists of a single vertex and a single face, so

|V | − |E|+ |F | = 2.

Now suppose that this equality holds for all graphs with no more than e − 1 edges, and
consider a graph with e edges.

If G contains no cycles, there is only one face, so we may remove a vertex and a corre-
sponding edge, which results in a graph with e− 1 edges satisfying Euler’s formula. Because
we removed one vertex and one edge, the original graph also satisfies Euler’s formula.

The next case is G containing at least one cycle. If this is the case, we may remove an
edge from the cycle, thereby decreasing the amount of faces by one. The remaining graph
satisfies Euler’s formula, and therefore the original graph does too.

By induction on the number of edges, Euler’s formula holds for all connected planar
graphs. □

The dependence on |F | in Euler’s formula can be removed by using its obvious dependence
on |E|.

We call an edge incident to a face if the edge is one of the bounding edges which define
the face. Define χ : F × E → {0, 1} as the incidence function, so χ(f, e) = 1 if f and e are
incident, and χ(f, e) = 0 otherwise. The total number of face edge incidences is

I(F,E) =
∑
f∈F

∑
e∈E

χ(f, e).

Because the crossing number inequality is a statement about order of magnitude, we may
assume |E| ≥ 3, so that every face is incident to at least 3 edges. It follows that

I ≥
∑
f∈F

3 = 3 |F | .

Every edge is incident to at most 2 faces, so it follows that

I ≤
∑
e∈E

2 = 2 |E| .

Therefore
3 |F | ≤ 2 |E|

or

|F | ≤ 2

3
|E| .
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Applying this to Euler’s formula,

|V | − |E|+ 2

3
|E| ≥ 2

or
|E| ≤ 3 |V | − 6

when |E| ≥ 3. Now suppose that G = (V,E) is non-planar and connected. As mentioned
before, G may be turned planar by removing at most cr (G) edges. Therefore, for any graph
G with |E| ≥ 3,

|E| − cr (G) ≤ 3 |V | − 6

or
cr (G) > |E| − 3 |V | .

To further improve this inequality, we apply the probabilistic method to the deletion of
vertices of G.

Let each v ∈ V be removed with a probability 1− p , p ∈ (0, 1). Let the remaining set of
vertices be V ′.

An edge is removed whenever either of the corresponding vertices are removed. Let the
remaining set of edges be E ′. Let the remaining graph be G′ = (V ′, E ′). We have that if
|E ′| ≥ 3,

cr (G′) ≥ |E ′| − 3 |V ′| ,
and so

E (cr (G′)) ≥ E (|E ′| − 3 |V ′|) ,
or, by the linearity of the expected value,

E (cr (G′)) ≥ E (|E ′|)− 3E (|V ′|) .

Each v ∈ V is removed with probability 1− p, so

E (|V ′|) = p |V | .

Each edge remains only when both corresponding vertices remain. Each vertex remains
independently with a probability p, so

E (|E ′|) = p2 |E| .

We can bound E (cr (G′)) by considering a drawing of G with the minimum number of
crossings. Each crossing remains and only when both corresponding edges remain, each of
which occurs independently with probability p2.

The expected value of the number of crossings remaining in the drawing is p4 cr (G). There
is no guarantee that this drawing is optimal to minimize the crossings of G′, but we may
conclude that

E (cr (G′)) ≤ p4 cr (G) ,

and therefore that
p4 cr (G) ≥ E (cr (G)) ≥ p2 |E| − 3p |V |

for any p ∈ (0, 1).
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Because we are only concerned with an order of magnitude bound, we assume |E| ≥ 4 |V |,
and take p = 4|V |

|E| . This yields the result

cr (G) ≥ |E|(
4|V |
|E|

)2 − 3 |V |(
4|V |
|E|

)3 =
1

16

(
|E|3

|V |2
− 3 |E|3

4 |V |2

)
≫ |E|3

|V |2
.

5. The Szemeredi-Trotter Theorem

With this, we can employ the argument of [SZE97] to prove the Szemeredi-Trotter Theo-
rem. A precise statement of the Szemeredi-Trotter Theorem, first proven in [ST83] is

Theorem 5.1 (Szemeredi-Trotter Theorem). Let P ⊂ R2 be a finite set of points. Let L be
a finite set of curves in R2.

Let χ : P × L → {0, 1} be the incidence function between a point and a line, so

χ(p, l) =

{
1 if p ∈ l

0 otherwise

If any two l ∈ L intersect in at most one point, then the total number of point-curve
incidences,

I(P,L) =
∑

(p,l)∈P×L

χ(p, l)

satisfies
I(P,L) ≪ |P |

2
3 |L|

2
3 + |P |+ |L| .

Proof. This is proven by turning a system of curves and points into a graph. We first omit
all points and curves which contribute to one or fewer incidences.

For each remaining curve, if there are n incidences along it, we partition it into n − 1
curves, each with 2 incidences. These become the edges of the drawing of some graph. Let
the set of edges be E.

If I0(P,L) is the remaining number of incidences,

|E| ≥ I0(P,L)− |L| .
Let the vertices of the graph, V , be the remaining points in the system. Obviously,

|V | ≤ |P |.
Because any two curves intersect in at most one point, cr (G) is at most |L|2.
Supposing that |E| ≥ 4 |V |, we have that

|L|2 ≥ cr (G) ≫ (I0 (P,L)− |L|)3

|P |2

or
I0(P,L) ≪ |L|

2
3 |P |

2
3 + |L| .

If |V | ≥ 1
4
|E|, then |V | ≫ |E|, or

|P | ≫ I0 (P,L)− |L| =⇒ I0(P,L) ≪ |P |+ |L| .
Finally, the remaining incidences not yet counted is

I(P,L)− I0(P,L) ≪ |L|+ |P | ,
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so
I(P,L) ≪ |P |

2
3 |L|

2
3 + |P |+ |L| .

□

The Szemeredi Trotter theorem has a handful of direct applications to the sum product
conjecture and the convex sumset conjecture. The main theorem which leads to these results
is proven in [ENR00].

Theorem 5.2. Let A ⊂ R be finite, with |A| = n.
Label the elements of A so that a1 < a2 < · · · < an.
Let f : [a1, an] → R be convex. Let S = {(a, f(a)) : a ∈ A} and T ⊂ R2 be finite.
We have

|S + T | ≫ max
(
|S|

3
2 |T |

1
2 , |S| |T |

)
.

Proof. Let
Lt = {(x, f(x)) + t : x ∈ [a1, an], t ∈ T} ,

and let
L = {Lt : t ∈ T} .

For every x ∈ A, (x, f(x)) + t ∈ S + T . Therefore, there are |A| = |S| incidences between Lt

and the point set S + T , for all t ∈ T . It follows that there are |S| |T | total incidences. The
set L consists of translations of the graph of a convex function, so the Szemeredi-Trotter
theorem is satisfied. Thus

|S| |T | ≪ |S + T |
2
3 |T |

2
3 + |S + T |+ |T | .

Trivially,
|S + T | ≥ |T | ,

so
|S| |T | ≪ max

(
|S + T |

2
3 |T |

2
3 , |S + T |

)
,

or
|S + T | ≫ max

(
|S|

3
2 |T |

1
2 , |S| |T |

)
.

□

The following corollaries are also proven in [ENR00].

Corollary 5.3. For convex and finite sets A ⊂ R, and finite sets B ⊂ R,

|A+B| ≫ |A| |B|
1
2 .

Proof. Let A ⊂ R be finite. Let n = |A|. Let f : [1, n] → R be the convex function for which

A = {f(i) : i ∈ [n]} .
Take

S = {(i, f(i)) : i ∈ [n]}
and

T = [n]×B.

We have
S + T ⊂ ([n] + [n])× (A+B) ,
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so
|S + T | ≤ |[n] + [n]| |A+B| ≪ |A| |A+B| .

Apply Theorem 5.2 to get

|A| |A+B| ≫ |S + T | ≫ max
(
|A|

3
2 (|A| |B|)

1
2 , |A| (|A| |B|)

)
or

|A| |A+B| ≫ |A|2 |B|
1
2 =⇒ |A+B| ≫ |A| |B|

1
2 .

□

This will be used to achieve stronger results later, but in particular, this gives the result

Corollary 5.4. For finite and convex sets A ⊂ R,

|A+ A| ≫ |A|
3
2 .

We can also use Theorem 5.2 to get a result on the Sum-Product conjecture.

Corollary 5.5. For finite sets A ⊂ R+ of positive real numbers,

max (|A+ A| , |A · A|) ≫ |A|
5
4 .

Proof. Let A ⊂ R be finite.
Label the elements of A so that a1 < · · · < an. Let f : [a1, an] → R be concave or convex.

Take
S = {(a, f(a)) : a ∈ A} ,

and
T = A× f(A).

Observe that
S + T ⊂ (A+ A)× (f(A) + f(A)) ,

so that
|S + T | ≪ |A+ A| |f(A) + f(A)| .

Apply Theorem 5.2 to get

|A+ A| |f(A) + f(A)| ≫ |S + T | ≫ max
(
|A|

3
2
(
|A|2

) 1
2 , |A| |A|2

)
or

max (|A+ A| , |f(A) + f(A)|) ≫ |A|
5
4

for any convex or concave function f : [a1, an] → R.
If A ⊂ R+, we may take f(x) = log (x), immediately yielding the desired result. □

The Szemeredi-Trotter theorem also provides more general tools which can be used along-
side other results to sharpen the above bounds.

Theorem 5.6. Let A ⊂ R be convex, then for every finite set B ⊂ R we have

|{x ∈ A−B : δA,B(x) ≥ τ}| ≪ |A| |B|2

τ 3
.
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Proof. Let |A| = n. Let f : [1, n] → R be the convex function defining the set A. Take

ℓa,b = {(x, f(x)) + (a, b) : x ∈ [1, n]}
and

L = {ℓa,b : a ∈ [n], b ∈ −B} .
Take

P = ([n] + [n])× (A−B) ,

and let Pτ ⊂ P be the largest subset of P for which every point has at least τ lines passing
through it.

Observe that

|A| |{x ∈ A−B : δA,B(x) ≥ τ}| ≍ |{(p1, p2) ∈ P : δA,B(p2) ≥ τ}| (1)

Additionally,
∀n0 ∈ [n] + [n] , ∀x ∈ [n] , ∃a ∈ [n] s.t. a+ x = n0,

so if (p1, p2) ∈ P satisfies the RHS of 1, the number of solutions to

ℓa,b(x) = (p1, p2)

for some a, b, x is τ .
That is, every point in the RHS of 1 has at least τ lines passing through it, so

|A| |{x ∈ A−B : δA,B(x) ≥ τ}| ≪ |Pτ | .
It is clear that

I(Pτ ,L) ≥ τ |Pτ | ,
so by the Szemeredi-Trotter theorem

τ |Pτ | ≪ |Pτ |
2
3 |L|

2
3 + |Pτ |+ |L| .

Because the Theorem is trivial for τ ≪ 1 and τ > min (|A| , |B|), we may assume 1 ≪ τ ≤
min (|A| , |B|).

We have
τ |Pτ | ≫ |Pτ |

so

|Pτ | ≪ max

(
|A| |B|
τ

,
|A|2 |B|2

τ 3

)
,

but
|A| |B|
τ 2

≫ 1,

and therefore it follows that

|Pτ | ≪
|A|2 |B|2

τ 3
.

Substituting,

|{x ∈ A−B : δA,B(x) ≥ τ}| ≪ |A| |B|2

τ 3
.

□

An immediate corollary of this is
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Corollary 5.7. Let A ⊂ R be a convex and finite set. Let B ⊂ R be finite. Order elements
si ∈ A−B such that

δA,B(s1) ≥ δA,B(s2) ≥ · · · ≥ δA,B(s|A−B|).

For every 1 ≤ r ≤ |A−B| we have

δA,B(sr) ≪
|A|

1
3 |B|

2
3

r
1
3

.

Proof.

r = |{x ∈ A−B : δA,B(x) ≥ δA,B(sr)}| ≪
|A| |B|2

δA,B(sr)3
=⇒ δA(sr) ≪

|A|
1
3 |B|

2
3

r
1
3

.

□

Later in the next section we’ll use these results to find bounds on the additive energies
between certain sets, but first we’ll introduce some simpler results which use additive and
multiplicative energy to show why such bounds are useful.

6. Additive and Multiplicative Energy Estimates

Recall that

|A+ A| ≥ |A|4

E(A)

and

|AA| ≥ |A|4

M(A)
.

Observe that finding an upper bound on E(A) or M(A) in terms of |A+ A| , |AA|, and |A|
yields a sum product theorem. In this section we showcase a result which employs this idea.
We also give other, more complicated, estimates on additive energies involving a convex set
which will be used later.

The aforementioned result is Theorem 3.5, found in [Sol09]. It gives a stronger result on
the sum-product conjecture than the Szemeredi-Trotter theorem.

Theorem. Let A ⊂ R+ be finite.

max (|A+ A| , |AA|) ≳ |A|
4
3 .

Proof. We begin with a construction. Consider the set A2, along with the smallest set of
lines through the origin which cover A2.

The claim is that each line represents an element of A
A
. This is easy to see, two pairs

(a1, a2), (b1, b2) ∈ A2 give the same representation as a quotient if and only if
a2
a1

=
b2
b1
.

Observe that this is the slope of the line through the origin and the points (a1, a2), (b1, b2).
This shows that the number of lines in the construction is

∣∣A
A

∣∣, the slope of each line is an
element in A

A
, and the number of points on a line of slope m is the number of representations

of m as a quotient, rA
A
(m).

We’ll now prove 2 facts about the set of vector sums of 2 points lying on consecutive lines.
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Figure 3. Example with A = {1, 2, 4, 8}.

Figure 4. Vector sums of 2 points lying on consecutive lines. Figure taken
from [Sol09], where the argument was first given.

Firstly, that the set of vector sums of points along either line is disjoint for each choice of
consecutive lines. In figure 4, this is represented by the blue arrow between lines lj, lj+1 and
lk, lk+1. To show this, consider 2 consecutive lines and the set of all vector sums between a
point on each line. If our points are (a1, a2) and (b1, b2), with

a2
a1

>
b2
b1
,

then the slope of their sum is
a2 + b2
a1 + b1
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which satisfies
b2
b1
<
a2 + b2
a1 + b1

<
a2
a1
.

That is, the vector sum must “lie between” the two lines which the original vectors are on.
A consequence of this is that, for any pairs of consecutive lines, the vector sums of all points
along the lines are disjoint.

The remaining claim is that for any choice of points on consecutive lines, the vector sum
is distinct. To show this, consider solutions to

λ1v + λ2w = λ3v + λ4w.

We have a solution if and only if

(λ1 − λ3) v + (λ2 − λ4)w = 0,

where λ1 ̸= λ3 or λ2 ̸= λ4. This exists only if v and w are linearly dependent, which is untrue
if Span (v), Span (w) are distinct lines in R2.

We are able to use these facts to prove Theorem 3.5. Begin by applying dyadic partitioning
on M(A) to get

M(A) =
∑
x∈A

A

rA
A
(x)2 ≪ log

(∣∣∣∣AA
∣∣∣∣) τ 2 |S|

for some τ , where S =
{
x ∈ A

A
: rA

A
(x) ≍ τ

}
.

Consider a reduced system of points and lines, consisting only of the |S| many lines which
have ≍ τ many points on them. Consider the set of all vector sums between points over all
consecutive lines. Because all pairs of lines give disjoint sets of sums, each with ≍ τ 2 many
distinct sums, there are τ 2 |S| many vector sums. The set of all vector sums between points
of A2 is a subset of (A+ A)2, so

τ 2 |S| ≤ |A+ A|2 .
Therefore

|A|4

|AA|
≤M(A) ≪ log

(∣∣∣∣AA
∣∣∣∣) |A+ A|2 ≪ log (|A|) |A+ A|2

so
max (|A+ A| , |AA|) ≳ |A|

4
3 .

□

Many arguments involving energy estimates are not as straightforward as finding an upper
bound. We are often interested in quantites such as E(A,A+ A), E(A− A), E3(A) etc.

In the remaining part of this section, we’ll prove two theorems concerning these quantities
which we will then apply to prove more advanced results in the next section. Both of these
results come as corollaries of the Szemeredi-Trotter Theorem.

Theorem 6.1. For finite and convex sets A ⊂ R,

E3(A) ≲ |A|3 .

Proof. Recall that upon ordering ai such that δA(a1) ≥ δA(a2) ≥ · · · ≥ δA(a|A−A|), we have
that

δA(ar) ≪
|A|
r

1
3

.
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With this,

E3(A) =
∑

x∈A−A

δA(x)
3

≪ |A|3
|A−A|∑
r=1

1

r

≍ |A|3
∫ |A−A|

1

1

r
dr

≍ |A|3 log (|A− A|)
≲ |A|3

□

Theorem 6.2. For finite and convex sets A ⊂ R, and finite sets B ⊂ R

E(A,B) ≪ |A| |B|
3
2 .

Proof. Denote the elements of A−B by si where δA,B(s1) ≥ · · · ≥ δA,B(s|A−B|)

Let P =
{
x ∈ A−B : δA,B(x) ≥ |B|

1
2

}
, and let P ∗ = (A−B) \ P .

∑
x∈P

δA,B(x)
2 =

|P |∑
i=1

δA,B(sr)
2

≪ |A|
2
3 |B|

4
3

|P |∑
i=1

1

r
2
3

≍ |A|
2
3 |B|

4
3 |P |

1
3

≪ |A|
2
3 |B|

4
3

(
|A| |B|2

|B|
1
2

) 1
3

= |A| |B|
3
2 ,

and ∑
x∈P ∗

δA,B(x)
2 < |B|

1
2

∑
x∈P ∗

δA,B(x) = |A| |B|
3
2 .

Therefore,
E(A,B) =

∑
x∈P

δA,B(x)
2 +

∑
x∈P ∗

δA,B(x)
2 ≪ |A| |B|

3
2 .

□

7. Application of Energy Estimates

This section will employ results from the previous section to prove Theorems 3.7, 3.6. This
argument can be found in [SS11b].

Throughout this argument, in the same convention as [SS11b], we’ll use the notation

Ax = A ∩ (A+ x) = {a ∈ A : a− x ∈ A} = {a ∈ A : ∃a0 ∈ A s.t. a− a0 = x} .
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Observe that
|Ax| = δA(x).

We require the following lemmata, proven in [SS11a] and [SS11b].

Lemma 7.1. For every set A ⊂ R we have∑
x

E (A,Ax) = E3(A).

Proof. For a set S, let the function S be the indicator function, so

S(x) =

{
1 if x ∈ S

0 otherwise

We begin by observing that

Ax(s)Ax(s+ t) = A(s)A(s+ x)A(s+ t)A(s+ t+ x) = At(s)At(s+ x),

and therefore that

δAx(t) =
∑
s

Ax(s)Ax(s+ t) =
∑
s

At(s)At(s+ x) = δAt(x).

With this, we have ∑
x

E(A,Ax) =
∑
s

∑
x

δA(s)δAx(s)

=
∑
s

δA(s)

(∑
x

δAx(s)

)

=
∑
s

δA(s)

(∑
x

δAs(x)

)
=
∑
s

δA(s) |As|2

= E3(A)

□

Lemma 7.2. For every set A ⊂ R, and P ⊂ A− A, if η is the number for which∑
x∈P

|Ax| = η |A|2 ,

then ∑
x∈P

|A± Ax| ≥
η2 |A|6

E3(A)
.

Proof.

|A| |Ax| =
∑

s∈A+Ax

σA,Ax(s) =
∑

s∈A−A

δA,Ax(s)

≤ E (A,Ax)
1
2 |A± Ax|

1
2
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so

η |A|3 =
∑
x∈P

|A| |Ax|

≤
∑
x∈P

E(A,Ax)
1
2 |A± Ax|

1
2

≤

(∑
x∈P

E(A,Ax)

) 1
2
(∑

x∈P

|A± Ax|

) 1
2

and therefore ∑
x∈P

|A± Ax| ≥
η2 |A|6

E3(A)
.

□

We’re now able to prove the theorems. Recall the following theorems

Theorem. For finite and convex sets A ⊂ R,

|A+ A| ≳ |A|
20
13 .

and

Theorem. For finite and convex sets A ⊂ R,

|A− A| ≳ |A|
8
5 .

Proof of Theorems 3.7, 3.6. Denote the difference and sum sets by D = |A− A| and S =
|A+ A|. Observe that

A− Ax ⊂ D ∩Dx

and
A+ Ax ⊂ S ∩ Sx.

We use this observation along with Lemma 7.2 to find bounds on the additive energies
between D and S and A.

Consider the popular sets of differences P, P ′ defined by

P =

{
x ∈ A− A : δA(x) ≥

|A|2

2 |A− A|

}
and

P ′ =

{
x ∈ A− A : δA(x) ≥

|A|2

2 |A+ A|

}
.

Let P ∗ and P ′∗ be their respective compliments. We have∑
x∈P ∗

|Ax| <
|A|2

2 |A− A|
· |P ∗| ≤ |A|2

2
,

so ∑
x∈P

|Ax| ≫ |A|2 . (2)
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We also have ∑
x∈P ′∗

|Ax|2 <
|A|2

2 |A+ A|
· |A|2 ,

so ∑
x∈P ′

|Ax|2 ≫
|A|4

|A+ A|
.

We can directly apply (2) to Lemma 7.2. We have

η |A|2 =
∑
x∈P

|Ax| ≫ |A|2 =⇒ η ≫ 1

so ∑
x∈P

|A± Ax| ≫
|A|6

E3(A)
≳ |A|3 .

Recall that A− Ax ⊂ D ∩Dx, or |A− Ax| ≤ |Dx| = δD(x). It follows that∑
x∈P

δD(x) ≳ |A|3 .

By the definition of P it follows that

E(A,D) ≥
∑
x∈P

δA(x)δD(x) ≥
|A|2

2 |A− A|
∑
x∈P

δD(x) ≳
|A|5

|A− A|
.

By applying Theorem 6.2,

|A|5

|A− A|
≲ |A| |A− A|

3
2 =⇒ |A− A| ≳ |A|

8
5 .

Recall that we have
|A|4

|A+ A|
≪
∑
x∈P ′

|Ax|2 .

Additionally, by applying Theorem 5.6 and Corollary 5.7 we have that

∑
x∈P ′:|Ax|≫ |A+A|

|A|

|Ax|2 ≪

|A|6

|A+A|3∑
r=1

(
|A|
r

1
3

)2

≍ |A|2
∫ |A|6

|A+A|3

1

1

r
2
3

dr

≍ |A|2 · |A|2

|A+ A|

=
|A|4

|A+ A|
and therefore that

|A|4

|A+ A|
≪

∑
x∈P ′:|Ax|≪ |A+A|

|A|

|Ax|2 .
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We apply a dyadic partitioning to get

|A|4

|A+ A|
≪

∑
x∈P ′:|Ax|≪ |A+A|

|A|

|Ax|2

≲ ∆
∑
x∈D

|Ax|

where

D =

{
x ∈ P ′ :

|A+ A|
|A|

≫ |Ax| ≍ ∆

}
.

This gives ∑
x∈D

|Ax| ≳
|A|5

|A+ A|2
.

Applying Lemma 7.2, we get ∑
x∈D

|A+ Ax| ≳
|A|9

|A+ A|4
.

Recalling that A+ Ax ⊂ Sx, we have∑
x∈D

δS(x) ≥
∑
x∈D

|A+ Ax| ≳
|A|9

|A+ A|4
,

which, by the definition of P ′ gives

|A|11

|A+ A|5
≲
∑
x∈D

δS(x)δA(x) ≤ E(A, S) ≪ |A| |A+ A|
3
2 ,

or
|A+ A| ≳ |A|

20
13 .

□
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Appendix

Theorem (Uniqueness of Binary Representations). For any x ∈ N0, there is a unique
sequence of numbers (ai)

I
i=0, with I ≤ log2 (x) and ai ∈ {0, 1} such that

x =
∑

i≤log2(x)

ai2
i

Proof. Let x ∈ N0 and suppose that there are two binary representations for x, that is, there
are r, s ∈ N0, and sequences (ai)

r−1
i=0 and (bi)

s−1
i=0 such that

x = 2r + ar−12
r−1 + · · ·+ a0 = 2s + bs−12

s−1 + · · ·+ b0.

We first prove that both binary representations must be of the same degree, or have the
same highest power of 2. Without loss of generality, suppose s > r. It follows that

x = 2r + ar−12
r−1 + · · ·+ a0 ≤

∑
i≤r

2i = 2r+1 − 1 < 2s ≤ 2s + bs−12
s−1 + · · ·+ b0,

a contradiction. With the fact that any representations must be of the same degree, we have
that

0 = (ar−1 − br−1) 2
r−1 + · · ·+ (a0 − b0)

is of degree 0, and therefore that for all i, ai = bi, or that the binary representation is unique.
□

Past this point in the appendix, we will freely use shorthand which was discussed in the
preliminaries section. We also introduce the notation

f(x) = o(g(x))

if

lim
x→∞

f(x)

g(x)
= 0.

We’ll introduce the following theorems together due to their relatedness.

Theorem.

|[n] · [n]| ≫ n2

log (n)
.

Theorem.
|[n] · [n]| = o(n2).

This is known as the “multiplication table theorem” because the quantity

|[n] · [n]|

is the number of distinct numbers in an n× n multiplication table:
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Figure 5. 10 × 10 multiplication table with distinct numbers highlighted in
red.

These theorems are just bounds on the asymptotic behavior of |[n] · [n]|. In [For08], it is
proven that the exact order of this quantity is

|[n] · [n]| ≍ n2

log (n)δ (log log (n))
3
2

,

where
δ = 1− 1 + log log (2)

2
.

The exact asymptotic behavior of this quantity is not known. To prove the first, we require
a lemma and a prerequisite theorem.

Lemma (Abel’s Summation Formula). Let (an)
∞
n=1 be a sequence of real numbers. Let A :

R → R be defined by
A(t) =

∑
n≤t

an.

For x ∈ R and any differentiable function ϕ : [1, y] → R,∑
n≤x

anϕ(n) = A(x)ϕ(x)−
∫ x

1

A(t)ϕ′(t) dt

Proof.∑
n≤x

anϕ(n) = a1ϕ(1) + · · ·+ a⌊x⌋ϕ(⌊x⌋)

= A(1)ϕ(1) + (A(2)− A(1))ϕ(2) + · · ·+ (A(⌊x⌋)− A(⌊x⌋ − 1))ϕ(⌊x⌋)
= (ϕ(1)− ϕ(2))A(1) + · · ·+ (ϕ(⌊x⌋ − 1)− ϕ(⌊x⌋))A (⌊x⌋ − 1) + ϕ(⌊x⌋)A(⌊x⌋)

= ϕ(⌊x⌋)A(⌊x⌋)−
⌊x⌋∑
i=2

(ϕ(i)− ϕ(i− 1))A(i− 1)

= ϕ (⌊x⌋)A(⌊x⌋)−
⌊x⌋∑
i=2

(∫ i

i−1

ϕ′(t) dt

)
A(i− 1)
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Observe that, for i ∈ Z and t ∈ [i− 1, i),

A(t) = A(⌊t⌋) = A(i− 1),

so

∑
n≤x

anϕ(n) = ϕ (⌊x⌋)A(⌊x⌋)−
⌊x⌋∑
i=2

(∫ i

i−1

ϕ′(t) dt

)
A(i− 1)

= ϕ(⌊x⌋)A(⌊x⌋)−
⌊x⌋∑
i=2

∫ i

i−1

A(t)ϕ′(t) dt

= ϕ(⌊x⌋)A(⌊x⌋)−
∫ ⌊x⌋

1

A(t)ϕ′(t) dt

and ∫ ⌊x⌋

1

A(t)ϕ′(t) dt =

∫ x

1

A(t)ϕ′(t) dt−
∫ x

⌊x⌋
A(t)ϕ′(t) dt

=

∫ x

1

A(t)ϕ′(t) dt− A(⌊x⌋) (ϕ(x)− ϕ(⌊x⌋))

=

∫ x

1

A(t)ϕ′(t) dt− A(x)ϕ(x) + A(⌊x⌋)ϕ(⌊x⌋).

Substituting this we get∑
n≤x

anϕ(n) = ϕ(⌊x⌋)A(⌊x⌋)−
∫ ⌊x⌋

1

A(t)ϕ′(t) dt

= A(x)ϕ(x)−
∫ x

1

A(t)ϕ′(t) dt

□

The following prerequisite theorem gives the order of magnitude of 3 functions which will
prove useful.

Theorem 7.3. Define the functions θ, ψ, π : [1,∞) → R by

θ(x) =
∑
p≤x

p prime

log (p) ,

ψ(x) =
∑
pα≤x
p prime
α∈N

log (p) ,

π(x) =
∑
p≤x

p prime

1.

We have
ψ(x) ≍ θ(x) ≍ x
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and
π(x) ≍ x

log (x)
.

Proof. The functions θ and ψ are clearly related by

ψ(t) =
∏

p≤N
1
α

p prime
α∈N

log (p) =
∑
α∈N

θ
(
t

1
α

)
= θ(t) +

∑
α≥2

θ
(
t

1
α

)
.

Note that the sum over α has only finitely many terms. The sum terminates when

2 ≥ t
1
α =⇒ α ≤ log2 (t) .

A trivial upper bound on θ(t) is

θ(t) =
∑
p≤t

p prime

log (p) ≤ t log (t) ,

so

ψ(t) = θ(t) +
∑

2≤α≤log2(t)

θ(t
1
α )

≤ θ(t) + log2 (t) θ(t
1
2 )

≤ θ(t) +
t
1
2 log (t)2

log (2)

or
ψ(t) ≪ max

(
θ(t), t

1
2 log (t)2

)
.

By showing θ(t) ≪ t, we will have shown ψ(t) ≪ θ(t) ≪ t. Because θ(t) ≤ ψ(t), we will
have shown that ψ(t) ≍ θ(t) ≪ t.

We have

θ(t) =
∑
p≤t

p prime

log (p) = log

 ∏
p≤t

p prime

p

 ,

so it is sufficient to show that ∏
p≤t

p prime

p≪ et.

It is also sufficient to prove it for t ∈ N because θ(t) = θ (⌊t⌋).
For some natural number t, and a prime p,

t+ 1 < p ≤ 2t+ 1 =⇒ p |
(
2t+ 1

t

)
=

(2t+ 1)!

t!(t+ 1)!
.

Therefore, for any t, ∏
t+1<p≤2t+1

p prime

p |
(
2t+ 1

t

)
=⇒

∏
t+1<p≤2t+1

p prime

p ≤
(
2t+ 1

t

)
,
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which gives us

2
∏

t+1<p≤2t+1
p prime

p ≤ 2

(
2t+ 1

t

)
≤ (1 + 1)2t+1 =⇒

∏
t+1<p≤2t+1

p prime

p ≤ 4t.

The rest follows by induction on t. Because we are proving a statement about order of
magnitude, the base case is trivial. Now suppose that for some t ∈ N,∏

p≤m
p prime

p≪ et.

If t is odd, the induction follows trivially. If t is even, let t = 2m, so∏
p≤2m
p prime

p≪ e2m.

We have ∏
p≤2m+1
p prime

p =
∏

p≤m+1
p prime

p
∏

m+1<p≤2m+1
p prime

p

≪ em+14m

≪ em+1em = e2m+1.

Thus, ψ(t) ≍ θ(t) ≪ t. To prove ψ(t) ≍ θ(t) ≍ t, it suffices to show that ψ(t) ≫ t.
Observe that for some number N ∈ N, the prime factorization of N ! is of the form

N ! =
∏
p≤N

p prime

pα(N,p),

where

α(N, p) =
∑
i∈N

⌊
N

pi

⌋
=

∑
i≤logp(N)

⌊
N

pi

⌋
=

∑
i≤log2(N)

⌊
N

pi

⌋
.

Therefore, (
2n

n

)
=

(2n)!

(n!)2
=

∏
p≤2n

p prime

p
∑

i∈N

(⌊
2n

pi

⌋
−2

⌊
n

pi

⌋)
.

In general for some x ∈ R, k ∈ N, if k ≤ x < k + 1, then

2k ≤ 2x < 2k + 2

so
2 ⌊x⌋ ≤ ⌊2x⌋ ≤ 2 ⌊x⌋+ 1.

It follows that ⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
≤ 1

so ∑
i∈N

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
≤

∑
i≤logp(2n)

1 =

⌊
log (2n)

log (p)

⌋
,
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and therefore

log

(
2n

n

)
≤
∑
p≤2n

p prime

⌊
log (2n)

log (p)

⌋
log (p) = ψ(2n).

Observing that

log

(
2n

n

)
= log

(
n+ 1

1
· n+ 2

2
· · · · · n+ n

n

)
≥ log (2n) ≫ n,

it follows that
ψ(t) ≫ t.

We have shown
ψ(t) ≍ θ(t) ≍ t.

By applying Abel’s summation formula,

π(x) =
∑
p≤x

p prime

1

=
∑
p≤x

p prime

log (p) · 1

log (p)

= θ(x) · 1

log (x)
+

∫ x

2

θ(t)

t log2 (t)
dt

≍ x

log (x)
+

∫ x

2

1

log2 (t)
dt

and
x

log (x)
≍
∫ x

2

(
t

log (t)

)′

dt

=

∫ x

2

1

log (t)
dt−

∫ x

2

1

log2 (t)
dt

≫
∫ x

2

1

log2 (t)
dt

so
π(x) ≍ x

log (x)
.

□

We are now able to prove the first theorem.

Theorem.

|[n] · [n]| ≫ n2

log (n)
.

Proof. Let pi be the i-th prime number and k be chosen such that pk is the largest prime
pk ≤ n. Consider the set of numbers

P = {pi ·m : i ≤ k , m ≤ pi} .
We have P ⊂ [n] · [n] and pi ·m is distinct for every choice of i,m.
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It follows that, by applying Abel’s summation formula,

|[n] · [n]| ≥ |P |

=
∑
p≤n

p prime

p

= π(n) · n−
∫ n

2

π(t) dt

≫ π(n) · n

≫ n2

log (n)

□

We require 2 additional lemmata to prove the second theorem.

Lemma. Let X be a real random variable with variance σ2. For any t ∈ R+,

P (|X − E(X)| ≥ t) ≤ σ2

t2

Proof. We prove this for the case of discrete X. The proof for continuous X follows similarly.
Let N be the number of possible values of X.
For any interval I ⊂ R, let 1I : R → {1, 0} be defined by

1I(x) = 1 if x ∈ I , 1I(x) = 0 if x ̸∈ I.

We have

P(X ≥ t) =

∑
x 1[t,∞)(x)

N
≤
∑

x
x
t

N
=

∑
x

x
N

t
=

E(X)

t
so

P (|X − E(x)| ≥ t) = P
(
|X − E(X)|2 ≥ t2

)
≤ σ2

t2
.

□

Lemma. ∑
p≤n

p prime

1

p
= log log (n) +O(1).

Proof. Recall that for some number N ∈ N, the prime factorization of N ! is of the form

N ! =
∏
p≤N

p prime

pα(N,p),

where

α(N, p) =
∑
i∈N

⌊
N

pi

⌋
=

∑
i≤logp(N)

⌊
N

pi

⌋
=

∑
i≤log2(N)

⌊
N

pi

⌋
.
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It follows that

log (N !) =
∑
p≤N

p prime

α(N, p) log (p)

=
∑
p≤N

p prime
i≤logp(N)

⌊
N

pi

⌋
log (p)

=
∑
p≤N

p prime
i≤logp(N)

(
N

pi
− δ(p)

)
log (p)

= N
∑
p≤N

p prime
i≤logp(N)

log (p)

pi
−

∑
p≤N

p prime
i≤logp(N)

δ(p) log (p) .

We have that

i ≤ logp (N) ⇐⇒ pi ≤ N,

so ∑
p≤N

p prime
i≤logp(N)

log (p) = ψ(N),

and therefore ∑
p≤N

p prime
i≤log2(N)

log (p)

pi
≤ log (N !)

N
+
ψ(N)

N
.

We also have, via a Riemann sum,

log (N !) =
N∑
i=1

log (i)

=

∫ N

2

log (i) di+O(1)

= [i log (i)− i]|Ni=1 +O(1)

= N log (N)−N +O(1).

This leads to∑
p≤N

p prime
i≤log2(N)

log (p)

pi
=
N log (N)−N +O(1)

N
+
O(N)

N
= log (N) +O(1).
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Moreover, we have that

∑
p≤N

p prime
2≤i≤log2(N)

log (p)

pi
≤
∑
x,i≥2

log (x)

xi

=
∑
x≥2

∑
i≥2

log (x)

xi

=
∑
x≥2

1

x2

(
log (x)

1− 1
x

)
=
∑
x≥2

log (x)

x2 − x

which, by the limit comparison test, converges if

∑
x≥2

log (x)

x2

converges.
Apply L’Hopital’s rule to see that

∀ϵ > 0 , log (x) = o(xϵ),

and therefore that

∑
x≥2

log (x)

x2
=
∑
x≥2

o(1)

x2−ϵ

≪
∑
x≥2

1

x2−ϵ

≍
∫ ∞

2

1

x2−ϵ
dx

which converges for ϵ < 1. It follows that

∑
p≤N

p prime

log (p)

p
= log (N) +O(1).
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Applying Abel’s summation formula,

∑
p≤N

p prime

1

p
=
∑
p≤N

p prime

log (p)

p
· 1

log (p)

=

 ∑
p≤N

p prime

log (p)

p

 · 1

log (N)
+O(1) +

∫ N

2

∑
p≤t

p prime

log(p)
p

t log2 (t)
dt

=
log (N) +O(1)

log (N)
+O(1) +

∫ N

2

log (t) +O(1)

t log2 (t)
dt

= O(1) +

∫ N

2

1

t log (t)
dt+

∫ N

2

O(1)

t log2 (t)
dt

= log log (N) +O(1)

□

We are now able to prove

Theorem.

|[n] · [n]| = o(n2).

Proof. Define the prime power counting function Ω : N → N by

Ω(x) =
∑
pα|x

p prime
α∈N

1.

Let N ∈ N. We prove this theorem by examining the distribution of Ω(X) for an uniformly
distributed random variable X of natural numbers x ≤ N . Let Y = Ω(X).

We first calculate E(Y ).
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E(Y ) =
∑
x≤N

1

N
· Ω(x)

=
1

N

∑
x≤N

∑
pα|x

p prime
α∈N

1

=
1

N

∑
pα≤N
p prime
α∈N

⌊
N

pα

⌋

=
1

N

∑
pα≤N
p prime
α∈N

(
N

pα
− δpα

)

=
∑
pα≤N
p prime
α∈N

1

pα
− 1

N

∑
pα≤N
p prime
α∈N

δpα

= log log (N) +O(1)− O(1)ψ(N)

N
= log log (N) +O(1).

Now we calculate V (Y ), we have that

V (Y ) = E(Y 2)− E(Y )2 = E(Y 2)− (log log (N) +O(1))2 ,

so it suffices to calculate

E(Y 2).

E
(
Y 2
)
=

1

N

∑
x≤N

(
∑
pα|x

p prime
α∈N

1)2

=
1

N

∑
x≤N

∑
(pα,qβ)
p,q prime
α,β∈N
pα,qβ |x

1

=
1

N

∑
x≤N

∑
(pα,qβ)
p ̸=q

p,q prime
α,β∈N
pα,qβ |x

1 +
1

N

∑
x≤N

∑
(pα,pβ)
p prime
α,β∈N
pα,pβ |x

1
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E
(
Y 2
)
=

1

N

∑
x≤N

∑
(pα,qβ)
p̸=q

p,q prime
α,β∈N
pα,qβ |x

1 +
1

N

∑
x≤N

∑
(pα,pβ)
p prime
α,β∈N
pα,pβ |x

1

=
1

N

∑
(pα,qβ)
p,q prime

p ̸=q
pαqβ≤N
α,β∈N

⌊
N

pαqβ

⌋
+

1

N

∑
(pα,pβ)

pmax(α,β)≤N
p prime
α,β∈N

⌊
N

pmax(α,β)

⌋

≤
∑

(pα,qβ)
p,q prime

p ̸=q
pαqβ≤N
α,β∈N

1

pαqβ
− 1

N

∑
(pα,qβ)
p,q prime

p̸=q
pαqβ≤N
α,β∈N

δpαqβ + 2
∑
pα≤N
β≤α

p prime
α,β∈N

1

pα
− 2

N

∑
pα≤N
β≤α

p prime
α,β∈N

δpα

≤

 ∑
pα≤N
p prime
α∈N

1

pα


2

+ 2
∑
pα≤N
p prime
α∈N

α

pα

We have that

2
∑
pα≤N
α≥2

p prime

α

pα
≤ 2

∑
x≥2
α≥2

α

xα

= 2
∑
x≥2

(
x
∑
α≥2

α

xα+1

)

= 2
∑
x≥2

(
x · d

dx

(∑
α≥2

− 1

xα

))

= −2
∑
x≥2

(
x · d

dx

( 1
x2

1− 1
x

))
= 2

∑
x≥2

x(2x− 1)

(x2 − x)2

which, via limit comparison test with

1

x2
,

converges.
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It follows that

2
∑
pα≤N
p prime
α∈N

α

pα
= 2

∑
p≤N

p prime

1

p
+O(1) = 2 log log (N) +O(1),

and therefore that
E
(
Y 2
)
≤ (log log (N) +O(1))2 + 2 log log (N) +O(1)

= (log log (N) +O(1))2 .

This gives that
V (Y ) = E

(
Y 2
)
− E(Y )2

≤ (log log (N) +O(1))2 − (log log (N) +O(1))2

= O (log log (N)) .

Applying the lemma, we see that for any δ > 0,

P
(
|Y − log log (N)| ≥ log log (N)δ

)
≤ O(log log (N))

log log (N)2δ
,

this gives, for any ϵ > 0

P
(
|Y − log log (N)| ≥ log log (N)

1
2
+ϵ
)
≤ O(log log (N))

log log (N)1+ϵ = o(1).

We have proven the following statement: For any ϵ > 0 and N ∈ N, all but o(N) of the
numbers x ≤ N satisfy

log log (N)− log log (N)
1
2
+ϵ ≤ Ω(x) ≤ log log (N) + log log (N)

1
2
+ϵ .

For products ab, we clearly have that
Ω(ab) = Ω(a) + Ω(b),

and so all but o(N2) of the products ab with a, b ≤ N satisfy

2 log log (N)− 2 log log (N)
1
2
+ϵ ≤ Ω(ab) ≤ 2 log log (N) + 2 log log (N)

1
2
+ϵ .

On the contrary, all but o(N2) of the numbers x ≤ N2 satisfy

log log
(
N2
)
− log log

(
N2
) 1

2
+ϵ ≤ Ω(x) ≤ log log

(
N2
)
+ log log

(
N2
) 1

2
+ϵ

and, for ϵ < 1
2
,

lim
N→∞

log log (N2) + log log (N2)
1
2
+ϵ

2 log log (N)− 2 log log (N)
1
2
+ϵ

=
1

2
.

That is, the majority of products ab are only a small portion of the total numbers x ≤ N2.
Precisely,

|[n] · [n]| − o(N2) = o(N2) =⇒ |[n] · [n]| = o(N2).

□
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