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Preface

During the summer of 2019 eight students participated in the Research Experi-
ence for Undergraduates program in Mathematics at Indiana University. This
program was sponsored by the National Science Foundation through the Re-
search Experience for Undergraduates grant DMS-1461061 and the Department
of Mathematics at Indiana University, Bloomington. The program ran for eight
weeks, from June 3 through July 26, 2019. Eight faculty served as research
advisers to the students from Indiana University:

• Kelly Chen and Olti Myrtaj were advised by Chris Judge.

• Max Newman was advised by Dylan Thurston.

• Chung Kyong Nguen was advised by Graham White.

• Ely Sandine was advised by Matvei Libine.

• Mikhail Sweeney and Linden Yuan was advised by Louis Fan.

• Christine Sullivan was advised by Chris Connell.

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training in a series of work-
shops. Other opportunities included the option to participate in a GRE and
subject test preparation seminar. Additional educational activities included
tours of the library, the Low Energy Neutron Source facility, the Slocum puz-
zle collection at the Lilly Library, and self guided tours of the art museum.
Students presented their work to faculty mentors and their peers at various
times. This culminated in their presentations both in poster form and in talks
at the statewide Indiana Summer Undergraduate Research conference which
was hosted at Indiana University - Purdue University at Indianapolis.

On the lighter side, students were treated to weekly board game nights as
well as the opportunity to do some local hiking. They also enjoyed a night of
“laser tag” courtesy of the Department of Mathematics.
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The summer REU program required the help and support of many different
groups and individuals to make it a success. We foremost thank the National
Science Foundation and the Indiana University Bloomington Department of
Mathematics without whose support this program could not exist. We espe-
cially thank our staff member Mandie McCarty for coordinating the complex
logistical arrangments (housing, paychecks, information packets, meal plans,
frequent shopping for snacks). Additional logistical support was provided by
the Department of Mathematics and our chair, Elizabeth Housworth. We are in
particular thankful to Jeff Taylor for the computer support he provided. Thanks
also go to those faculty who served as mentors and those who gave lectures. We
thank David Baxter of the Center for Exploration of Energy and Matter (nee
IU cyclotron facility) for past personal tours of the LENS facility and his infor-
mative lectures. Thanks to Andrew Rhoda for his tour of the Slocum Puzzle
Collection.

Chris Connell
September, 2019
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Figure 1: REU Participants, from left to right: Chris Connell, Kelly Chen,
Mikhail Sweeney, Ely Sandine, Max Newman, Linden Yuan, Olti Myrtaj, Chris-
tine Sullivan and Chung Kyong Nguen (not pictured).
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Abstract

Solutions to the Laplace eigenvalue problem satisfying Dirichlet boundary conditions on a rectangular region of the
plane are well known. In this work, we study interesting features of the level sets of such eigenfunctions. We consider
the possibility of degenerate critical points with Poincaré-Hopf index 0, which correspond to cusp-like points on the
level sets. In particular, we construct a one-parameter family of eigenfunctions and prove the existence of an index-0
critical point. 1

1 Introduction

Let Ω be a domain with piecewise smooth boundary. A smooth function ψ : Ω→ R is called a Dirichlet eigenfunction of
the Laplacian if and only if there exists a real number λ such that

−∆ψ(x, y) = λ · ψ(x, y) for (x, y) ∈ Ω,
ψ(x, y) = 0 for (x, y) ∈ ∂Ω.

(1)

The number λ is called the eigenvalue associated with the eigenfunction ψ. It is known [Ulb76] that for a generic choice
of domain, the critical points of each eigenfunction are nondegenerate. In particular, there are no zeros of the gradient
vector field ∇ψ that have Poincaré-Hopf index equal to zero. (Lemma 2.5 describes the connection between the index and
the nondegeneracy of a critical point.)

We restrict our attention to the case where Ω is the square [0, π]× [0, π], which is not a generic domain. We show that
in this case, there are in fact critical points of index 0:

Theorem 1.1. There exists a Dirichlet function of the Laplacian on [0, π] × [0, π] with an index-0 critical point in
(0, π)× (0, π).

On the square, one may verify that if m and n are integers, then the function

ψm,n(x, y) = sin (mx) sin (ny)

is a solution to (1) with λ = λm,n = m2 + n2. In fact, it is is well-known [Crn-Hlb, pp. 300-301] that each eigenvalue
has the form m2 + n2, where m and n are integers, and a function ψ is a Dirichlet eigenfunction of the Laplacian with
eigenvalue λ if and only if

ψ =
∑

m2+n2=λ

am,nψm,n,

where am,n are real numbers.
In this paper, we consider λ = 65, the smallest λ that generates a four-dimensional eigenspace. We observe that

12 + 82 = 42 + 72 = 65, so we construct the linear combination

f(x, y) = a1,8 · ψ1,8(x, y) + a4,7 · ψ4,7(x, y) + a8,1 · ψ8,1(x, y) + a7,4 · ψ7,4(x, y).

∗Massachusetts Institute of Technology
†Virginia Tech
1This material is based upon work supported by the National Science Foundation under Grant No. DMS-1461061.
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We study the one-parameter family of eigenfunctions

f t(x, y) = cos(t) sin(x) sin(8y) + sin(t) sin(4x) sin(7y), t ∈ [0, π],

which contains all possible f with a8,1 = a7,4 = 0, up to scalar multiplication. To prove Theorem 1.1, we show that there
exists a t such that f t has an index-0 critical point.

2 Preliminaries

Recall the following definitions:

Definition 2.1. A function g : R2 → R has a critical point at (x0, y0) if and only if the gradient ∇g(x, y) = (gx(x, y),
gy(x, y)) is the zero vector at (x0, y0).

Definition 2.2. A critical point (x0, y0) of g is called degenerate if the Hessian

(
gxx(x, y) gxy(x, y)
gyx(x, y) gyy(x, y)

)

has determinant equal to 0 at (x0, y0).

Definition 2.3. Let v : R2 → R2, where v = (v1, v2), be a smooth vector field, and let γ be a simple closed curve 2 in
R2. If v does not vanish on γ, then the Poincarè-Hopf index (or simply index) of v along γ is given by

ind(v, γ) =
1

2π

∫

γ

v1dv2 − v2dv1
v21 + v22

. (2)

Note that in order for ind(v, γ) to be well-defined, v21 + v22 must be nonzero on γ. If v is the gradient vector field of a
function g : R2 → R, then this condition is equivalent to g having no critical points on γ.

Next, we consider some properties of the index and some relevant examples.

Proposition 2.4. Let v be a smooth vector field and let γ be a smooth simple closed curve. Then ind(v, γ) is an integer.

Proof. Abusing notation slightly, we let γ : [a, b]→ R2 be a parameterization of γ. If we define

ω :=
x dy − y dx
x2 + y2

then

v∗(ω) =
v1dv2 − v2dv1

v21 + v22
.

Therefore, by a standard fact concerning differential forms we find that
∫

γ

v1dv2 − v2dv1
v21 + v22

=

∫

γ

v∗(ω) =

∫

v(γ)

ω.

The curve v(γ) is a closed curve—not necessarily simple—that does not contain the origin since v 6= 0 on γ. Define
α : [a, b]→ R2 by

α(t) =
v ◦ γ(t)

|v ◦ γ(t)| .

Then the image of α lies in the unit circle. Moreover, a straightforward argument shows that (v ◦ γ)∗ω = α∗ω, and so

∫

v(γ)

ω =

∫

α

ω.

2To be more precise, γ is an oriented curve—that is, an equivalence class of C1 paths where two paths p : [a, b] → R2 and p′ : [a′, b′] → R2

are equivalent if and only if there exists a strictly increasing C1 map φ : [a, b]→ [a′, b′] such that p = p′ ◦φ. For simplicity, we will not explicitly
state this again in the rest of the paper.

2



Define the map p from R to the unit circle by p(t) = (cos(t), sin(t)). A straightforward calculation shows that p∗(ω) = dt.
Since [a, b] is contractible, the path lifting lemma implies that there exists a path α̃ : [a, b] → R so that α(t) = p ◦ α̃(t).
Therefore, ∫

α

ω =

∫

α̃

p∗(ω) =

∫

α̃

dt =

∫ b

a

α̃′(s) ds = α̃(b)− α̃(a).

Since α is a closed curve, we have
p ◦ α̃(b) = α(b) = α(a) = p ◦ α̃(a)

In other words, cos(α̃(b)) = cos(α̃(a)) and sin(α̃(b)) = cos(α̃(a). Therefore, α̃(b) − α̃(a)) is a multiple of 2π and so the
integral

∫
α
ω is a multiple of 2π.

The quantity (2π)−1
∫
α
ω in the proof of Proposition 2.4 is called the winding number of the curve α. Geometrically, it

is the number of times that the curve α winds around the origin in the counter-clockwise direction. In this way, we may
regard the index of v as the number of times the curve v ◦ γ winds around the origin.

We provide some examples of computing the index from this perspective: see Figures 1 and 2 below.

Figure 1: Contour plot of f(x, y) = x2 + y2 generated by Mathematica. The origin is a minimum. We normalize and then
translate the vectors of the gradient vector field that lie on the curve γ to a separate picture so that their tails line up.
In this case, the vector field makes exactly one turn around the origin in the counterclockwise direction and so the index
equals +1.

Figure 2: Contour plot of f(x, y) = x2 − y2 generated by Mathematica. The origin is a saddle point. We normalize and
then translate the vectors of the gradient vector field that lie on the curve γ to a separate picture so that their tails line
up. In this case, the vector field makes exactly one turn around the origin, but in the clockwise direction, and so the index
equals -1.
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As a final example, let f : R2 → R be defined by f(x, y) = x3−y2. At the origin, this function has a degenerate critical
point. We can compute the index of this critical point using (9) and find that the index is equal to 0. The following figure
shows the level sets of f near the origin.

Figure 3: Contour plot of f(x, y) = x3−y2 generated by Mathematica. The origin is an index-0 critical point. We observe
that it has a “cusp-like” feature.

The following lemma is well-known and establishes a connection between the index3 of a critical point and its degen-
eracy:

Lemma 2.5 (Morse Lemma). Consider a smooth function f : R2 → R with nondegenerate critical point (0, 0). Then there
exist neighborhoods U and U ′ of (0, 0) and a diffeomorphism φ : U → U ′ so that for each (x, y) ∈ U we have

(f ◦ φ)(x, y) = x2 ± y2.

A consequence of the Morse lemma is that if a critical point is nondegenerate, then it has either index +1 (as in Figure
1) or index −1 (as in Figure 2). This implies that if a critical point has index 0, then it is nondegenerate.

Now we present some useful properties of the index:

Lemma 2.6. Let γ be a simple closed curve in R2 that admits a piecewise smooth parameterization, and let S be the
bounded component4 of the complement of γ. Let v : S ∪ γ → R2 be a vector field that has no zeros. Then the index of v
around γ equals 0.

Proof. Recall that for v = (v1, v2), the index is given by

ind(v, γ) =
1

2π

∫

γ

v1dv2 − v2dv1
(v1)2 + (v2)2

. (2)

Because there are no zeros of v on S ∪ γ, we can apply Stokes’ theorem to (2):

ind(v, γ) =
1

2π

∫

γ

v1dv2 − v2dv1
v21 + v22

=
1

2π

∫

S

d

(
v1dv2 − v2dv1

v21 + v22

)

=
1

2π

∫

S

d

(
v1dv2
v21 + v22

)
− d

(
v2dv1
v21 + v22

)
. (3)

Since v has no zeros on γ, (3) is well-defined.

3Note that the Poincarè-Hopf index, with which we are concerned, is not the same as the Morse index. The Poincarè-Hopf index gives
information about a vector field’s zeros, while the Morse index gives information about the appearance of a function around a critical point.

4This is well-defined by the Jordan curve theorem.
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Let f, g and h denote differential 0-forms and let ω and α denote differential 1-forms. We make use of the following
properties of differential forms to evaluate (3):

d(fg) = gdf + fdg

d(fω) = df ∧ ω
d(h ◦ f) = h′(f)df

d(f2) = 2fdf

ω ∧ α = −α ∧ ω
ω ∧ ω = 0.

First, we observe that

d

(
v1

v21 + v22

)
= d(v1(v21 + v22)−1)

= (v21 + v22)−1dv1 + v1d(v21 + v22)−1

= (v21 + v22)−1dv1 − v1(v21 + v22)−2d(v21 + v22)

= (v21 + v22)−1dv1 − v1(v21 + v22)−2(2v1dv1 + 2v2dv2). (4)

By (4), we have

d

(
v1

v21 + v22
dv2

)
= d

(
v1

v21 + v22

)
∧ dv2

= ((v21 + v22)−1dv1 − v1(v21 + v22)−2(2v1dv1 + 2v2dv2)) ∧ dv2,
= (v21 + v22)−1dv1 ∧ dv2 − v1(v21 + v22)−2(2v1dv1 + 2v2dv2) ∧ dv2

=
dv1 ∧ dv2
v21 + v22

− 2v21dv1 ∧ dv2
(v21 + v22)2

. (5)

Then by a symmetric argument, we also have

d

(
v2

v21 + v22
dv1

)
=
dv2 ∧ dv1
v22 + v21

− 2v22dv2 ∧ dv1
(v22 + v22)2

. (6)

Using (5) and (6), (3) becomes

ind(v, γ) =
1

2π

∫

S

dv1 ∧ dv2
v21 + v22

− 2v21dv1 ∧ dv2
(v21 + v22)2

− dv2 ∧ dv1
v22 + v21

+
2v22dv2 ∧ dv1
(v22 + v22)2

=
1

2π

∫

S

(
1

v21 + v22
− 2v21

(v21 + v22)2
+

1

v22 + v21
− 2v22

(v22 + v22)2

)
dv1 ∧ dv2

=
1

2π

∫

S

(
2

v21 + v22
− 2

v21 + v22

)
dv1 ∧ dv2

=
1

2π

∫

S

0 dv1 ∧ dv2
= 0.

Lemma 2.7. Let v : U ⊂ R3 → R2 be a continuously differentiable vector field, and define for each t the vector field
vt(x, y) = v(x, y, t). Then given a simple closed curve γ ⊂ R2, the function t 7→ ind(vt, γ) is continuous.

Proof. Let vt = (vt1, v
t
2), and recall that the index is given by

ind(vt, γ) =
1

2π

∫

γ

vt1dv
t
2 − vt2dvt1

(vt1)2 + (vt2)2
. (2)

5



Abusing notation slightly, we will use v1 to denote vt1 and v2 to denote vt2. We observe that

dv2 =
∂v2
∂x

dx+
∂v2
∂y

dy = (v2)xdx+ (v2)ydy, (7)

dv1 =
∂v1
∂x

dx+
∂v1
∂y

dy = (v1)xdx+ (v1)ydy. (8)

Using (7) and (8), (2) becomes

ind(vt, γ) =
1

2π

∫

γ

v1(v2)x − v2(v1)x
v21 + v22

dx+
v1(v2)y − v2(v1)y

v21 + v22
dy. (9)

There exists a continuous parameterization γ∗ : [a, b]→ R2 of γ and a continuous function H : [a, b]× [c, d]→ R such that

(9) is equivalent to
∫ b
a
H(s, t)ds. By Lemma 2.8, t 7→ ind(vt, γ) is continuous.

Lemma 2.8. Suppose that a function H : [a, b]× [c, d]→ R is continuous, and define h : [c, d]→ R2 by h(t) =
∫ b
a
H(s, t)ds.

Then h is continuous.

Proof. We want to show that for all ε > 0 and for all t ∈ [c, d], there exists a δ > 0 such that if |t − t′| < δ, then

|
∫ b
a
H(s, t)ds−

∫ b
a
H(s, t′)ds| < ε.

We observe that H is a continuous function on the compact set [a, b]× [c, d], so it is uniformly continuous. It follows
that for all ε

b−a > 0, there exists a δ > 0 such that for all s ∈ [a, b] and t ∈ [c, d], if |t−t′| < δ then |H(s, t)−H(s, t′)| < ε
b−a .

Then we observe that
∣∣∣∣
∫ b

a

H(s, t)ds−
∫ b

a

H(s, t′)ds

∣∣∣∣ =

∣∣∣∣
∫ b

a

[H(s, t)−H(s, t′)]ds

∣∣∣∣

≤
∫ b

a

|H(s, t)−H(s, t′)|ds

<

∫ b

a

ε

b− ads

= ε,

which is the condition for uniform continuity of h. The continuity of h follows.

We will say that a zero (x, y) of a vector field is isolated if there exists a neighborhood of (x, y) that contains no other
zeros. The zeros of a gradient vector field ∇f are exactly the critical points of f .

Proposition 2.9. Let Ω ⊂ R2 be an open set, let ϕ : Ω→ R be an eigenfunction of the Laplacian, and let γ be a simple
closed curve in R2. Let S be the component of R2−γ that is bounded. If the index of ∇ϕ around γ equals zero, then either
S contains no critical points or S contains at least one isolated critical point.

Proof. It follows from Proposition 2.5 in [Jdg-Mnd19] that the set C of critical points of ϕ is a disjoint union of finitely
many simple closed curves and finitely many isolated points. Suppose that α is a simple closed curve that is a connected
component of C.

Because ∇ϕ vanishes along α, the restriction of ϕ to α is constant c. As in the proof of Proposition 2.5 in [Jdg-Mnd19],
because ϕ is an eigenfunction of the Laplacian, one finds that c 6= 0 and the Hessian of ϕ does not vanish along α.
Using the inverse function theorem and the compactness of α, one finds a neighborhood U of α, a number ε > 0, and a
diffeomorphism F : R/Z× (c− ε, c+ ε)→ U so that for each t the function s 7→ ϕ ◦ F (s, t) is constant and for each s the
only critical point of t 7→ ϕ ◦ F (s, t) occurs at t = c.

In particular, each critical point of ϕ that lies in U also lies in α. If β is a simple closed curve that is a component of
a level set of a function and contains no critical points, then the index of the gradient vector field around β equals 1. In
particular, for each t 6= 0, the index of ∇ϕ about the curve βt = F (R/Z× {t}) equals 1. If C were to contain no isolated
points but were to contain simple closed curve components, then one could homotope γ—without passing through critical
points—to a concatenation of simple closed curves βt about the simple closed curve components of C together with arcs
ηi joining the βt. Using the additivity of the integral, and the cancellation of the integrals over the various ηi, one would
find that the index around γ would be positive.

But this contradicts our assumption, and so C is either empty or contains at least one isolated critical point.
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We will also cite the following well-known theorems to prove our result:

Theorem 2.10 (Intermediate Value Theorem). Let F : [a, b]→ R be continuous. Then for each u ∈ f([a, b]), there exists
a number c ∈ (a, b) such that f(c) = u.

Theorem 2.11 (Implicit Function Theorem). Consider a continuously differentiable function F : R2 → R and a point
(x0, y0) ∈ R2 such that F (x0, y0) = c. If Fy(x0, y0) 6= 0, then there exists a neighborhood U × V ⊂ R2 of (x0, y0) and a
unique continuous function g : U → V such that F (x, g(x)) = c for all x ∈ U .

3 Proof of Main Result

Here we prove our main result, that there exists an eigenfunction on the square that has an index-0 degenerate critical
point. More specifically, we will show that the there exists a t ∈ (0, π16 ) such that function f t defined by

f t(x, y) = 8 cos (t) sin (x) sin (8y) + 7 sin (t) sin (4x) sin (7y)

has an index-0 critical point that lies in (5π
8 ,

7π
8 ) × ( 13π

14 , π). For the convenience of the reader, we define the following
constants and sets:

• xmin = 5π
8 , xmax = 7π

8

• ymin = 13π
14 , ymax = π

• tmin = 0, tmax = π
16

• I = (xmin, xmax), J = (ymin, ymax)

• B = I × J , ∂B = B −B

(In this paper, given X ⊂ R2, X denotes the closure of X in R2.)
We begin by proving the following three lemmas:

Lemma 3.1. There are no critical points of f tmin in B.

Proof. Recall that

f tmin(x, y) = f0(x, y) = cos(0) sin(x) sin(8y) + sin(0) sin(4x) sin(7y)

= sin(x) sin(8y).

We want to check that for all (x, y) ∈ B, f tmin
x (x, y) and f tmin

y (x, y) are not both 0; it suffices to show that f tmin
x (x, y) 6= 0.

Observe that

f tmin
x (x, y) = cos(x) sin(8y),

which is 0 if and only if cos(x) = 0 or sin(8y) = 0. This occurs at x = π
2 + kπ and y = k′π

8 (k, k′ ∈ Z) respectively. By
inspection, there are no such x ∈ I or y ∈ J , so f tmin

x (x, y) 6= 0 for all (x, y) ∈ B. It follows that there are no critical
points of f tmin in B.

Lemma 3.2. For all t ∈ [tmin, tmax], there are no critical points of f t on ∂B.

Proof. Let t ∈ [tmin, tmax], and define the following:

• ∂Bbottom = I × {ymin}

• ∂Btop = I × {ymax}

• ∂Bleft = {xmin} × J

• ∂Bright = {xmax} × J

7



We begin by showing that f ty(x, y) 6= 0 for all (x, y) ∈ ∂Bbottom∪∂Btop and f tx(x, y) 6= 0 for all (x, y) ∈ ∂Bleft∪∂Bright.

f ty 6= 0 on ∂Bbottom: Let x ∈ I; we claim that f ty(x, ymin) 6= 0.
Recall that

f ty(x, ymin) = f ty(x,
13π

14
) = 8 cos (t) sin (x) cos (8

13π

14
) + 7 sin (t) sin (4x) cos (7

13π

14
)

= 8 cos (t) sin (x) cos (8
13π

14
).

Observe that cos(t) > 0 on [tmin, tmax], that sin(x) > 0 on I, and that cos (8 13π
14 ) = cos(10π

7 ) < 0. Then f ty(x, ymin) < 0;
the claim follows.

f ty 6= 0 on ∂Btop: Again let x ∈ I; now we show that f ty(x, ymax) > 0. Recall that

f ty(x, ymax) = f ty(x, π) = 8 cos(t) sin(x) cos(8π) + 7 sin(t) sin(4x) cos(7π)

= 8 cos(t) sin(x)− 7 sin(t) sin(4x).

It suffices to show that

8 cos(t) sin(x) > 7 sin(t) sin(4x). (10)

Since cos(t) and sin(x) are positive and strictly decreasing on [tmin, tmax] and I respectively, we have that 8 cos(t) sin(x) ≥
8 cos(tmax) sin(xmax) = 8 cos( π16 ) sin(7π

8 ). Similarly, since sin(t) is positive and strictly increasing on [tmin, tmax] and
sin(4x) ≤ 1 everywhere, we have that 7 sin(t) sin(4x) ≤ 7 sin( π16 ).

We observe that

8 cos(
π

16
) sin(

7π

8
) > 7 sin(

π

16
)

(all such inequalities can be verified using half-angle and sum formulas for sine and cosine); then (10) holds.

f tx 6= 0 on ∂Bleft: Let y ∈ J ; we show that f tx(xmin, y) > 0.
Recall that

f tx(xmin, y) = f tx(
5π

8
, y) = cos(t) cos(

5π

8
) sin(8y) + 4 sin(t) cos(4

5π

8
) sin(7y)

= cos(t) cos(
5π

8
) sin(8y).

Observe that cos(t) > 0 on [tmin, tmax], that sin(8y) < 0 on J , and that cos( 5π
8 ) < 0. Then f tx(xmin, y) > 0.

f tx 6= 0 on ∂Bright: Again let y ∈ J ; now we show that f tx(xmax, y) > 0.
Recall that

f tx(xmax, y) = f tx(
7π

8
, y) = cos(t) cos(

7π

8
) sin(8y) + 4 sin(t) cos(4

7π

8
) sin(7y)

= cos(t) cos(
7π

8
) sin(8y).

Observe that cos(t) > 0 on [tmin, tmax], that sin(8y) < 0 on J , and that cos( 7π
8 ) < 0; then f tx(xmax, y) > 0.

Because ∂B = ∂Bbottom ∪ ∂Btop ∪ ∂Bleft ∪ ∂Bright, for all (x, y) ∈ ∂B we have that f tx(x, y) 6= 0 or f ty(x, y) 6= 0. Then
for all t ∈ [tmin, tmax], f t has no critical points on ∂B.

Lemma 3.3. There exists at least one critical point of f tmax in B.

Proof. Let x∗ = 23π
32 and y∗ = 121π

128 . In this proof, we abuse notation slightly and refer to f tmax as simply f .
We begin by showing that for all x0 ∈ (xmin, xmax), there exists exactly one y0 ∈ (ymin, y

∗) such that fy(x0, y0) = 0.
First, recall from the proof of Lemma 3.2 that fy < 0 on I × {ymin}. Now we show that fy > 0 on I × {y∗} =
[xmin, xmax]× 121π

128 .
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Recall that fy(x, y) = 8 cos(tmax) sin(x) cos(8y) + 7 sin(tmax) sin(4x) cos(7y). It suffices to show that

8 cos(
π

16
) sin(x) cos(8

121π

128
) > 7 sin(

π

16
) sin(4x)(− cos(7

121π

128
)). (11)

for all x ∈ I.
We observe that sin(x) ≥ sin(xmax) = sin( 5π

8 ) and sin(4x) ≤ 1 on I. It follows that 8 cos( π16 ) sin(x) cos(8 121π
128 ) ≥

8 cos( π16 ) sin(5π
8 ) cos(8 121π

128 ) and 7 sin( π16 ) sin(4x)(− cos(7 121π
128 )) ≤ 7 sin( π16 )(− cos(7 121π

128 )), so (11) holds.

For each x0 ∈ I, fy(x0, ymin) < 0 and fy(x0, y
∗) > 0, so we can apply the Intermediate Value Theorem to y 7→ fy(x0, y)

to get that fy(x0, y0) = 0 for some y0 ∈ (ymin, y
∗).

To verify that there is only one such y0 for each x0, it suffices to show that y 7→ fy(x0, y) is strictly increasing on
(ymin, y

∗). Equivalently, we will show that fyy(x, y) > 0 for all (x, y) ∈ I × (ymin, y
∗).

Observe that

fyy(x, y) = −64 cos(tmax) sin(x) sin(8y)− 49 sin(tmax) sin(4x) sin(7y).

Using the same approach as before, we show that

64 cos(
π

16
) sin(x)(− sin(8y)) > 49 sin(

π

16
) sin(4x) sin(7y). (12)

Recall that sin(x) ≥ sin( 5π
8 ) and sin(4x) ≤ 1 on I, and observe that − sin(8y) > − sin(8ymin) = − sin(8 13π

14 ) and sin(7y) < 1

on (ymin, y
∗). It follows that (12) holds on I × (ymin, y

∗).
Because fyy > 0 on I × (ymin, y

∗), it follows that fyy 6= 0 on I × (ymin, y
∗). Then the Implicit Function Theorem can

be applied to each (x0, y0) ∈ I × (ymin, y
∗) such that fy(x0, y0) = 0.

Recall that for each x0 ∈ I, there exists exactly one y0 ∈ (ymin, y
∗) such that fy(x0, y0) = 0. Then by the Implicit

Function Theorem, for each x0 there exists a neighborhood Ux0
⊂ R of x0 and a unique continuous function gx0

: Ux0
→

(ymin, y
∗) such that fy(x, gx0(x)) = 0 for all x ∈ Ux0 .

By the uniqueness of gx0 , we have for all x0, x
′
0 ∈ I that whenever Ux0 ∩Ux′

0
6= ∅, gx0

(x) = gx′
0
(x) for all x ∈ Ux0

∩Ux′
0
.

Then because the Ux0
cover I, there exists a unique continuous G : I → (ymin, y

∗), defined piecewise on each of the Ux0
,

such that fy(x,G(x)) = 0 for all x ∈ I. (In fact, because I is compact and the Ux0
form an open cover, we can define G

using only finitely many Ux0 .) In other words, on I × (ymin, y
∗), fy(x, y) = 0 if and only if y = G(x).

Finally, let h : I → R be such that h(x) = fx(x,G(x)). Observe that h is continuous by composition; we will
prove the existence of a critical point inside B by applying the Intermediate Value Theorem to h. First we show that
h(x∗) = fx(x∗, G(x∗)) < 0:

Recall that G(x∗) ∈ (ymin, y
∗). Therefore it suffices to show that

fx(x, y) = cos(tmax) cos(x) sin(8y) + 4 sin(tmax) cos(4x) sin(7y) < 0

for all (x, y) ∈ {x∗} × (ymin, y
∗), or equivalently that

cos(
π

16
) cos(

23π

32
) sin(8y) < −4 sin(

π

16
) cos(4

23π

32
) sin(7y) (13)

for all y ∈ (ymin, y
∗).

We observe that sin(8y) ≥ −1 and sin(7y) > sin(7y∗) = sin(7 121π
128 ) on (ymin, y

∗). Then since cos( π16 ) cos(23π
32 ) sin(8y) ≤

− cos( π16 ) cos( 23π
32 ) and −4 sin( π16 ) cos(4 23π

32 ) sin(7y) > −4 sin( π16 ) cos(4 23π
32 ) sin(7121π

128 ), (13) holds on (ymin, y
∗).

It follows that fx(x∗, G(x∗)) = h(x∗) < 0. Next, we observe that fx(xmin, G(xmin)) = h(xmin) > 0: recall from the
proof of Lemma 3.2 that fx(x, y) > 0 on {xmin}×J . Because (xmin, G(xmin)) ∈ {xmin}× (ymin, y

∗) ⊂ {xmin}×J , we have
that fx(xmin, G(xmin)) > 0.

Now we can apply the Intermediate Value Theorem to h(x) on [xmin, x
∗] to conclude that there exists some x0 ∈

(xmin, x
∗) such that h(x0) = fx(x0, G(x0)) = 0. By construction, fy(x0, G(x0)) = 0, so (x0, G(x0)) is a critical point of f

in B.

(There must in fact be at least two distinct critical points of f tmax in B because an analogous argument applies to
[x∗, xmax]: recall from the proof of Lemma 3.2 that f tmax

x (x, y) > 0 on {xmax} × J as well, so h(xmax) > 0. Then apply
the Intermediate Value Theorem to h on [x∗, xmax] to find a critical point (x′0, G(x′0)) for some x′0 ∈ (x∗, xmax).)

Now we proceed to our main result, as stated in Section 1:
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Theorem 1.1. There exists a Dirichlet function of the Laplacian on [0, π] × [0, π] with an index-0 critical point in
(0, π)× (0, π).

Proof. Let
t̃ = sup{t ∈ [tmin, tmax]|f t has no critical points in B}.

It follows from Lemma 3.1 that t̃ ∈ (tmin, tmax].

We claim that f t̃ has at least one critical point in B. To show this, suppose not: then f t̃ has no critical points in B.
By definition of the supremum, for all ε > 0, there exists a t ∈ (t̃, t̃+ε) such that f t has a critical point in B. In particular,
we can set ε = 1

n for each positive integer n to produce a sequence {tn} converging to t̃, where f tn has a critical point
(xn, yn) ∈ B for all n.

Now we observe that {(xn, yn)} is a sequence in the compact set B, so it has a convergent subsequence {(xnk
, ynk

)};
say that {(xnk

, ynk
)} converges to some (x̃, ỹ) ∈ B. It follows that the corresponding subsequence {tnk

} also converges to

t̃, so f tnk → f t̃.
Because the function (x, y, t) 7→ f t(x, y) is smooth, the function

(x, y, t) 7→ ∇f t(x, y)

is continuous. It follows that ∇f tnk (xnk
, ynk

) converges to ∇f t̃(x̃, ỹ). But each of the (xnk
, ynk

) is a critical point of f tnk ,

so ∇f tnk (xnk
, ynk

) = (0, 0) for all nk. Then ∇f t̃(x̃, ỹ) = (0, 0).

Now we have that (x̃, ỹ) ∈ B is a critical point of f t̃. In fact, by Lemma 3.2, we have that (x̃, ỹ) ∈ B, as claimed.
By Lemmas 2.6 and 3.1, ind(∇f tmin , ∂B) = 0. Furthermore, by Proposition 2.4 and Lemmas 2.7 and 3.2, t 7→

ind(∇f t, ∂B) is integer-valued and continuous on [tmin, tmax], so it is constant. Therefore ind(∇f t̃, ∂B) = 0. Then by

Proposition 2.9, B contains either no critical points or at least one isolated critical point of f t̃. But since (x̃, ỹ) ∈ B, we

can say that B contains at least one isolated critical point (x̃′, ỹ′) of f t̃. Then there exists a neighborhood U of (x̃′, ỹ′)
containing no other critical points of f t̃.

Now choose any simple closed curve γ ⊂ U such that the bounded component of R2 − γ, S, contains (x̃′, ỹ′), and let
ι : [tmin, t̃]→ R be defined by

ι(t) = ind(∇f t, γ).

(We restrict t to the interval [t, t̃] to ensure that f t has no critical points on γ; otherwise, ι(t) might not be well-defined.)
Observe that ι is constant. In particular, by Lemma 2.6, ι(tmin) = 0, so ι(t̃) = 0 as well. Then since (x̃′, ỹ′) is the only

critical point of f t̃ in S, we have that the index of (x̃′, ỹ′) is 0.
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EXTREMAL LENGTH OF WINDING CURVES

Abstract. For a given regular polygonal tesselation of the plane, there are interesting
collections of curves and weighted multicurves which which minimize area for a fixed
lower bound of the lengths of curves under a flat metric. Curves around two of the
punctures of the twice-punctured sphere with winding numbers 2 and −1 are shown to
have the same area-minimizing metric as the hexagon with straight lines moving edge
to opposite edge and opposite edges glued together. For a fixed lower bound of the
lengths of curves in any given hexagonally punctured hexagonal torus, it is found that
the minimal area under these constraints is approximated very closely by a quadratic
equation related to the size of the puncture. This extremal metric also engenders regions
of positive and flat curvature.

1. Introduction

Suppose we are given a Riemannian m-manifold M with some metric associated metric
g. M then, given a choice of basepoint x0, has a fundamental group π1(M, x0). The
fundamental group has a natural interpretation as the collection of all families of loops
through the point x0 up to homotopy relative to x0. As we have a metric g, there is a
natural way of measuring the length of a loop, and so, given a family of loops [γ] in
π1(M, x0), it is a natural question to ask what the length of the smallest loop is in [γ].
And recognizing that the choice of [γ] and x0 is non-arbitrary, it makes sense to consider
the smallest length of all non-trivial curves in M. This is the systole problem for a
fixed metric g. Once one considers this problem for a fixed g, it is natural to consider
variations of metrics, over all Riemannian metrics for a general Riemannian m−manifold
or over conformally equivalent metrics in the case of a Riemann surface, for example.
But it is apparent that two metrics which are equivalent may not have the systolic value
as, given a metric g, we could simply look at 1

2 g. To avoid issues with rescalings such as
this, one looks instead at the smallest isosystolic ratio over a class of metrics, where the
isosystolic ratio is given by

(1.1)
(Sys(M, g))m

Vol(M, g)
[2].

Notice that the volume scales as a power of m, and the systole scales linearly. So the
isosystolic ratio functions as an invariant amongst equivalent metrics. Notice too that, if
one chooses a fixed lower bound for systolic length, this problem is exactly a minimal
volume problem with the systolic constraint. Explicit metrics satisfying the isosystolic
ratio were found by Pu [8], Loewner (unpublished, see [8]) and Bavard [1] for RPn, the
torus, and the klein bottle respectively. And for manifolds of a special type, Gromov [4]
gave an upper bound for the isosystolic ratio dependent only on the dimension of the
manifold. With that said, the problem, in general, is very difficult to solve, and so it
makes sense to add more structure to make the problem more amenable to solution.

1
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A simpler, though certainly non-trivial, case of this sort involves fixing a Riemann sur-
face S instead of a general Riemann m-manifold M and fixing a conformal class of met-
rics on S, usually a class with all metrics of the form ρ|dz| where ρ is a Borel-measurable
map on S. Calabi [2] reduced this problem to a variational problem, requiring solution to
a particular non-linear partial differential equation. Zwiebach and Headrick [5] worked
along a very similar homotopy problem and generalized some of Calabi’s notions to
convert the problem away from a variational problem to a convex optimization problem,
one treatable by simple computational methods.

Extremal length can be viewed as a simpler version of the problem Calabi, Zwiebach,
and Headrick address. In particular, beyond fixing a Riemann surface and a conformal
class of metrics, the extremal length problem fixes the family of curves considered to
be some given family Γ, which in general can be much simpler than the collection of
all non-trivial curves or collections of homotopy or homology classes. Again, in order
for extremal length to be invariant in conformally equivalent spaces, issues of rescaling
need to be addressed and so we define the extremal length of the family of curves Γ,
denoted λ(Γ) by

(1.2) λ(Γ) := sup
ρ

infγ∈Γ L2(γ, ρ)

A(S, ρ)

where L(γ, ρ) is the length of the curve γ under the metric ρ and A(S, ρ) is the area
of the surface under the metric ρ. And, as with the isosystolic ratio problem, one can
fix the length requirement for the family of curves and consider only the minimal area
problem.

In this paper, we calculate the extremal length of families of curves for which the
flat metric is extremal in all regular polygonal tesselations of the plane and the 30-60-
90 tesselation of the plane. In doing so, we find that the extremal metric for a 2 and
−1 winding curve about two punctures in the thrice punctured sphere identical to the
hexagon of Calabi [2], which was given full numerical treatment in a recent work of
Zwiebach and Naseer [7].

The resolution of this winding curve’s extremal metric inspired the investigation of the
moduli space of the hexagonally punctured hexagonal tori with curves moving edge to
opposite edge. This extends the results of Zwiebach and Naseer in the hexagonal torus
to cover more of the moduli space of tori in the manner of Zwiebach and Headrick,
who investigated the moduli space of square-punctured square tori in [6]. We fid an
exoression for extremal length for elements of the moduli space parametrized by the
ratio of the apothem of the puncture and the apothem of the outer hexagon. We find
regions of positive curvature apparently associated to the intersection of three families
of geodesic curves and regions of flat curvature apparently associated to the intersection
of two families of geodesic curves, in addition to some spikes of negative curvature..

2. Tesselations of the Plane

2.1. 30-60-90 Tesselation. Consider the tesselation of the plane given by 30-60-90 trian-
gles, as seen in Figure 2.1, and see that it requires two 30-60-90 triangles attached at their

2
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Figure 2.1. On the left, we see the tesselation of the plane by 30-60-90
triangles. And one element of both the green and pink homotopy glasses,
as well as the singularity which separates the classes. On the right is the
green path on the two-cover of the space. We will investigate the green
case in particular later.

longer legs in the natural way to form an equilateral triangle with the two lower edges
identified together and the two hypotenuses identified together. Forming a sphere is
then given by placing a point a at the left and right base corners, the point at infinity
at the base’s intersection with the two triangle’s shared edge, and b at the upper vertex
of the equilateral triangle. We look at the horizontal paths, as in the figure. This par-
titions the region into 2 homotopy classes separated by critical points, one in region A
(green) and one in region B (pink). We consider the weighted multi-curve C of the form
a1γ1 + a2γ2 with γ1 an A path and γ2 a B path. Suppose π1(S

2 \ {a, b, ∞}) is generated
by α and β. Then γ1 and γ2 are given by β−1αβββα and β−1β−1αβαβ−1 respectively. We
must have that, if ρ0 is to be extremal that the multicurve has associated weights 1 and
1
2 . This ansatz, suggestedby a blind application of the Heights Theorem (see [3]) that
C = γ1 +

1
2 γ2, is then checked by an application of Beurling’s criterion to the flat metric.

It suffices now simply to calculate the extremal metric with respect to ρ0 in the plane.
When we normalize the tall leg of the triangle to be of length one, then we get that the
square of the length of each path is (2(2 · 1√

3
+ 1

2
√

3
· 2))2 and the area is 2 · 2( 1√

3
+ 1

2
√

3
),

yielding λ(Γ) = 2
√

3.

2.2. Hexagonal Tesselation. We look now at rectangles formed by connecting any two
central vertices of two disjoint pentagons in the hexagonal tesselation of the plane as
seen in Figure 2.2. Observe that if we connect the vertices of two hexagons along a
ray emanating from both vertices that we are simply at the 30-60-90 problem again.
Consider instead the shortest path from one vertex x0 to a vertex x1 not along one of
the rays of x0. Then there are six homotopy classes of equal weights A, B, C, D, E,
F. Suppose π1(S

2 \ {a, b, ∞}) is generated by α and β. Then we have that A is given
3
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Figure 2.2. On the left, we see the tesselation of the plane by regular
hexagons. On the right we see the hexagonal torus formed by the gluing
operations induced by the tesselation.

by ββαβαβ−1β−1α−1β, B by β−1α−1βββαβαβ−1, C by α−1α−1β−1β−1β−1αββα−1α−1β, D
by β−1α−1βββαβαβ−1, E by β−1αββα−1β−1α−1β−1β−1, ad F by αβαβ−1β−1α−1β−1β−1.
So the extremal length of this set of multicurves is simply

√
5− 2

√
3, given by simply

calculating the length between vertices when normalizing the height of the rectangle as
1.

2.3. Equilateral triangles. Now consider the tesselation 2.3 of the plane given by equi-
lateral triangles of side lengths 1, forming quadrilaterals each with opposite edges iden-
tified in a parallel manner. And so forming a torus. The vertical paths in this tesselation
correspond exactly the homotopy class of the meridian, and the horizontal paths in
this tesselation correspond exactly to the longitudinal paths. There are corresponding
weights one and one. So the extremal length of the longitudinal paths is 2√

3
and the

extremal length of the latitudinal paths is
√

3
2 . And the extremal length of the 1 − 1

multicurve is given by 1.

2.4. Square Tesselation. As for the square tesselation of the plane, consider two squares
placed left to right as in Figure 2.4. Tesselation requires the left and right edge to be iden-
tified, the top left edge with the bottom right edge, and the bottom left edge with the top
right edge. This forms then a torus with a half twist. The horizontal paths correspond
simply to the longitudes, and so the extremal length is simply 22

2 = 2. The vertical paths
consists of paths homotopic to the twisted meridian i.e. a chosen representative path
which corresponds in the half-glued two-cover to two parallel horizontal lines. They
have an extremal length 1

2 . There are associated weights 1 and 1, so we get that that
extremal length of their weighted multicurve is 42

4 = 4.

4
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Figure 2.3. On the left, we see the tesselation of the plane by equilateral
triangles, as well as two different families of curves: one in orange, and
one in pink and purple. Both are portrayed on the two-cover.

Figure 2.4. On the left, we see the tesselation of the plane by squares, as
well as two homotopy classes: one in blue and one in orange. Both are
demonstrated firstly on the two-cover, in the center, and then on the half-
glued two-cover, on the right. See that there is indeed a half twist to be
done in the last gluing operation in the half-glued two-cover.

3. The 30-60-90 Lift and the Work of Headrick and Zwiebach

Consider again the 30-60-90 tesselation of the plane shown in Figure 2.1 and recall the
A and B curves. The A (green) and B (pink) curves are as in the figure. We see straight-
forwardly that the pink curves cover the surface evenly and so by Beurling’s criterion it
must be that the metric is simply flat. However, the green curves do not cover the surface
evenly and so we choose to investigate the extremal metric of the B paths alone. Con-
sider the process of tracing out a single B path, beginning at the base. Moving upward
one hits the hypotenuse of the triangle. But instead of "bouncing off" the hypotenuse as

5
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Figure 3.1. On the left, we see the original unfolding of the path of the
green and pink paths, with appropriate identifications for the large cover.
And on the right we identify the central hexagon foliated by all three homo-
topy classes, and then the equilateral triangles completing hexagram each
foliated by two homotopy classes, and then finally the remaining triangles
foliated simply by a single homotopy class.

in the previous diagram, we should imagine the line continuing straight into another 30-
60-90 triangle glued hypotenuse to hypotenuse with the starting hypotenuse, continuing
in this manner until one returns back to the base, which coincides precisely with the
upper edge of a half hexagon. Considering the rest of the curves gives a full hexagon,
with the symmetries and gluing operations of the triangles forming it requiring opposite
edges to be identified. In Figure 3.1 is the full hexagon, with both A and B paths shown
in their respective colors. With this we can see that the extremal length problem for
the family of B curves reduces precisely to the case of curves moving from one edge to
another on the hexagon.

This case was originally studied by Calabi [2] and given numerical resolution in a
recent paper of Zwiebach and Naseer [7]. The extremal area A is bounded by .8400 <
A < .8414. As predicted by Calabi, Zwiebach and Naseer find that there is a central
region U3 foliated by three families of geodesic curves and a region U2 foliated by two
orthogonal bands of geodesics. However, there are neither regions foliated by a single
family of geodesic curves nor a region unfoliated by a family of geodesics. And further,
beyond U2 having flat curvature, it is found that U3 has the curvature of a half sphere.
The pattern of geodesics from their paper is shown below.

6
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Figure 3.2. This is the image of the geodesic paths of Calabi’s Hexagon
which Zwiebach and Naseer produce. The regions foliated by three fami-
lies of geodesics with half-spherical curvature is the central hexagonal re-
gion, while the triangles surrounding each vertex are flat and foliated by
two families of geodesics [7].

4. The Hexagonally Punctured Torus

4.1. The Method of Headrick and Zwiebach. Recall that the generalized homotopy (ho-
mology) systole problem involves, for a collection of non-trivial homotopy (homology)
classes Dα (Cα) in π1(Mm) (H1(M)), for an m-manifold M, indexed by some set A, a
collection of lengths lα similarly indexed so that for each Dα (Cα) we have that for the
extremal metric Ω that

(4.1) lα − length(γ, Ω) ≤ 0,

for each α, and for any path γ ∈ Dα (Cα). length(γ, Ω) denotes the length of the path γ
under the metric Ω. This reads simply that the length of each element of each class Dα

(Cα) has some lower bound for their lengths which the extremal metric Ω must satisfy.
The problem then is to minimize the area of the manifold while maintaining these length
constraints.

Zwiebach and Headrick [5] transform the homotopy problem over a subcollection
S ⊂ π1(M) into a homology problem by means of a lift to a suitable covering space M̃.
We sketch, quite roughly, Zwiebach and Headrick’s explanation for why this is reason-
able, given in section 8 of their paper. Consider the quotient map π : π1(M) → H1(M),
and notice that S is a collection consisting of non-trivial homotopy classes which are
mapped to non-trivial or trivial homology classes, denoted S1 and S0 respectively. For
the non-trivially mapped elements S1 there is no real issue as each element of π(S1) is

7
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homologically non-trivial and so constrained in the homology problem in the appropri-
ate manner. And Zwiebach and Headrick show there is no added constraint as each
element of π(S1) is non-trivial and so contains at least one homotopically non-trivial
curve, which ensures an adequate lower bound which is not an added constraint. It
suffices to rectify the issue of S0.

Zwiebach and Headrick find an appropriate lift by means of a simple surgery argu-
ment which takes a simple closed curve γ0 in S0 and lifts it to a non-trivial γ̃0. As M
has non-trivial homotopy, it has genus at least one. So γ is the boundary of two re-
gions of M, one with at least one handle about some hole. Cutting about this handle,
creating a copy with the same cut of M and gluing these manifolds together forms a
double cover of M where γ̃0 is the addition of two homologically non-trivial curves.
So Zwiebach and Headrick demonstrate that each simple closed curve has a lift to a
two-fold cover and a non-trivial homology class. Then by the Galois correspondence
to an index two, and so normal, subgroup of π1(M) there is the natural quotient map
p : π1(M)→ Z/2Z. See then that p is an element of H1(M, Z/2Z). And so, in general,
there is a dim(H1(M, Z/2Z))-fold cover of M lifting the elements of S0 to non-trivial
homology classes. Zwiebach and Headrick then demonstrate that this lifting operation
adds no new non-trivial homological constraints.

Once the lift operation to a suitable covering space is completed, Zwiebach’s analysis
provides the means by which to translate the homology problem now established into
a convex optimization problem. The conformal class of metrics is constrained, without
loss of generality, to metrics Ωg0 for Ω a measurable function on M sometimes called
the Weyl factor, and g0 a choice of fiduciary metric. The homology problem then is to
minimize the area under all metrics Ωg0 while maintaining length constraints as before.
This is a convex optimization problem, but it is practically unapproachable as it requires
optimizing over a very large infinite dimensional space.

To make the optimization more tractable, it is reformulated in terms of calibrations by
Zwiebach and Headrick. A calibration is a closed and unitarily bounded 1−form. By
closedness and boundedness of u it is shown that the length constraint on curves in Cα

corresponds precisely to the existence of a calibration uα which calibrates Cα i.e. for an
arbitrary representative mα of Cα,

(4.2)
∫

mα

uα = lα.

This yields the primal optimization program written fully as

(4.3) Minimize Area(M, Ω) over Ω, uα

with Ω− |uα|20 ≥ 0

where uα calibrates Cα and | · |0 denotes the fiducial metric norm. A much more detailed
analysis is provided in [5].

4.2. Setup for the Convex Optimization Problem. Consider a hexagon centered at the
origin which bulges from − 1√

3
to 1√

3
along the x-axis and which has 2n edges thereon

8



EXTREMAL LENGTH OF WINDING CURVESEXTREMAL LENGTH OF WINDING CURVES

(without multiplicity) formed by equilateral triangles, as seen in Figure 4.1, and let the
lattice points (x, y) be the vertices of these triangles. Consider the vertical level sets
formed by the rows of these triangles. We denote their y-components by y[i, j] with i = 0
corresponding to the level set on the x-axis, i = 1 corresponding to that on the first level
above the x-axis and so on. Notice that there are 2n + 1 such level sets and that by our
choice of the placement of i = 0 we have that i ranges over [−n, n] ∩Z. Similarly for the
horizontal aspects of a lattice points, which we shall index by x[i, j] as its value depends
both on the i value which determines why and some chosen j value. We can view each
x[i, j] as horizontal values shifted first to the left edge of the hexagon by a constant of −1√

3

and then to the right by |i|
2
√

3n
as the height moves away from the x-axis to end up on the

left edge of the hexagon at the height y[i, j], and then shifted right by j triangular edges,
giving a term of j√

3n
. We see then that, for a fixed i, j must range over [0, 2n+ 1− |i|]∩Z.

To be explicit, we have

(4.4) y[i, j] :=
i

2n
; x[i, j] :=

−1√
3
+
|i|

2
√

3n
+

j√
3n

9
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Figure 4.1. This is the discretization for n = 2 and k = 1. In this diagram
the sharp purple objects correspond to ones, reds to twos, and the magen-
tas to threes. The short arrows correspond to calibrations, the long ones
to local coordinate forms, and the highlighted edges to the representative
paths from the different homology classes. As examples, the red edge cor-
responds to m2 and the magenta short arrow corresponds to u3.

We look now at the uα and determine that u1 points in the direction of x̂1, u2 in the
direction of x̂3 and u3 in the direction of x̂2. See that under the action of rotation by 60
degrees about the origin that we have u1 7→ u2 7→ u3. So for u1 = a1dx1 + a2dx2 + a3dx3 +
dφ1, we have by Hodge decomposition theorem that dφ2 ◦ (R→60)

−1(x, y) = dφ1(x, y) and
that u2 = −a1dx3− a2dx1− a2dx2 + dφ2. Similarly, dφ2 ◦ (R→60)(x, y) = dφ3(x, y) and u3 =
a1dx2 + a2dx3 + a3dx2 + dφ3. As we assume the systolic length is 1, integrating along m2

we find that 1
2 a1 +

1
2 a3− a2 = 1. And seeing as u1 is invariant under reflection across the

ray from the origin in the direction of x̂1, we must have that a3 = a1. Combining these
two results, and that dx1 + dx2 + dx3 = 0, we get that

u1 = dx2 + dφ1

u2 = dx1 + dx2 + dφ2

u3 = dx2 + dφ3.

(4.5)

We wish to work with the φ2 function we investigated in setting up the program.
We define our function on the lattice points of the hexagon and so define φ2[i, j] :=

10
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φ2(x[i, j], y[i, j]). The metric and derivatives however will be defined on the centers of
the equilateral triangles, with each center indexed by the three vertices which generate
it [[i, j], [k, l], [m, n]]. In fact, by symmetry across the x-axis, we need only define the
function on those centers above the x-axis. We consider the upward pointing triangles
and downward pointing triangles separately. As we are only considering the triangles
in the upper half plane, it is straightforward to see that all upward pointing triangles
are of the form [[i, j], [i− 1, j], [i− 1, j + 1]] with the second and third elements obviously
forming the basis of the triangle and the first being the peak. Similarly downward facing
triangles are of the form [[i, j], [i, j + 1], [i− 1, j + 1]].

For an upward (respectively, downward) facing triangle we have that the partial
derivatives in the direction of x̂1 are given by the average of the average of the right-
most (leftmost) φ2 values taken with a signed difference with the other φ2 value divided
by the distance by the sole point and the average location of the other two points. Sim-
ilarly for the partial derivative in the direction of x̂2. More explicitly we have for an
upward triangle and for φl partial derivatives given by

( ∂φl

∂x1

)
x2
[[i, j], [i− 1, j], [i− 1, j + 1]] :=

1
1

2n
·
(1

2
(φl[i, j] + φl[i− 1, j + 1])− φl[i− 1, j]

)

( ∂φl

∂x2

)
x1
[[i, j], [i− 1, j], [i− 1, j + 1]] :=

1
1

2n

(1
2
(φl[i, j] + φl[i− 1, j])− φl[i− 1, j + 1]

)
.

Obviously we have similarly for downward facing triangles.
What one would very much like to do in executing this program is limit that you are

calculating this program repeatedly for each φl instead of simply for φ2, as the derivative
expressions are quite cumbersome and would seem to require a bit of calculation. which
is too tedious. Let us denote by R→60 [i, j] rotation of the vertex [i, j] by 60◦ clockwise about
the origin. And let R→60(T) be the obvious rotation of a triangle T about the origin. We
see then that

(∂φ3

∂x1

)
x2

T = −
(∂φ2

∂x2

)
x1

R→60 T −
(∂φ2

∂x1

)
x2

R→60 T

(∂φ3

∂x2

)
x1

T = −
(∂φ2

∂x1

)
x2
◦ R→60 T

(∂φ1

∂x2

)
x1

T = −
(∂φ2

∂x2

)
x1
(R→60)

−1T −
(∂φ2

∂x1

)
x2
(R→60)

−1T

(∂φ1

∂x1

)
x2

T = −
(∂φ2

∂x2

)
x1
◦ (R→60)

−1T

(4.6)

11
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It suffices to give an expression for these rotation terms, but these are readily calculable
by examining the action of a rotation matrix on the vector (x[i, j], y[i])T, which results in
the calculation that for R→60 [i, j] = [i′, j′] that

i′ =
2n− |i| − 2j + i

2
,

j′ =
2n + |i|+ 2j + 3i− 2|i′|

4
.

(4.7)

Similarly there is an expression for the inverse (R60→)−1[i, j], achieved by the same
methods.

Then, as we have our calibrations sorted, and as we have discretized our functions and
hexagon in an appropriate manner, it suffices simply to constrain the Weyl factor Ω in
the requisite manner. We have a fiducial metric given by the quadratic form

Q(x1, x2) = (dx1)2 + (dx2)2 − dx1dx2.

So we have the constrains
ΩT ≥ [(1− ∂1

2)
2 + (−∂2

1 − ∂1
2)

2 − (1− ∂1
2)(−∂2

1 − ∂1
2)] ◦ φ2 ◦ (R→60)

−1T

ΩT ≥ ((1 + ∂2
1)

2 + (1 + ∂1
2)

2 − (1 + ∂2
1)(1 + ∂1

2)) ◦ φ2T

ΩT ≥ [(−∂2
1 − ∂1

2)
2 + (1− ∂2

1)
2 − (−∂2

1 − ∂1
2)(1− ∂2

1)] ◦ φ2 ◦ R→60 T

(4.8)

The program now is explicitly calculable and gives Ω as the maximum of these con-
straints on each equilateral triangle.

The issue now is to define the curvature K on the surface, given by −1
2Ω∇2 ln Ω. Doing

so requires taking second derivatives of ln Ω along the surface. The natural place where
we can take partial derivatives is at the barycenter when the values of the function to be
differentiated are defined on the lattice points, as we did with φ2. When the function is
defined on the triangles though, there is no such natural operation. To fix this issue, we
redefine omega to be on the lattice points by averaging the values of Ω in each triangle
surrounding a given lattice point. And then differentiation of this in the x1, x2 frame is
as before. But then when taking the second derivative again we run into the issue of the
natural differentiation in this lattice is against a function defined on the lattice points.
As such, we perform the the same operation with the derivative of Ω as we did with Ω
itself. And so we gain the partial derivatives defined on the barycenters. This method
works, though it will smooth out and somewhat distort the metric at hand. The extent to
which this is the case is unclear, though, as we shall see, there is still interesting behavior
of the curvature which conforms with what one might expect to occur.

4.3. Numerical Results and Metric Description. Here we assume the systole length is
1, as in the previous sections, and we present the qualities of the extremal metric. We
plot the whole domain. The highest resolution we managed to obtain was at n = 32,
where we have the following table of values for the area of the hexagonally punctured
hexagonal torus.

12
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k Area

1 0.74
8 0.70

16 0.57
24 0.36
30 0.13

We pay close attention to the area and metric of the hexagonally punctured torus,
with special attention to the case with k = 16. The graphics here are taken at resolution
n = 32, which generates the estimate extremal area A as

0.57.

Figure 4.2. Two views of the φ2 values

Figure 4.3. Here we can see the pronounced spikes of dφ on the x-axis and
especially at the vertices thereon, both on the puncture, and on the outer
hexagon.

In Figure 4.2 is the surface of phi for k = 16 at the highest resolution. We see that φ2

appears to increase linearly as it moves from the lower edge to the upper edge, excepting
13
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some pronounced spikes at all four vertices. So one might expect that the geodesics are
given by a unique curve of constant derivative which originates at some point on the
lower edge and travels upwards along a unique path fully determined by, for a point p,
a function H of something like the form φ2(p) +

∫ y
− 1

2
dφ2. And then the two possible x

values for the two possible geodesics might be given by two points in the preimage of
H. However, the degree of the spikes, and that the spikes diverge in both positive and
negative directions, is perhaps indicative of the inadequacy of the maximal resolution. It
is not clear precisely how to read off directly geodesic values from the φ2 values as the
differential of the φ2 values about the x-axis spikes as in Figure 4.3, though it should in
principle be possible.

We look now at the extremal metric Ω and ln Ω, as shown in Figures 4.4 and 4.5. We
see it is almost flat for much of the surface with slight bulges about the puncture. And
it blows up around the vertices. This is the expected behavior, in line with the results
of Zwiebach and Headrick’s results for the swiss cross. As Zwiebach and Headrick
saw in their investiagtion of the swiss cross [6], the "minimal-area problem wants the
boundary to be smooth" (30) and so, for us, blowing up at the vertices may correspond
to a smoothing of the metric around the vertex, but not at the vertex itself.

Figure 4.4. Two views of ln Ω. Notice the smootheness of this metric as
opposed to simply Ω.

Figure 4.5. Two views of Ω.
14
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It is straightforward to look at the curvature now, and it is shown in Figure 4.6. The
result is that the metric Ω appears to have regions of flat and of positive and negative
curvature, but has an assortment of spikes around the hexagon, especially between ver-
tices of the hexagon and punctures and at the vertices on the x-axis. The spikes between
vertices are positive while the spike at the vertices of the x-axis is extremely negative,
seemingly a point-mass. The positive curvature between vertices is explainable as the
line where geodesics from one curve first meets its adjacent curve, and where they are
met by geodesics of the third family of curves. However, if this area had wholly positive
curvature one would expect that to be the case except in a few small regions foliated only
by two families of geodesics. Instead we see alternating positive and negative curvature
which changes fairly rapidly, though in regions bounded by two edges, one from the
puncture and one from the outer hexagon, there are noticealy fewer spikes with nega-
tive curvature. As for the regions of flat curvature, they appear to occur very closely to
the edges of the puncture, and would seem to correspond with regions foliated simply
by two families of geodesics. However, it should be said that the curvature seen here
is also a residue both of the manner in which the curvature was calculated and of the
accuracy of the φ2 values, as discussed earlier. However the operation of averaging val-
ues across triangles is much more suggestive of smoothing out the metric, and so the
curvature. But this is precisely the opposite of what we see here.

Figure 4.6. Two views of the curvature K.

4.4. Moduli Space of the Hexagonally Punctured Hexagonal Torus. The parameter h
which is given by the ratio of the hexagonal puncture’s apothem and the outer hexagon’s
apothem fully determines the hexagonally punctured hexagon, and so makes sense as
the modulus. We can of course take then h in [0, 1]. The case of h = 1 is trivially 0
and the case of h = 0 is precisely the case studied by Zwiebach and Naseer [7]. It is
straightforward to see that the doubly connected region of the hexagonally punctured
torus has different annular modulus, and so different extremal length for differing values
of h. Obviously the family Γ here consists exactly of the homology of curves described
above. And as the shortest lengths of curves here have length one in the extremal metrics

15
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found above, it is the case that

(4.9) λ(h) :=
1

A(h)
.

That ism the extremal length is simply a function of the modulus h. The relation we find
is give y a quadratic with great precision, an r-value of 0.9999296489.

Quadratic regression reveals that the relation is given by

(4.10) λ(h) =
1

0.737673 + 0.0013617h− 0.000703976h2 .

4.5. Convergence. We will now briefly look at the convergence of the optimization pro-
gram for the case k = 16 or, rather, the case where k = n

2 . For this case, the following
table gives values

n Area ∆(Area)
20 0.609313728 0.01886890848
24 0.59507735 0.01423637808
28 0.584459574 0.01061777534
32 0.578880912 0.0055786623

In the case swiss cross of Zwiebach and Headrick, the convergence of the program
was proportional to (resolution)−3. We would expect something similar to occur here so
we model the difference as a function of the power of the resolution. In doing so, we find
that the convergence rate is well approximated (r = −0.960313538) by the expression

(4.11) ∆(A) = 34.65141n−2.47750982.

The primal program strictly decreases as the resolution increases as each Ω value is
feasible and maintains the length constraints. So to get an approximate bound on the
expected value we should consider our most accurate numerical estimate shaved off by
a factor of the infinite sum of values after 32 of the change in area as the resolution
increases i.e. 0.578880912− 1

4

∫
3 2∞∆(A)dn = 0.56. We expect then that the area will be

be 0.56± .02, where 0.56 is the difference of our best predicted area and half the integral
expression for ∆(A) and .02 is half the integral the integral expression for ∆(A).

The expected results for each value of k then is given in the following table, with
expected error of at most .02. Given that the value of the areas are shifted simply by
a constant here, the metric, curvature, and modular information presented above still
holds.

k Area

1 0.72
8 0.68

16 0.56
24 0.34
30 0.11
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5. Points for further investigation

As for areas of possible further investigation, it would be good to fully determine
a way by which to read off the geodesics from φ2. And to prove the area formula
of Zwiebach and Headrick. Further investigation of the moduli space of tori is fairly
natural, as well as of multi-punctured tori. There is also the idea of a probabilistic
interpretation of geodesic density as a criterion for extremality of a metric. Finally, a
great result would be to find a general principle for the extremal values of combinations
of curves. This seems, in general, intractable given the swiss cross being the simples
combination of simple curves and having no simple answer. But that we have calculated
a number of elements of winding curves of the type 2 and −1 in the thrice punctured
sphere would make it very nice if there was, in general, an algorithm for expanding
results of the type presented here into general results about the 2, −1 winding curves.
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1 Preliminaries
First, we introduce the basic definitions and the concept of mixing of Markov chains.

Definition 1.1. A sequence of random variables (X0, X1, . . . ) is a Markov chain with state
space Ω and transition matrix P if for all x, y ∈ Ω, all t ≥ 1,and all events Ht−1 = ∩t−1

s=0{Xs =
xs} satisfying

P (Ht−1 ∩ {Xt = x}) = P (Xt+1 = y|Xt = x) (1)

Definition 1.2. We call π a stationary distribution of the Markov chain with transition matrix
P if it satisfies:

π = πP (2)

Definition 1.3. The total variation distance between two probability distributions µ and ν on Ω
is defined by

‖µ− ν‖TV =
1

2

∑

x∈Ω

|µ(x)− ν(x)| =
∑

x∈Ω,µ(x)>ν(x)

|µ(x)− ν(x)| (3)

Definition 1.4. A coupling of two probability distributions µ and ν is a pair of random variables
(X, Y ) defined on a single probability space such that the marginal distribution of X is µ and
the marginal distribution of Y is ν. That is, a coupling (X, Y ) satisfies P (X = x) = µ(x) and
P (Y = y) = ν(y).

Theorem 1.1. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV ≤ P (X 6= Y ) : (X, Y ) is a coupling of µ and ν . (4)

Proof. Note that for any coupling (X, Y ) of µ and ν and any event A ⊂ Ω

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A, Y ∈ A) ≤
≤ P (X 6= Y )

(5)

Definition 1.5. The mixing time is defined by

tmix(ε) = min{t : d(t) = max
x∈Ω

∥∥P t(x, ·)− π
∥∥
TV

< ε} (6)

Theorem 1.2. Let {(Xt, Yt)} be a coupling such that the two chains stay together at all times
after their first simultaneous visit to a single state, more precisely

if Xs = Ys, then Xt = Yt, t ≥ s. (7)

Suppose X0 = x, Y0 = y and tcouple = min(t : Xt = Yt, t ≥ s) Then,
∥∥P t(x, ·)− P t(y, ·)

∥∥
TV
≤ Px,y(tcouple > t) (8)

Proof. Notice that P t(x, z) = Px,y(Xt = z) and P t(y, z) = Px,y(Yt = z). Consequently,
(Xt, Yt) is a coupling of P t(x, ·) with Pt(y, ·) and so,

∥∥P t(x, ·)− P t(y, ·)
∥∥
TV
≤ Px,y(Xt 6= Yt) (9)

which suffices for the proof.

Corollary 1.2.1. Suppose that for each pair of states x, y ∈ Ω there is a coupling (Xt, Yt) with
X0 = x and Y0 = y. For each such coupling, let tcouple be the coalescence time of the chains, as
defined in previously. Then

d(t) ≤ max
x,y∈Ω

Px,y(tcouple > t) (10)
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2 Punctured Symmetric Group
In this section, we investigate the following random walk. Consider shuffling a deck of n cards
in the following way: take a random card and put it on top. Additionally, disallow a random
permutation σ, that is if we choose to transition to disallowed permutation, the Markov chain
stays in the same position.

Theorem 2.1. Let (Xt) be the random walk on Sn \ {σ} corresponding to the random-to-top
shuffle on n cards, with one blocked permutation σ. Then

tmix(ε) ≤ n log n+ n(log ε−1 + 1) (11)

Lemma 2.2. Let (Xt) and (Yt) be two copies of the given Markov chain. Then, at time τ , which
corresponds to the time when we have chosen all the cards and the card i for the second time,
the chains have coupled.

Proof. Consider the following coupling of two Markov chains with the given transition prob-
abilities (Xt) and (Yt): for any card i that we move to the top in the chain (Xt), we move the
same card i to the top in the chain (Yt), if it is possible. Otherwise, the chain (Yt) stays in the
same position. Let τ0 be the time when each card has been chosen, but not necessarily moved
once.

Indeed, first assume that we never run into the situation, where we are unable to move both
chains. Then, we note that by our construction, after we choose and move cards i in both chains
to top, they will remain at the same position in corresponding decks. Therefore, by time τ0 the
chains will have coupled.

Suppose, in the permutation σ, the card i is sent to the top of the deck. Now, consider the
situation, where, a card i is moved to the top in the chain (Xt), but not in the chain (Yt). Then,
we claim that at time τ , which corresponds to the time when we have chosen all the cards and
then waited for the card i to be chosen once more the chains have coupled. Indeed, if we remove
the cards i from both chains at time τ0, then both decks will be identical. Therefore, after time
tau0 we also have to wait time T to move the card i to the top.

Proof of Theorem 2.1. It is clear that τ0 behaves like a coupon collector time and T is a geo-
metric random variable with mean n. Then,

P(τ > n log n+ n+) (12)
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3 Punctured Hypercube
Let graph Hn = (V,E) be such that V = {0, 1}n, that is comprised of all binary strings of
length n. Two vertices (v, w) are connected if they differ by one bit.

3.1 Removing a single vertex
Suppose we remove a random vertex from this graph. Since the graph is vertex transitive, we
may assume without loss of generality that it is 11 . . . 1. Consider the following random walk
on this graph: with probability 1

2
we stay in the same position, and with probability 1

2n
we move

to any of the neighboring vertices. If we choose to move to the removed vertex, we stay in the
same position.

Theorem 3.1. For the simple random walk on Hn/{11 . . . 1}

tmix(ε) ≤
1

2
n log n+ n log(ε−1) (13)

First, we will need to prove the following lemma:

Lemma 3.2. Suppose (Xt) = (X1
t , X

2
t , . . . X

n
t ), and let Wt(Xt) =

∑
iX

i
t . Then, (Wt) is a

Markov chain and
‖Px(Xt ∈ ·)− π‖TV =

∥∥PW (x)(Wt ∈ ·)− π
∥∥

TV (14)

Proof. We can explicitly give the transition probabilities for (Wt). Indeed, if Wt = k, then Xt

has k ones and n− k zeros, and so for k 6= n− 1:

P(Wt+1 = k + 1|Wt = k) =
n− k

2n

P(Wt+1 = k − 1|Wt = k) =
k

2n

P(Wt+1 = k|Wt = k) =
1

2

(15)

If k = n− 1, then

P(Wt+1 = n− 1|Wt = n− 2) =
n− 1

2n

P(Wt+1 = n− 1|Wt = n− 1) =
n+ 1

2n

(16)

Next, we have to show that this projection chain mixes as fast as the original random walk. To
see this, we note that if Sw = {x : W (x) = w}, then the map x 7→ P1(Xt = x) and π are
constant over Sw, which can be seen as the equivalence classes of the chain (Xt). Then,

∑

x:W (x)=w

|Px(Xt = x)− π(x)| =

∣∣∣∣∣∣
∑

x:W (x)=w

Px(Xt = x)− π(x)

∣∣∣∣∣∣
= |PW (x)(Wt = w)− πW (w)|

(17)

Therefore, we have reduced the study of our random walk to the study of slightly modified
lazy Ehrenfest Urn on S = 0, 1, 2, . . . , n− 1.
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Proof of the Theorem. The proof is a slight modification of the argument given by the theorem
18.3 in [?]. Consider the following coupling: if both chains are not in n − 1, then one of the
chain remains in the same position, and the other moves. If one of the chains is in n− 1 and the
other is in 0, then . If one of the chains is in n− 1 and the other is in [n− 2], then .

Then, if Dt = |Zt − Yt| notice that

Ez,y(Dt+1|Zt = zt, Yt = yt) ≤
(

1− 1

n

)
Dt (18)

Consequently, we can show

Ez,y(Dt1τ>t) ≤
(

1− 1

n

)t
n, (19)

where τ is the coupling time of (Zt) and (Yt). Moreover, we Dt is at least as likely to move
downwards as it is to move upwards, and as such we can couple it with (St), which is a random
walk on Zn, such that Dt < St. Let τ ′ = min{t ≥ 0 : St = 0}. Then, τ is dominated by τ ′, and
so

Pk(τ > u) ≤ Pk(τ ′ > u) ≤ c1k√
u

(20)

Then
Pz,w(τ > s+ u|Ds) = 1τ>sPDs(τ > u) ≤ c1Ds1τ>s√

u
(21)

Taking expectation on both sides we get:

Pz,y(τ > s+ u) ≤ c1ne
−s/n
√
u

(22)

Substituting s = 1
2
n log n and u = α(ε), we get the desired result.

Theorem 3.3. For the random walk on Hn \ v, where v is a vertex chosen uniformly at random

tmix(ε) ≤
1

2
n log n+ n log(ε−1) (23)

Proof. Given that the hypercube is a vertex-transitive graph, we can assume that v = 011 . . . 1,
and thus

Varπ(W ) <
n

4

Eπ(W ) =
n
2
2n − n+ 1

2n − 1
=
n

2
+

n

2n+1 − 2

(24)

Let R(t) be the number of not refreshed coordinates by time t in the blocked hypercube and
R′(t) in the original hypercube. Then for the given random walk, we can couple these random
variables, such that R(t) > R′(t).

Note that
E1(W (Xt)|R(t)) =

1

2
(R(t) + n) ≥ 1

2
(R′(t) + n)

E1(W (Xt)) ≥
n

2

[
1 +

(
1− 1

n

)t]

Var1(W (Xt)) =
1

4
Var1(R(t)) +

1

4
(n− E1R(t)) ≤ n

4

(25)
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Then, since we have shown that

|E1(W (Xt))− Eπ(W )| ≥ n

2

(
1− 1

n

)t

σ =
√

max(Varπ(W ),Var1(W (Xt))) ≤
√
n

2

(26)

we can apply proposition 7.9 from [?], for f(x) = W (x) and get the desired bound.

3.2 Removing a Sparse Subset
So far, we have seen that removing a single vertex does not have strong impact on the mixing
time, which is to be expected, since the graphs we considered had exponentially large vertex
sets. Now, let us remove some sparse set S out of Gn, where |S| = 2

n
2

n
and is a set of points

chosen uniformly at random. First, we have to show that lazy random walk on this graph is
well-behaved, in a sense that Gn \ S is connected.

Lemma 3.4. For any two blocked vertices x and y,

lim
n−→∞P(d(x, y) ≤ 2) = 0 (27)

Proof. For any two points in the graph Gn, the probability that the distance between them is no
greater than 2 is

P(d(x, y) ≤ 2) =
n2

2n − 1
(28)

Taking union bound over the set S, we get that the probability of two blocked points being at
distance 2 or closer is

P(d(x, y) ≤ 2) =
n2k(k − 1)

2n − 1
(29)

Then, sending n to infinity and plugging in k = 2
n
2

n
, we get:

lim
n−→∞P(d(x, y) ≤ 2) =

n2k(k − 1)

2n − 1
≤ n2k2

2n − 1
= 0 (30)

Lemma 3.5. Gn \ S is connected with high probability.

Proof. Consider any pair of disconnected points x and y. Take any path p = (x, s1, s2, . . . , sl, y)
from x to y that is in Gn. Since, x and y are disconnected due to removal of the set S, there
exists a vertex sk that belongs to S. Let si be the first such vertex, then since the distance
between any two blocked points is greater than 2, si+1 6∈ S. Now, we claim that x and si+1 are
connected in Gn \S. Indeed, the distance between si−1 and si+1 is 2, and as such there must be
a path between them. Repeating this process of replacing blocked vertices, with existing paths
of length 2, we can show that any two vertices are connected.

Lemma 3.6. Let our chain (Xt) run up to time t0. If S is time spent near blocked vertices, then
if t0 ∼ n log n

lim
n−→∞P

(
S

t0
≥ 1

n

)
−→ 0 (31)
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Proof. To prove this we construct a Markov chain that will bound our time being next to blocked
vertices. The Markov chain will have three states:

• being next to blocked vertex, d = 1

• being at distance 2 away from the closest blocked vertex, d = 2

• being at distance ≥ 3 away from the closest blocked vertex, d ≥ 3

Using Lemma ??, we can assert that within any ball of radius 1, there is at most 1 blocked
vertex, and so the transition probabilities are given by:



n+1
2n

n−1
2n

0
1

2n
1
2

n−1
2n

0 1
2n

2n−1
2n




Calculating the stationary distribution π0 of this auxiliary chain yields that π0(d = 1) = 1
n2 .

Then, we apply Chebyshev’s inequality

Theorem 3.7. Let Hn be the n-dimensional hypercube and remove a set S consisting of 2
n
2

n

vertices chosen uniformly at random. Then, the upper bound on mixing time is given by

tmix(ε) ≤ n log n+ α(ε)n (32)

where α(ε) is a constant depending only on ε.

Proof. We construct a coupling of two chains (Xt) and (Yt) as follows: if (Xt) has its i-th bit
updated at time step t, then switch the i-th bit of the chain (Yt) to the same bit, if that is possible;
otherwise, the chain (Yt) stays in the same position.

For the usual metric ρ on graphs and the given coupling, when both chains are not next to
blocked vertices, the distance is contracted on average at least by a factor of (1− 1

n
).

When one of the chains is next to a blocked vertex, the distance is contracted on average
at least by a factor of (1 − 1

2n
). Then, since previous lemma asserts that we spend at most the

fraction of 1
n

time near blocked vertices,

Ex,y(ρ(X1, Y1)) ≤ ρ(x, y)

(
1− 1

n
+

1

2n2

)
(33)

Finally, note that ∥∥P t(x, ·)− P t(y, ·)
∥∥
TV
≤ Px,y(Xt 6= Yt)

≤ Px,y(ρ(Xt, Yt) ≥ ε) ≤ Ex,y(ρ(Xt, Yt))

ε

≤ diam(Ω)

ε

(
1− 1

n
+

1

2n2

)t
≤ n

ε
e

(2n−1)t

2n2

(34)

and taking n −→∞ and t = n log n+ α(ε)n yields us the desired bound.
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4 Two Walkers

4.1 Cycle
Our random walk consists of two walkers X1

t and X2
t on Zn, such that at each time step we

choose one of the walker with probability 1
2

and with probability 1
4

walk step on that walker
to one of its neighboring vertices or stay with probability 1

2
, and if we happen to move the

walker into an occupied vertex, walkers swap the positions. Intuitively, it is somewhat similar
to the previous problems in that we have some blocked vertices for the walkers, but now they
are dependent on the position of the both walkers. To tackle this issue, we note that the state
space of this random walk is Z2

n \ S, where S = {(x, y) ∈ Z2
n : x = y}. Therefore, we can

reformulate this problem as a random walk on a torus with set S removed.

Theorem 4.1. For the given random walk of two walkers on Zn

n2/32 ≤ tmix(ε) ≤ n2/4 (35)

Proof. So, as was previously noted, we can consider the dynamics of a single walker on Z2
n \ S

instead. Note that the coordinates (x, y) can be parametrized as (x, d(x, y)), where d(x, y) is
the signed distance between the two points. The properties of our walk guarantee that d(x, y) is
never 0 or n. Moreover, we claim that (Xt, Xt − Yt), where Xt and Yt are the positions of two
walkers, is a Markov chain and we give explicit transition probabilities.

Indeed, first note that (Xt) behaves like a simple lazy random walk on Zn with laziness
coefficient 3

4
. Additionally, Dt = Xt − Yt behaves like a simple lazy random walk on the

cycle {1, 2, . . . , n − 1}. To see this, assume that Xt = x and Yt = y, where x > y, then for
d /∈ {1, n− 1}

P(Dt+1 = d+ 1|Dt = d) = P(Xt = x+ 1|Xt = x) + P(Yt = y − 1|Yt = y) =
1

2

P(Dt+1 = d− 1|Dt = d) = P(Xt = x− 1|Xt = x) + P(Yt = y + 1|Yt = y) =
1

2

P(Dt+1 = 1|Dt = 1) = P(Dt+1 = n− 1|Dt = n− 1) =
1

2

(36)

We construct the following coupling of two Markov chains M1
t and M2

t , as follows:

4.2 Hypercube
Here we consider a random walk, which consists of two walkers Xt and Yt on Hn, where Hn is
n-dimensional hypercube, such that at each time step we flip a coin and choose a walker, which
we move to one of the neighboring vertices with uniform probability, and if we happen to move
into occupied vertex, walkers swap their positions.

Theorem 4.2. For the given random walk of two walkers on Hn

2n log 2n+ α2(ε) ≤ tmix(ε) ≤ 2n log 2n+ α1(ε) (37)

Proof. To prove this statement, we construct a projection chain of this random walk. First,
note that analogously to the previous problem, we can consider single particle dynamics on
Hn × Hn = H2n with the set S = {aa ∈ H2n : a ∈ Hn} removed. The edge set is defined
by the following relation: u = (u1, u2, . . . , u2n) and v = (v1, v2, . . . , v2n) are connected, if first
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half of u differs from the first half of v by one bit and second halves are identical, or second half
of u differs from the second half of v by one bit while first halves are identical, or first half of
u is the second half of v and vice versa and the Hamming distance between first half of u and
second is 1.

Thus we claim that if W (Xt) =
∑2n

i=1 X
i
t and d(Xt) = dH(A(Xt), B(Xt)), where A(x)

and B(x) are first and second halves of the string x, and dH is Hamming distance function, then
(W (Xt), d(Xt)) is a projection chain. Indeed,

aa (38)

To obtain the lower bound, one can consider the Hamming weight as a statistic, and since it
behaves like an Ehrenfest urn, the lower bound is immediate.

To obtain the upper bound, we can notice that

9



5 Convergence of Conditional Distribution
In this section we attempt to understand mixing time of the joint distribution of two arbitrary
cards in the random transposition shuffle through understanding the speed of convergence of
the conditional distributions. Intuitively, if Xt and Yt are the positions of the first and second
card respectively, one has:

P(Xt = x, Yt = y) = P(Xt = x)× P(Yt = y|Xt = x) (39)

Our aim is to investigate convergence of both of the distributions on the RHS.

Theorem 5.1. Let µ be the uniform distribution and P be the conditional distribution of the
particle Y at time t conditioned on the position of the particle X at time t, then

∥∥P t(x, ·)− µ
∥∥
TV
≤ Cet/(n−2) (40)
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Cauchy-Fueter Formulas for Universal Clifford Algebras
of Indefinite Signature

Ely Sandine∗

Advised by Prof. Matvei Libine

Abstract

We extend constructions of standard Clifford Analysis to the case of indefinite, non-
degenerate signature. We define (p, q)-monogenic functions by means of Dirac operators
that factor a (p, q)-wave operator. We prove two different Cauchy-Fueter integral
formulas for these functions. The two formulas arise from dealing with singularities in
separate ways, and are inspired by the methods of [L]. These theorems indicate the
merit of these methods for dealing with singularities.

We also include a brief discussion of conformal mappings on Rp+1,q acting on sets
of (p, q)-monogenic functions. We provide a group action of O(p, q) on monogenic
functions which map into the associated Clifford Algebra, as well as a computation for
the pullback of the form Dp,qx under a conformal inversion.

1 Introduction

Given the ubiquity of Complex Analysis, considering possible extensions and generalizations
leads to several theories. A modern introduction to Quaternionic Analysis is presented in
[Su]. As the quaternions are non-commutative, there are two families of quaternionic valued
functions that are analogous to the holomorphic functions of Complex Analysis, termed
left-regular and right-regular. These satisfy the Cauchy-Riemann-Fueter equations

0 =
∂f

∂x0

+ i
∂f

∂x1

+ j
∂f

∂x2

+ k
∂f

∂x3

and 0 =
∂f

∂x0

+
∂f

∂x1

i+
∂f

∂x2

j +
∂f

∂x3

k

respectively. The left-regular functions satisfy the following identity, with C being a three
dimensional contour in H that wraps around q0 once, and Dq a fixed quaternionic valued
three-form:

1

2π2

∫

C

(q − q0)−1

|q − q0|2
Dqf(q) = f(q0).

∗This research was made possible by the Indiana University Bloomington Math REU Program, funded
by NSF Award #1757857. We would like to thank Prof. Chris Connell for organizing and facilitating the
wonderful program. We would also like to thank Ms. Mandie McCarthy for her administrative work, the
various professors who gave talks, and the other REU students for their company.
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This is termed the Cauchy-Fueter Integral Formula, and is analogous to the complex Cauchy
Integral Formula, with Dq corresponding to idz. There is a similar formula for right regular
functions. The proof of the Cauchy-Fueter Formula relies primarily on Stokes’ Theorem, and
that the function (x2

0 + x2
1 + x2

2 + x2
3)−1 is harmonic at all points except the origin.

A natural extension beyond the quaternionic case is analysis on real Universal Clifford
Algebras. When constructed from a quadratic space with non-degenerate form, the algebras
are of dimension 2p+q, where (p, q) is the signature of a quadratic form, with R, C, and H
(the algebra of quaternions) corresponding to the cases of signature (0, 0), (1, 0), and (2, 0).
Clifford Analytic functions, or monogenic functions, are the proper analogue of holomorphic
functions and regular functions. An introduction can be found in [G], and a proof of the
Cauchy-Fueter Formula for the case of definite signature (p, 0) is exhibited, for instance, in
[GM]. In this case, the main player is the harmonic function (x2

1 + · · · + x2
p)
− p

2 . In [R],
functions mapping to complex Universal Clifford Algebras of non-degenerate form over C
are studied, leading to a theory of Complexified Clifford Analysis and corresponding integral
formulas.

Another direction is taken in [L], in which the real split quaternions are studied. In this

case, solutions of the modified wave equation ∂2f
∂x20
− ∂2f

∂x21
− ∂2f

∂x22
+ ∂2f

∂x23
are related to regular

functions, and (x2
0 − x2

1 − x2
2 + x2

3)−1 is used in the proof. This leads to a situation in which
the set of singularities, the null cone, is no longer a point, and intersects open sets containing
the origin. This issue is resolved in two distinct ways, leading to separate integral formulas.
In the first method, the author considers the complexified Split Quaternions, also known as
biquaternions, in which coefficients on the four basis vectors, 1, i, j, and k, are elements of C,
not just R. This algebra contains both the split quaternions and the classical quaternions as
subspaces. By considering the holomorphic extension of a regular function into a complexi-
fied vector space, and deforming the contour of integration into the classical quaternions, it
is shown that for all ε sufficiently small, a suitable integral about an ε-deformed contour is
equal to the value of that function evaluated at a given point. In the second method, the
author considers a single parameter family of integrals, in which a purely imaginary term
is added to the denominator to prevent singularities, and shows that the limit as this term
approaches zero converges to the desired value.

In this work, we begin by recalling the construction of Universal Clifford Algebras from
non-degenerate quadratic forms. These constructions are done in both the real and complex
cases. Following this, we define Dirac operators, which are used to define left-monogenic and
right-monogenic functions. We then describe the monogenic functions that appear in the
formulas, and prove lemmas regarding the key differential form Dp,qx. We prove many of
these results in the complex case, and then restrict attention to the real Clifford Algebras in
order to smooth our transition from real to complex vector spaces in the proof of Theorem
20. We first present a proof of Cauchy’s Integral Formula in the case of a definite quadratic
form, Theorem 16, to establish notation and for reference when proving the later formu-
las. We adapt the proofs of the main theorems of [L] to prove the existence of two integral
formulas, Theorems 20 and 23. In the first case, we use Complexified Clifford Analysis, as
described by [R], along with several homotopies, which allow us to deform the manifolds
of integration into a real Clifford algebra of definite signature, and apply Theorem 16. The
second formula uses a direct limiting argument to establish the result up to a constant, which
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is then determined by application of the first formula. In a larger context, Theorems 20 and
23 suggest that the methods of handling singularities presented in [L] are quite general.

In the final section, we consider certain spaces of monogenic functions, and how they are
preserved under conformal maps. The group of conformal mappings on Rp+1,q with respect
to the quadratic form (p+ 1, q), for p+ q ≥ 1, is generated by translations, scalings, orthog-
onal transformations, and an inversion (for introduction, see, for example [Sc]). In the cases
of Complex and Quaternionic Analysis, the conformal transformations on C and H lead to
group actions on the spaces of holomorphic and regular functions. In the complex case,
the action is through the fractional linear (Möbius) transformations, and the quaternionic
case is discussed, for example, in [Su]. The actions of conformal transformations on Rp,q lift
to actions on solutions to associated wave equation ([KØ]), which are related to minimal
representations of the group. This motivates the study of conformal mappings acting on
monogenic functions. We observe that (p, q)-monogenic functions are preserved under trans-
lations and scalings, and provide a group action of O(p, q) acting on the space of monogenic
functions that map into the associated Clifford Algebra. We finally include a calculation of
the pullback of Dp,qx under the inversion action. Analogies with previous cases, along with
this pullback computation, suggest the possibility of a similar group action to (21), although
such an action is not proved.

2 Clifford Algebra Construction and Conventions

In this section we establish the algebraic environment. We begin by constructing Universal
Clifford Algebras from real quadratic vector spaces with non-degenerate form. We employ a
similar construction in the complex case, and observe that there is a natural algebra homo-
morphism which allows us to view real Universal Clifford Algebras as subalgebras of complex
Clifford Algebras. We then define two conjugations on a subspace of the complex Universal
Clifford Algebra, and describe their real analogues that arise via the homomorphism.

Let V be an n-dimensional real vector space, and Q a quadratic form on V . By the pro-
cess of diagonalization, we have that there exist integers p, q and orthogonal basis e1, · · · , en
of (V,Q), such that

Q(ej) =





1 1 ≤ j ≤ p

−1 p+ 1 ≤ j ≤ p+ q

0 p+ q < j

.

By Sylvester’s Law of Inertia, we have that p and q are independent of basis chosen. The
ordered pair (p, q) is the signature of (V,Q). If p + q = n, we say Q(x) is a non-degenerate
quadratic form. From this point on we restrict our attention to non-degenerate forms. If
Q(x) is such a form with q = 0 or p = 0, we call it a positive or negative definite quadratic
form respectively. We consider a quotient of the tensor algebra over V, where (S) is the ideal
generated by the elements of S,
⊗

V = R⊕V ⊕ (V ⊗V )⊕· · · , S = {v⊗ v+Q(v) : v ∈ V }, AQ =
⊗

V/(S). (1)

AQ, constructed in this manner, is the Universal Clifford Algebra associated to (V,Q). We
note the sign convention chosen for elements of the ideal is not standard in the literature,
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resulting in a possible interchange of p and q. We note that for v1 and v2 orthogonal elements
of (V,Q),

v1⊗v2+v2⊗v1 = (v1+v2)⊗(v1+v2)−v1⊗v1−v2⊗v2 = −Q(v1+v2)+Q(v1)+Q(v2) = 0. (2)

We thus have that AQ is a finite-dimensional algebra over R generated by e1, · · · , en, and
let Ap,q be correspond to the AQ constructed from (V,Q) where Q has signature (p, q). We
will let {e1, e2, . . . , ep, ẽp+1, . . . , ẽp+m} be an orthogonal basis of V such that Q(ej) = 1,
Q(ẽj) = −1 for all applicable j. In the positive definite case we let An = An,0, and have
that the basis of V is given by {e1, e2, . . . , en}. We consider finite sets of the type B =
{i1, i2, · · · , in} ⊆ {1, · · · , n} with ij < ij+1, and define

eB = ei1i2···ij = ei1 ⊗ ei2 · · · ⊗ ẽin . (3)

We let e∅ = e0 be the multiplicative identity for the algebra. We have that if Ω =
{1, 2, · · · , n}, {eB : B ⊆ Ω} forms a basis of Ap,q over R. Ap,q is a Universal Clifford
Algebra, with the property that, for every linear transformation M : V → V , there exists a
unique algebra homorphism M̃ : Ap,q → Ap,q such that M̃(ej) = M(ej) for 1 ≤ j ≤ p+q, and
M̃(e0) = e0. We will be especially concerned with the subspace R ⊕ V , which we identify
with Rp+q+1 ⊂ Ap,q.We thus obtain the following relations for 1 ≤ i, j ≤ n with i 6= j,

e2
0 = e0, e0ei = eie0 = ei, eiej = −ejei, e2

i = −e0, ẽ2
j = e0. (4)

We thus have that we can write any x ∈ Rp+q+1 as x =
∑p

j=0 xjej+
∑p+q

j=p+1 x̃j ẽj. Specifically,
in the positive definite case, for x ∈ An, we can express x =

∑n
j=0 xjej.

We can also construct a complex Universal Clifford Algebra from a quadratic space over
C. We let V C be an n-dimensional complex vector space, with quadratic form Q. In this
case, we have that that by diagonalization, there exists an orthogonal basis e1, . . . , en, and
integer p such that Q(ej) = 1 if 1 ≤ j ≤ p, and Q(ej) = 0 otherwise. We say that V C is
non-degenerate if p = n, and only consider this case. We perform a similar construction to
(1), with V C now being a vector space over C,
⊗

V C = C⊕V C⊕(V C⊗V C)⊕· · · , S = {v⊗v+Q(v) : v ∈ V C}, AC
Q =

⊗
V C/(S).

We denote the resultant algebra by AC
n . Analogues of (2), (3) and (4) hold by the same

proofs.
We can also consider AC

n as an R algebra generated by e1, e2, . . . , en, ie1, ie2, . . . , ien. We
note that the natural inclusion ι : Ap,q → AC

p+q defined on the generators by ι(ej) = ej,
ι(ẽj) = iej for 0 ≤ j ≤ n extends to an injective R-algebra homomorphism, so we can
consider Ap+q as a unital real subalgebra of AC

p+q. We identify the linear span of e0, e1, · · · , en
over C with Cn+1 ⊂ An(C). We define the Clifford conjugation on Cn+1 by mapping

z = z0e0 +
n∑

j=1

zjej → z+ = z0e0 −
n∑

j=1

zjej.

We also have complex conjugation, defined component-wise

z = z0e0 +
n∑

j=1

zjej → z̄ = z̄0e0 +
n∑

j=1

z̄jej.
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The fixed points of these actions are the span of e0, identified with C, and the span of
e0, . . . , ep, identified with Rp+1, and the actions can be viewed as reflecting over the respective
spaces. These two operations commute, and lead to two useful quadratic forms. The first
such form is

N(z) = zz+ = z+z =
n∑

j=0

z2
j .

We note that N(z) is complex valued, and multiplicative. Via polarization, we get the
bilinear form

〈z, w〉 =
z+w + zw+

2
=

n∑

j=0

zjwj.

We let NC = {z ∈ Cn+1 : N(z) = 0}, and have for all z ∈ Cn+1 \ NC, z is invertible with
inverse given by N(z)−1z+. We also consider the following form, which is real valued, and
usually not multiplicative:

‖z‖2 = z(z̄)+ = z̄z+ =
n∑

j=0

|zj|2.

We consider Ap,q as a subalgebra of AC
p+q, and describe the restrictions of these conjuga-

tions and quadratic forms to Rp+q+1 ⊂ Ap+q. We have

x = x0e0 +

p∑

j=1

xjej +

p+q∑

j=p+1

x̃j ẽj → x+ = x0e0 −
p∑

j=1

xjej −
p+q∑

j=p+1

x̃j ẽj,

x = x0e0 +

p∑

j=1

xjej +

p+q∑

j=p+1

x̃j ẽj → x̄ = x0e0 +

p∑

j=1

xjej −
p+q∑

j=p+1

x̃j ẽj,

N(x) = xx+ = x+x =

p∑

j=0

x2
j −

p+q∑

j=p+1

x̃2
j , and

‖x‖2 = x(x̄)+ = x̄x+ =

p∑

j=0

x2
j +

q∑

j=p+1

x̃2
j .

From the quadratic form N(x), we obtain the bilinear form

〈x, y〉 =
1

2
(x+y + xy+) =

p∑

j=0

xjyj −
p+q∑

j=p+1

x̃j ỹj.

In line with the complex case, we consider with Np,q = {x ∈ Rp+q+1 : N(x) = 0}. For all
x ∈ Rp+q+1 \ Np,q, we have that x is invertible with inverse given by N(x)−1x+. We note
that Nn,0 = {0}.
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3 Dirac Operators, Monogenic Functions, and Green’s

Function

We begin this section with the definition of complex Clifford analogues of the classical Dirac
Operators. We next define monogenic functions over complex Clifford Algebras and a Green’s
Function, as dealt with by [R] in the case of definite signature. As was done with the
conjugations and forms of the previous section we, using the natural inclusion, restrict these
differential operators to define their analogues for real Clifford Algebras. These constructions
are used in the statements and proofs of the Cauchy-Fueter formulas. We apply these
operators to solutions of the (p, q) wave equation to obtain special monogenic functions,
termed Green’s Functions, which play a role in our formulas, analogous to that of z−1 in the
classical Cauchy Integral Formula.

Definition 1. We let U ⊆ Cn+1 be an open set, and MC
n a left AC

n module. We let f : U →
MC

n be a holomorphic function, and define

∇+
Cf = e0

∂f

∂z0

+
n∑

j=1

ej
∂f

∂zj
, and

∇Cf = e0
∂f

∂z0

−
n∑

j=1

ej
∂f

∂zj
.

We similarly can let M̃C
n be a right AC

n module, g : U → M̃C
n , and define

g∇+
C =

∂g

∂z0

e0 +
n∑

j=1

∂g

∂zj
ej, and

g∇C =
∂g

∂z0

e0 −
n∑

j=1

∂g

∂zj
ej.

We note that if we let �C be the complex Laplacian, we obtain the factorizations

∇C∇+
Cf = ∇+

C∇Cf =
n∑

j=0

∂2f

∂z2
j

= �Cf and g∇C∇+
C = g∇+

C∇C =
n∑

j=0

∂2g

∂z2
j

= �Cg.

Definition 2. A holomorphic function f : U ⊆ Cn+1 → MC
n , with U open and MC

n a left
Ap,q module, is complex-left-monogenic if ∇+f = 0. Alternatively, a holomorphic function
g : U ⊆ Cn+1 → M̃C

n , with U open and M̃p,q a right Ap,q module, is complex-right-monogenic
if g∇+ = 0.

This factorization leads to a natural method of constructing complex left and right-
monogenic functions. If φ : U → MC

n is complex-harmonic, with U and MC
n as above, then

∇Cf is complex-left-monogenic. Similarly, if φ̃ : U → M̃C
n is complex-harmonic, ∇Cφ̃ is

complex-right-monogenic.
We restrict these definitions to the subalgebra Ap,q ⊂ AC

p+q. We let U ⊂ Rp+q+1 be open,

and have, if f is a C1 function U → Mp+q (g is a C1 function U → M̃p,q), which maps to a
left (right) Ap,q module, labeled Mp,q (M̃p,q):
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Definition 3.

∇+
p,qf = e0

∂f

∂x0

+

p∑

j=1

ej
∂f

∂xj
−

p+q∑

j=p+1

ẽj
∂f

∂x̃j
,

∇p,qf = e0
∂f

∂x0

−
p∑

j=1

ej
∂f

∂xj
+

p+q∑

j=p+1

ẽj
∂f

∂x̃j
,

g∇+
p,q =

∂g

∂x0

e0 +

p∑

j=1

∂g

∂xj
ej −

p+q∑

j=p+1

∂g

∂x̃j
ẽj, and

g∇p,q =
∂g

∂x0

e0 −
p∑

j=1

∂g

∂xj
ej +

p+q∑

j=p+1

∂g

∂x̃j
ẽj.

We let �p,q be a wave operator on Rp+q+1,

�p,qf(x) =

p∑

j=0

∂2f

∂x2
j

−
p+q∑

j=p+1

∂2f

∂x̃2
j

f.

Thus,
∇p,q∇+

p,qf = ∇+
p,q∇p,qf = �p,qf, and

g∇p,q∇+
p,q = g∇+

p,q∇p,q = �p,qg.

Definition 4. A smooth function f : U ⊂ Rp+q+1 → Mp,q, with U open and Mp,q a left
Ap,q module, is (p, q)-left-monogenic if ∇+f = 0. Alternatively, a smooth function g : U ⊂
Rp+q+1 → M̃p,q, with U open and M̃p,q a right Ap,q module, is (p, q)-right-monogenic if
g∇+ = 0.

Using this definition, and the factorization of the wave equation, we can construct (p, q)-
monogenic functions by considering solutions to the (p, q)-wave operator. Specifically, if we
have φ : U → Mp,q, with U and M as above, such that �p,qφ = 0, this implies ∇p,qf is
(p, q)-left-monogenic. Likewise, if we have φ̃ : U → M̃p,q, �p,qφ̃ = 0, then φ̃∇p,q is (p, q)-
right-monogenic. The following case is an important example of such a construction, in
which we consider a Green’s function on Cp+q+1, and a suitable restriction to the Universal
Clifford Algebra Ap,q.

Definition 5. For n ≥ 2, we define the following function Hn(z): Cn+1 \ NC → C by

Hn(z) =
1

(
∑n

j=0 z
2
j )

(n−1)/2
=

1

(N(z))(n−1)/2
.

We note that if n is even, this may not be well defined. In this case, we let Cn+1
G =

Cn+1 \{z ∈ Cn+1 : N(z) ∈ R, N(z) ≤ 0}, and define z
1
2 : CG → Cn+1 to map z to the unique

w such that Rew > 0, w2 = z. As a consequence, Hn(z) mapping Cn+1
G → C is well defined.

From this point on we restrict the domain of Hn(z) to Cn+1
G and do not distinguish the parity

of n, as the same proofs hold in either case. We note that on this domain, we have that
Hn(z) is complex harmonic, and thus ∇CHn(z) and Hn(z)∇C are left and right-monogenic
respectively. Thus, we obtain the function on Cn+1

G that is left and right-monogenic.
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Lemma 6.

Gn(z) = ∇CHn(z) = Hn(z)∇C = (1− n)
z0 −

∑n
j=1 zjej

(
∑n

j=0 z
2
j )

(n+1)/2
= (1− n)

z+

N(z)(n+1)/2
,

Gn(z)∇+
C = ∇+

CGn(z) = �CHn(z) = 0.

By restricting this function to Rp+q+1 as done with the operators before, we observe the
following solution to the (p, q)-wave operator, and the corresponding (p, q)-left and (p, q)-
right-monogenic function:

Definition 7. For all p + q ≥ 2, we let Rp+q+1
G = Rp+q+1 \ {x ∈ Rp+q+1 : N(x) ≤ 0}, and

define the functions Hp,q(x): Rp+q+1
G → R, Gp,q(x) : Rp+q+1 by

Hp,q(x) =
1

(
∑p

j=0 x
2
j −

∑p+q
j=p x̃

2
j)

(p+q−1)/2
=

1

N(x)(p+q−1)/2
, and

Gp,q(x) = ∇p,qHp,q(z) = Hp,q(x)∇p,q

= (1− p− q)
x0 −

∑p
j=1 xjej −

∑p+q
j=p+1 x̃j ẽj

(
∑p

j=0 x
2
j −

∑p+q
j=p+1 x̃

2
j)

(p+q+1)/2
= (1− p− q) x+

N(x)(p+q+1)/2
.

Consequently,
Gp,q(x)∇+

p,q = ∇+
p,qGp,q(x) = �p,qHp,q(x) = 0.

4 Differential Forms

We construct the differential forms, Dnz and Dp,qx, that will allow us to state and prove the
Cauchy-Fueter Formulas. We prove several lemmas regarding these forms.

Definition 8. We let dVC be the n+ 1 complex form on Cn+1 normalized so that

dVC = dz0 ∧ dz1 ∧ · · · ∧ dzn, dVC(e0, e1, e2, . . . , en) = 1. (5)

We recall that in our restrictions to Rp+q+1, we have, as ẽj = iej, the following two cases
for j ≤ p and j > p

dzj(xjej) = xj = dxj(xjej) =⇒ dzj

∣∣∣∣
Rp+1,q

= dxj, and

dzj(x̃ẽj) = x̃i = idx̃j(x̃ẽj) =⇒ dzj

∣∣∣∣
Rp+1,q

= idx̃j.

Substituting these into (5), we have

dVp,q = iq(dx0∧· · ·∧dxp∧dx̃p+1∧· · ·∧dx̃p+q), dVp,q(e0, e1, · · · , ep, ẽp+1, · · · , ẽp+q) = iq. (6)
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Definition 9. We let Dnz be the unique Cn+1 valued complex n-form on Cn+1 such that, for
all (z0, z1, · · · , zn) ∈ Cn+1, we have

〈z0, Dp+qz(z1, z2, · · · , zn)〉 = dVC(z0, z1, z2, · · · zn). (7)

We can express Dnz as a sum of n forms by substituting basis vectors into (7) yielding

Dnz =
n∑

j=0

(−1)jejdẑj, (8)

where
dẑj = dz0 ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · dzn.

Definition 10. We let Dp,qx be the restriction of Dnz to Rp+q+1, so that we have for all
(x0, x1, · · · , xp, x̃p+1, · · · , x̃p+q)

〈x0, Dp,qx(x1, x2, · · · , xn)〉 = dVp,q(x0, x1, x2, · · · xn),

Dp,qx = iq(

p∑

j=0

(−1)jejdx̂j −
p+q∑

j=p+1

(−1)j ẽjdˆ̃xj),

where
dˆ̃xj = dx0 ∧ · · · ∧ dxp ∧ dx̃p+1 ∧ · · · ∧ dx̃j−1 ∧ dx̃j+1 ∧ · · · ∧ dx̃p+q.

Proposition 11. We let g be a holomorphic function from the open set U ⊆ Cn to the right
AC
n module M̃C

n and f be a holomorphic map from U to a left AC
n module MC

n such that there
exists a product · defined on M̃C

n ×MC
n (for instance one of the modules is AC

n). Then,

d(gDnzf) = (g∇+
C)fdVC + g(∇+

Cf)dVC.

Proof. As dzj ∧ dẑj = (−1)jdV ,

d(fDnzg) = d(
n∑

j=0

(−1)jgejdẑjf)

=
n∑

j=0

(−1)j(
∂g

∂zj
ejdzj ∧ dẑjf + gejdzj ∧ dẑj

∂f

∂zj
)

=
n∑

j=0

(−1)j+j(
∂g

∂zj
ejfdVC + gej

∂f

∂zj
dVC)

= (g∇+
C)fdVC + g(∇+

Cf)dVC.
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By substituting in the constant 1 for g and f respectively

d(gDnz) = (g∇+
C)dVC, d(Dnzf) = (∇+

Cf)dVC. (9)

Corollary 12. f is complex-left-monogenic on U ⇐⇒ Dnzf is closed on U .
g is complex-right-monogenic on U ⇐⇒ gDnz is closed on U .

We restrict these forms to real subspaces Ap,q to obtain an analog for C1 functions on
Rp+q+1 mapping to appropriate modules.

d(fDp,qxg) = (f∇+
p,q)gdVp,q + f(∇+

p,qg)dVp,q, (10)

d(fDp,qx) = (f∇+
p,q)dVp,q, d(Dp,qxf) = (∇+

p,qf)dVp,q.

Corollary 13. f is (p, q)-left-monogenic on U ⇐⇒ Dp,qxf is closed on U .
g is (p, q)-right-monogenic on U ⇐⇒ gDp,qx is closed on U .

We consider Rp+q+1 ⊂ Ap,q, and an open set U contained in Rp+q+1, with oriented bound-
ary ∂U . At a point x ∈ ∂U , we let nx = n0e0 + n1e1 + · · ·+ npep + ñp+1ẽp+1 + · · ·+ ñp+qẽp+q
be a outward pointing normal unit vector to U at x. We let dSp,q be the contraction of nx
with dVp,q, so that we have for v1, . . . , vn in the tangent space of ∂U at x,

dSp,q(v1, . . . , vn) = dVp,q(nx, v1, . . . , vp+q),

dSp,q = iq(

p∑

j=0

(−1)jnjdx̂j +

p+q∑

j=p+1

(−1)jnj ˆ̃xj).

Lemma 14. With n̄x denoting the complex conjugate of the vector defined above,

Dp,qx

∣∣∣∣
∂U

= n̄xdSp,q.

Proof. By definition nx is orthogonal to the tangent space, so for every vector x = x0e0 +
x1e1 + · · · + xpep + x̃p+1ẽp+1 + · · · + x̃p+qẽp+q in the tangent space, we have that from our
orthogonality relation that it satisfies

p∑

j=0

njxj +

p+q∑

j=p+1

njx̃j = 0 =⇒ n0dx0 + · · ·+ npdxp + np+1dx̃p+1 + · · ·+ np+qdx̃p+q = 0.

Without loss of generality, we suppose n0 6= 0, and so we can isolate dx0, and substitute it
into dVp,q, and so we obtain on this tangent space, using the symbol dx̌ to consider wedge
products of all but dx0, dxj,

dx̌j = dx1 ∧ dx2 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dx̃p+q =⇒ dxj ∧ dx̌j = (−1)j−1dx̂0,

dx0 = − 1

n0

(n1dx1 + n2dx2 + · · ·+ npdxp + np+1dx̃p+1 + · · ·+ np+qdx̃p+q), (11)
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dSp,q = iq(n0dx̂0 +

p∑

j=1

(−1)j(−n
2
j

n0

)dxj ∧ dx̌j) +

p+q∑

j=p+1

(−1)j(−n
2
j

n0

)dx̃j ∧ dx̌j)

=
iq

n0

(

p+q∑

j=0

n2
j)dx̂0 =

iq

n0

dx̂0.

We perform a very similar computation for Dp,qx, substituting in (11) to get

Dp,qx

∣∣∣∣
∂U

= iq(

p∑

j=0

(−1)jejdx̂j −
p+q∑

j=p+1

(−1)j ẽjdˆ̃xj)

= iq(

p∑

j=0

(−1)j
1

n0

njejdxj ∧ dx̌j −
p+q∑

j=p+1

(−1)j
1

n0

nj ẽjdx̃j ∧ dˇ̃xj) =
iqn̄x
n0

dx̂0 = n̄xdSp,q.

We let Kr and Sr be the boundaries of the sets {x ∈ Rp+q+1 : N(x) ≤ r} and {x ∈
Rp+q+1 : ‖x‖2 ≤ r}, and note that the outward pointing normal vectors at x will be x̄

‖x‖ and
x
‖x‖ respectively, so we get the following corollary, analogous to Lemma 3 of [L].

Corollary 15.

Dp,qx

∣∣∣∣
Kr

=
x

‖x‖dS, Dp,qx

∣∣∣∣
Sr

=
x̄

‖x‖dS = x̄
dS

r
.

We note that these expressions are the same when q = 0.

5 Standard Cauchy-Fueter Formula

We present the Cauchy Integral Formula for Clifford Algebras of definite signature. A modern
introduction can be found in [GM], in which monogenic functions are defined on Rp+q, not
Rp+q+1, and different notation is used. We present this theorem and proof for clarity, and
also for comparison with later formulas and proofs.

Theorem 16. Cauchy-Fueter Formula for Universal Clifford Algebras of Signature (n, 0):
Let U ⊂ Rn+1 ⊂ An be an open bounded set with smooth boundary ∂U and f be a (n, 0)-left-
monogenic function defined on a neighborhood of U for n ≥ 2. We have, where ωn is the
surface area of the unit n-sphere:

∫

∂U

Gn,0(x− x0)Dn,0xf(x) =

{
(1− n)ωnf(x0) x0 ∈ U
0 x0 /∈ Ū

.

If g is (n, 0)-right-monogenic:

∫

∂U

g(x)Dn,0xGn,0(x− x0) =

{
(1− n)ωng(x0) x0 ∈ U
0 x0 /∈ Ū

.
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Proof. We prove only the left-monogenic case, with the other case proceeding symmetrically.
By translation, we can consider x0 to be fixed at zero. We note that as the form is definite,
Rn+1
G = Rn+1 \ {0}, and for x ∈ Rn+1 \ {0} ∩ U

d(Gn,0Dn,0xf) = (Gn,0∇+
n,0)fdVn,0 +Gn,0(∇+

n,0f)dVn,0 = 0.

Suppose 0 /∈ U . In this case, Gn,0Dn,0xf is a closed form on U , and so by Stokes’ Theorem,
the integral of it about ∂U will be zero. Now, if 0 ∈ U , as U is open, we consider the ball
Br = {x ∈ Gn,0 : ‖x‖ ≤ r} ⊂ U . We have by Stokes’ Theorem, applied to the manifold
U \Br,0, ∫

∂U

Gn,0Dn,0xf =

∫

∂Br

Gn,0(x)Dn,0xf.

We apply Corollary 15 and substitute the definition of Gn,0 to continue,

∫

∂U

Gn,0Dn,0xf =

∫

∂Br

Gn,0(
xf

‖r‖dSn,0)

=

∫

∂Br

(1− n)
xx+f

(N(x))(n+1)/2

dSn,0
r

=

∫

∂Br

(1− n)
f‖x‖2dSn,0

(N(x))(n+1)/2r
.

We note that N(x) = ‖x‖2 = r2, split the integral into two, and recognize the second of the
resultant integrals as that of a constant over a sphere.

=
1− n
rn

∫

∂Br

f(x)dSn,0 =
1− n
rn

(

∫

∂Br

(f(x)− f(0))dSn,0 +

∫

∂Br

f(0)dSn,0)

=
1− n
rn

∫

∂Br

(f(x)− f(0))dSn,0 + (1− n)ωnf(0). (12)

To deal with the first integral, we use Cauchy-Swartz inequality, and have that if M is the
sup of |f(x)− f(0)| on ∂Br,

∣∣∣∣
1− n
rn

∫

∂Br

(f(x)− f(0))dSn,0

∣∣∣∣ ≤
n− 1

rn

∫

∂Br,x0

|f(x)− f(x0)||dSn,0| ≤ ωnM(n− 1).

Thus, as we let r → 0, M goes to zero as f continuous, and so the first integral of (12)
vanishes, yielding the theorem.

We next prove two analogues of this result for (p, q)-monogenic functions, theorems 20
and 23. These statements (and subsequent proofs) follow closely from Theorems 13 and 16
of [L].

6 First Cauchy-Fueter Formula Formulation

In this section we present an integral formula for (p, q)-monogenic functions. We begin by
defining the one-parameter map hp,q,ε which will be used to state the integral formula. This
map, along with lp,q,ε, will serve to change the contour of integration through Cp+q+1 from
one contained in the real span of e0, e1, . . . , ep, ẽp+1, . . . , ẽp+q to one contained in the real
span of e0, . . . , ep, ep+1, . . . ep+q, from whence the standard integral formula may be applied.
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Definition 17. We let hp,q,ε : Cp+q+1 → Cp+q+1 for 0 ≤ ε ≤ 1 be defined by

z =

p+q∑

j=0

zjej → zh,ε =

p∑

j=0

(1 + iε)zjej +

q+1∑

j=p+1

(1− iε)zjej.

Corollary 18. If x =
∑p

j=0 xjej +
∑p+q

j=p+1 x̃j ẽj ∈ Rp+q+1 ⊂ Ap,q ⊂ AC
p+q,

N(xh,ε) = (1− ε2)N(x) + 2iε‖x‖2,

xh,1 =

p∑

j=0

(1 + i)xjej +

p+q∑

j=p+1

(1− i)xj(iej) =

p∑

j=0

(1 + i)xjej +

p+q∑

j=p+1

(1 + i)x̃jej, and

N(xh,1) = 2i‖x‖2.

Definition 19. We let hp,q,ε,x0 : x→ x0 + hp,q,ε(x− x0).

Theorem 20. Cauchy-Fueter Formula for Universal Clifford Algebras of Signature (p, q):
Let U ⊂ Rp+q+1 ⊂ Ap,q be an open bounded set with smooth boundary ∂U , and let f be a (p, q)-
left-monogenic function defined on a neighborhood of Ū , mapping to a left AC

p,q module MC
p+q,

with p+ q ≥ 2. Suppose f extends into a complex-left-monogenic function fC : WC →MC
p+q,

with WC ⊂ Cp+q+1 ⊂ AC
p+q an open subset containing Ū . We have

∫

(hp,q,ε,x0 )∗(∂U)

Gp,q(z − x0)Dp+qzf
C(z) =

{
(1− p− q)ωp+qf(x0) x0 ∈ U
0 x0 /∈ Ū

for all ε > 0 sufficiently close to 0. If g is right-monogenic mapping to a right AC
p+q module

M̃C
p+q, which extends to a complex-right-holomorphic function gC : WC → M̃C

p+q, we have

∫

(hp,q,ε,x0 )∗(∂U)

gC(z)Dp+qzGp,q(z − x0) =

{
(1− p− q)ωp+qg(x0) x0 ∈ U
0 x0 /∈ Ū

.

We begin by giving an outline of the proof. As with the proof of the definite case, we will
set x0 = 0 by translation, so that hp,q,ε,x0 = hp,q,ε, and consider only the left-monogenic case.
We first consider (hp,q,ε,x0)∗(∂U). We note that if we consider the image of Rp+q+1 under
hp,q,ε, denoted by (hp,q,ε)∗(Rp+q+1), we have for all x 6= 0, N(x) = (1 − ε2)N(x) + 2iε‖x‖.
This is not a negative real, so we have (hp,q,ε)∗(Rp+q+1 \ {0}) ∈ Cp+q+1

G . Thus, we have
that if ∂U is a contour in Rp+q+1 of a set as stated in the theorem, its image under hp,q,ε,
denoted by (hp,q,ε)∗(∂U), will be contained in region of Cp+q+1

G , so our Green’s function is well
defined. We note that this implies if f is a complex-left-monogenic function on (hp,q,ε)∗(U),
we have the following result by Corollary 12 applied to (hp,q,ε)∗(U) \ (hp,q,ε)∗(Bp,q,r), where
(hp,q,ε)∗(Bp,q,r) is the image of Bp,q,r ⊂ U = {x ∈ Rp+q+1 : ‖x‖ ≤ r} with boundary Sp,q,r,
∫

(hp,q,ε)∗(∂U)

Gp+q(z)Dp+qzf
C(z)−

∫

(hp,q,ε)∗Sr

Gp+q(z)Dp+qzf
C(z)

=

∫

(hp,q,ε)∗(U)\(hp,q,ε)∗(Bp,q,r)
d(Gp+q(z)Dp+qzf

C(z)) =

∫

(hp,q,ε)∗(U)\(hp,q,ε)
0dVC = 0. (13)
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By varying the parameter from ε to 1, we can continuously deform (hε)∗(Sp,q,r) into (hp,q,1)∗(Sp,q,r)
in Cp+q+1

G for any ε ≤ 1, and so we have
∫

(hp,q,ε)∗(∂U)

Gp+q(z)Dp+qzf
C(z) =

∫

(hp,q,1)∗Sr

Gp+q(z)Dp+qzf
C(z) (14)

We will move the deformed sphere into Rp+q+1 ⊂ Ap+q,0 ⊂ AC
p+q by means of the following

map.

Definition 21. Let lp,q,ε : Cp+q+1 → Cp+q+1 for 0 ≤ ε ≤ 1 be the rotation

z → zl,ε =
1− iε√
1 + ε2

z.

Corollary 22.

N(zl,ε) =
1− 2iε− ε2

1 + ε2
N(z), ‖zl,ε‖ = ‖z‖.

We consider the composition of hp,q,ε and lp,q,ε applied to sphere Sp,q,r. If z = hp,q,1(x) for
some x ∈ Sp,q,r, we have. N(z) = 2i‖x‖2. Therefore, N(zl,ε) will not be a negative real for
all 0 ≤ ε ≤ 1, which implies that the image of (hp,q,1)∗(Bp,q,r) under lp,q,ε as we vary ε from
0 to 1 will be contained in Cp+q+1

G . We also note that the composition of both of these is
orientation preserving, as seen by applying them to the basis vectors. We can now state the
full argument.

Proof. Let M = supx∈∂U ‖x‖. We restrict WC to be the δ neighborhood of Ū for some δ > 0.
We consider 0 < ε < δ

M
. Thus, we have that (hε)∗(∂U) ⊆ Cp+q+1

G lies inside WC, and in this
region, we have that the integrand is closed by Corollary 12, so the integral will be constant
for all 0 < ε < δ

M
. If 0 /∈ Ū , we have that (hε)∗(U) ⊆ Cp+q+1

G , the form is closed, and so the
integral about the boundary is zero, and we are done.
If not, we choose an r sufficiently small such that r < δ

2
, and Sr = {x ∈ Rn+1 : ‖x‖ = r} is

contained in U , with the orientation given by it being the boundary of {x ∈ Rn+1 : ‖x‖ ≤ r}.
We consider (hε)∗Sr, and we have by (13)

∫

(hp,q,ε)∗(∂U)

Gp+qDp+qzf
C =

∫

(hp,q,ε)∗Sr

Gp+qDp+qzf
C.

As r < δ
2
, (hp,q,1)∗Sr is contained in WC, so we apply (14). By our mapping, lp,q,1, we have

that, where S̃r
√

2 is the sphere of radius r
√

2 contained in Rp+q+1 ⊂ Ap+m,0,

=

∫

(hp,q,1)∗Sr

Gp+q(z)Dp+qzf(z) =

∫

S̃r
√
2

Gp+q,0(x)Dp+qxf
C(x),

Thus, we have by Stokes’ Theorem in Cn+1
G , and the result for the definite case:

∫

(hp,q,ε)∗(∂U)

Gp,qDp+qzf
C =

∫

S̃r
√
2

Gp+qDp+qzf
C

=

∫

S̃r
√
2

Gp+q,0Dp+q,0xf
C = (1− p− q)ωp+qf(0).
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7 Second Cauchy-Fueter Formula Formulation

We state and prove a second integral formula, one that does not change the contour of
integration. In this case, a direct limiting argument is used, resulting in a longer proof. We
first introduce a hybrid spherical coordinates system in which our integral simplifies. In this
system, we are able to adapt the methods of [L] to prove the theorem up to a constant, Cp,q.
We present two separate proofs in which we apply Theorem 20 to a constant function in
order to establish the value of Cp,q.

Theorem 23. Let U ⊂ Rp+q+1 be a bounded open region with smooth boundary ∂U . Let
f : U → Mp,q, an Ap,q module, be a left-monogenic function with p + q ≥ 2. Suppose ∂U
intersects the cone {x ∈ Rp+q+1 : N(x− x0) = 0} transversally. We have

lim
ε→0

∫

∂U

Gp,q,ε(x− x0) ·Dp,qxf(x) =

{
(1− p− q)ωp+qf(x0) x0 ∈ U
0 x0 /∈ Ū

,

where Gp,q,ε is the modified Green’s function defined by

Gp,q,ε =
(1− p− q)(x0 −

∑p
j=1 xjej −

∑p+q
j=p+1 x̃j ẽj)

(
∑p

j=0 x
2
j −

∑p+q
j=p+1 x̃

2
j + iε(

∑p
j=0 x

2
j +

∑p+q
j=p+1 x̃j))

((p+q)+1)/2
=

(1− p− q)x+

(N(x) + iε‖x‖2)
(p+q)+1

2

.

Similarly, if g right-monogenic satisfying the same restraints and mapping to M̃p,q, a right
Ap,q module, we have:

lim
ε→0

∫

∂U

g(x) ·Dp,qx ·Gp,q,ε(x− x0) =

{
(1− p− q)ωp+qg(x0) x0 ∈ U
0 x0 /∈ Ū

.

Proof. We consider the change of coordinates to hybrid spherical coordinates given by

Φ(θ, φ1, . . . , φp, ρ, ψ1, . . . , ψq−1) = (x0, x1, . . . , xp, x̃p+1, . . . , x̃p+q)

x0 = ρ cos θ cosφ1

x1 = ρ cos θ sinφ1 cosφ2

x2 = ρ cos θ sinφ1 sinφ2 cosφ3
...
xp−1 = ρ cos θ sinφ1 · · · cosφp
xp = ρ cos θ sinφ1 · · · sinφp
x̃p+1 = ρ sin θ cosψ1

x̃p+2 = ρ sin θ sinψ1 cosψ2
...
x̃p+q−1 = ρ sin θ sinψ1 · · · cosψq−1

x̃p+q = ρ sin θ sinψ1 · · · sinψq−1

0 ≤ φ1, φ2, . . . , φp−1, ψ1, ψ2, . . . , ψq−2 ≤ π
0 ≤ φp, ψq−1 ≤ 2π
0 ≤ θ ≤ π

2
.

(15)

15



We will use these coordinates for proving the theorem, and will establish several results that
motivate the choice of coordinates. In these coordinates, we have

N(x) =

p∑

j=0

x2
j −

p+q∑

j=p+1

x̃2
j = ρ2 cos2 θ − ρ2 sin2 θ = ρ2 cos 2θ, and

‖x‖2 =

p∑

j=0

x2
j +

p+q∑

j=p+1

x̃2
j = ρ2.

We thus have that the null cone Np,q is the set such that θ = π
4
, and we structure our

argument in the vein of [L]. We use the symmetry of the change of basis matrix with respect
to p and q − 1 to calculate the determinant by means of block matrices.

Lemma 24. We let Sn,α be the Jacobian matrix corresponding to the transformation into
standard n dimensional spherical coordinates, (ρ, α1, . . . , αn)→ (x0, . . . , xn) ∈ Rn+1,

det(Sn,α) = ρn sinn−1 α1 sinn−2 α2 · · · sinαn−1.

The determinant of the Jacobian matrix of the change of basis (15) is given by

det(DΦ) = −ρ cosp θ sinq−1 θ det(Sp,φ) det(Sq−1,ψ).

Proof. We let A be the (p + 1) × (p + 1) matrix that is obtained from Sp,φ by multiplying
the first column by −ρ sin θ and multiplying the rest of the columns are by cos θ. We let the
first column of A be ~a. We let B be the (p+ 1)× q matrix whose first column is ~b, described
below, and all other columns are zero. Similarly, we let Γ be the q × (p + 1) matrix whose
first column is ~c and the rest of the columns are zero. Finally, we let ∆ be Sq−1,ψ, where each

entry is multiplied by sin θ, and we label its first column by ~d. Expressing these definitions
in terms of matrix multiplication, and computing the Jacobian matrix, we have the following

A = Sp,φ ·




−ρ sin θ 0 0 . . .
0 cos θ 0 . . .
0 0 cos θ . . .

0 0 0
. . .


 , ∆ = Sq−1,ψ · (sin θ)

~a = (−ρ sin θ) ·




cosφ1

sinφ1 cosφ2
...

sinφ1 sinφ2 · · · cosφp
sinφ1 sinφ2 · · · sinφp



, ~b = (

− cos θ

ρ sin θ
) · ~a,

~c = (ρ cos θ)




cosψ1

sinψ1 cosψ2
...

sinψ1 sinψ2 · · · cosψq−1

sinψ1 sinψ2 · · · sinψq−1



, ~d = (

sin θ

ρ cos θ
)~c, and
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DΦ =




∂x0
∂θ

∂x0
∂φ1

∂x0
∂φ2

. . . ∂x0
∂φp

∂x0
∂ρ

∂x0
∂ψ1

. . . ∂x0
∂ψq−1

∂x1
∂θ

∂x1
∂φ1

∂x1
∂φ2

. . . ∂x1
∂φp

∂x1
∂ρ

∂x1
∂ψ1

. . . ∂x1
∂ψq−1

...
...

...
. . .

...
...

...
. . .

...
∂xp
∂θ

∂xp
∂φ1

∂xp
∂φ2

. . . ∂xp
∂φp

∂xp
∂ρ

∂xp
∂ψ1

. . . ∂xp
∂ψq−1

∂x̃p+1

∂θ

∂x̃p+1

∂φ1

∂x̃p+1

∂φ2
. . . ∂x̃p+1

∂φp

∂x̃p+1

∂ρ

∂x̃p+1

∂ψ1
. . . ∂x̃p+1

∂ψq−1

...
...

...
. . .

...
...

...
. . .

...
∂x̃p+q
∂θ

∂x̃p+q
∂φ1

∂x̃p+q
∂φ2

. . . ∂x̃p+q
∂φp

∂x̃p+q
∂ρ

∂x̃p+q
∂ψ1

. . . ∂x̃p+q
∂ψq−1




=

(
A B
Γ ∆

)
.

Lemma 25. If A is an m ×m matrix, B is an m × n matrix, Γ is an n ×m matrix, and

∆ is an invertible n× n matrix, det

(
A B
Γ ∆

)
= det(A−B∆−1Γ) det(∆).

Proof. This standard result on block matrices is proved by factoring into triangular matrices:
(
A B
Γ ∆

)
=

(
A−B∆−1Γ B∆−1

0n,m In,n

)(
Im,m 0m,n

Γ ∆

)
.

Using this,

det(DΦ) = det

(
A B
Γ ∆

)
= det

(
A−B∆−1Γ

)
det(∆).

We next calculate A−B∆−1Γ. We first compute B−1∆Γ, labelling the jth row of the matrix
∆−1 by ~rj (horizontal vector),

B(∆−1Γ) = B







~r1

~r2
...
~rq



(
~c ~0 . . .

)


 =

(
~b ~0 . . .

)



~c · ~r1 0 . . .
~c · ~r2 0 . . .

...
~c · ~rq 0 . . .


 =

(
(~c · ~r1)~b ~0 . . .

)
.

We note that ~c is the first column of ∆ scaled by ρ cos θ
sin θ

, and the so the scalar product of it

and the first row of the inverse of ∆ will be ρ cos θ
sin θ
· 1, as 1 is the upper left entry of ∆−1∆.

Thus, we have that B∆−1Γ is a matrix with first column ρ cos θ
sin θ

~b, and the rest of columns

zero. Thus, as ~b = − cos θ
ρ sin θ

~a, we have that A − B∆−1Γ is A with the first column multiplied

by 1 + cos2 θ
sin2 θ

= 1
sin2 θ

. Using the multilinearity of the determinant, and factoring out the cos θ
and sin θ from the columns of A and ∆,

det(DΦ) = det
(
A−B∆−1Γ

)
det(∆) =

1

sin2 θ
det(A) det(∆)

=
1

sin2 θ
(−ρ sin θ cosp θ sinq θ) det(Sp,φ) det(Sq−1,ψ)

= −ρ cosp θ sinq−1 θ det(Sp,φ) det(Sq−1,ψ).
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We note that this determinant is always negative, and so we will negate it in computations
in order that our change of variables preserve orientation.

Now that we have established this coordinate transformation, we can prove the theorem
in a convenient setting. We first compute

Lemma 26.

∇+
p,qGp,q,ε = Gp,q,ε∇+

p,q =
iε(1− p− q)(p+ q + 1)(‖x‖2 − x+x̄)

(N(x) + iε‖x‖2)(p+q+3)/2
.

We use (10), and Stokes’ theorem to have, where Br is a ball of radius r about the origin,
and Sr its boundary,

Corollary 27.

d(Gp,q,ε ·Dp,qz · f) = (Gp,q,ε∇+
p,q)fdVp,q +Gp,q,ε(∇+

p,qf)dVp,q = (Gp,q,ε∇+
p,q)fdVp,q,

∫

∂U

Gp,q,ε ·Dp,qx · f =

∫

U\Br

iε(p+ q + 1)(1− p− q)(‖x‖2 − x+x̄)

(N(x) + iε‖x‖2)(p+q+3)/2
fdVp,q

+

∫

Sr

Gp,q,ε ·Dp,qx · f.

We will establish (in order) analogues of Lemma 17, Lemma 18, and Lemma 20 of [L],
so that we may analyze the above integrals, and prove the theorem.

Lemma 28. If we fix a θ0 ∈ (0, π
4
) and let p, q be non-negative integers (with z1/2 being

defined as after Definition 5) we have two distributions which send a test function g(θ) into
the limits

lim
ε→0+

∫ π
4

+θ0

π
4
−θ0

g(θ)dθ

(cos(2θ) + iε)
p+q+3

2

and lim
ε→0−

∫ π
4

+θ0

π
4
−θ0

g(θ)dθ

(cos(2θ) + iε)
p+q+3

2

.

Proof. In the case of p+ q = 1 mod 2, this is a consequence of Lemma 17 of [L]. If not, we
modify the proof to fit the fractional case. We have that p+q+3

2
= n+ 1

2
for some non-negative

integer n, and we induct on n. For the base case, n = 0, we integrate by parts,

∫ π
4

+θ0

π
4
−θ0

g(θ)dθ

(cos(2θ) + iε)1/2
=

∫ π
4

+θ0

π
4
−θ0

2 sin 2θ

(cos(2θ) + iε)1/2

g(θ)dθ

2 sin 2θ

= − 2(cos(2θ) + iε)1/2g(θ)

(1/2− n)2 sin 2θ

∣∣∣∣
π/4+θ0

π/4−θ0
+

∫ π
4

+θ0

π
4
−θ0

2(cos(2θ) + iε)
1
2

d

dθ

(
g(θ)

2 sin 2θ

)
dθ.
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As (cos 2θ+ iε)1/2 is integrable for all values of ε, including ε = 0, the limits as ε→ 0± exist
and depend continuously on g(θ). Now we consider the case of n > 0, in which case we can
integrate by parts, and use the inductive hypothesis,

∫ π
4

+θ0

π
4
−θ0

g(θ)dθ

(cos(2θ) + iε)n+1/2
=

∫ π
4

+θ0

π
4
−θ0

2 sin 2θ

(cos(2θ) + iε)n+1/2

g(θ)dθ

2 sin 2θ

=
(cos 2θ + iε)(1/2−n)

1/2− n
g(θ)

2 sin 2θ

∣∣∣∣
π/4+θ0

π/4−θ0
+

∫ π
4

+θ0

π
4
−θ0

1

(n− 1
2
)(cos 2θ + iε)n−

1
2

d

dθ

(
g(θ)

2 sin 2θ

)
dθ.

The first limit is well defined, and the second converges by the inductive hypothesis.

Lemma 29.

lim
ε→0

∫

U\Br

iε(p+ q + 1)(1− p− q)(‖x‖2 − x+x̄)

(N(x) + iε‖x‖2)(p+q+3)/2
fdVp,q = 0.

Proof. We write the integral in the hybrid spherical coordinates (15), and integrate out the
variables r, φ1, . . . , φn, ψp, . . . , ψq−1. When we do this, we retain an integral of the form

ε

∫ π
2

0

g(θ)dθ

(cos 2θ + iε)
p+q+3

2

. (16)

Due to the transversality of the manifold with respect to the null cone, g(θ) is smooth for θ
lying in the interval [π

4
− θ0,

π
4

+ θ0] with θ0 ∈ (0, π
4
), so we can apply our previous lemma

for
∫ π

4
+θ0

π
4
−θ0 , and the limit on the remainder of the interval is defined, so the limit of the entire

integral will exist, meaning that when we take ε→ 0, the entire expression vanishes.

We define a constant, and evaluate two limits that will come up in our proof.

Cp,q = lim
ε→0

∫ π
2

0

cosp θ′ sinq−1 θ′

(cos 2θ′ + iε)(p+q+1)/2
dθ′. (17)

Proposition 30.

lim
r→0+

(lim
ε→0

∫

Sr

‖x‖2f(x)

(N(x) + iεr2)
p+q+1

2

dSp,q
r

) = ωpωq−1i
qCp,qf(0).

Proof. We can split dSp,q = (rp+q cosp θ sinq−1 θdθdΩp,φdΩq−1,ψ)iq, where Ωn,α = det(Sn,α)

ρn
dα1dα2 · · · dαn

represents the angular integral components. The factor of iq comes from the normalization
of the Euclidean volume element on this space, (6). We note that the factors of r in the
numerator and denominator cancel. We let Fε(θ) be the antiderivative of cosp θ sinq−1 θ

(cos 2θ+iε)(p+q+1)/2 .

When we do this, and integrate by parts we get

Fε(θ) =

∫ θ

0

cosp θ′ sinq−1 θ′

(cos 2θ′ + iε)(p+q+1)/2
dθ′,
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∫

Sr

f(x)

(cos 2θ + iε)
p+q+1

2

dSp,q

= iq
∫

Sp

∫

Sq−1

∫ θ=π/2

θ=0

f(x)

(cos 2θ + iε)
p+q+1

2

(cosp θ sinq−1 θdθdΩp,φdΩq−1,ψ)

= iq
∫

Sp

∫

Sq−1

fFε(θ)

∣∣∣∣
θ=π/2

θ=0

dΩp,φdΩq−1,ψ − iq
∫

Sp

∫

Sq−1

Fε(θ)
∂f

∂θ
dθdΩφ,pdΩψ,q−1.

By the chain rule, we have ∂f
∂θ

=
∑

i
∂f
∂xi

∂xi
∂θ

= r · g(x), where g(x) is a smooth function.
Thus, the second term will be a constant multiple of r (by Lemma 28), and so in the limit of
r → 0 it will vanish. In the first term, as r goes to zero, f will approach f(0) (we implicitly
apply the argument presented in the proof of Theorem 16), and so we can carry it out, and
integrate Ωp,φ and Ωq−1,ψ to be the respective surface areas to get

iq
∫

Sp

∫

Sq−1

fFε(θ)

∣∣∣∣
θ=π/2

θ=0

→ f(0)ωpωq−1 lim
ε→0

Fε(θ)

∣∣∣∣
θ=π/2

θ=0

= iqωpωq−1Cp,qf(0).

The following integral appears as a cross term.

Proposition 31.

lim
r→0+

(lim
ε→0

∫

Sr

∑q
i=1 x̃j+pẽj+p(

∑p
j=0 xjej)f(x)

(N(x) + iεr2)
p+q+1

2

dSp,q
r

= 0).

Proof. We note that as in the previous case, once we convert to spherical coordinates, the
factors of r will cancel. Additionally, when we convert to spherical coordinates, we have
that the ith term of the outer sum will be of the form cosψi · hi, where hi is a function does
not depend on ψi, except for i = q, which will have instead sinψi−1. Additionally, we use
Lemma 24, to see that the Jacobian as a function of ψj will be proportional to sinq−1−i ψj for

some integer k > 0, with ψq−1. By absorbing the remaining factors of dSp,q(cos 2θ+ iε)−
p+q+1

2

(including iq and possible negative signs) into the hi, so we still have ∂hi
∂ψi

= 0, then for all ε,
we can split the integral into

lim
r→0+

(lim
ε→0

q−2∑

i=1

∫

Sr

cosψi sin
q−1−i ψihif(x)dθdφ1dφ2 · · · dφpdψ1dψ2 · · · dψq−1

+

∫

Sr

cosψq−1hq−1f(x)dθdφ1dφ2 · · · dφpdψ1dψ2 · · · dψq−1

+

∫

Sr

sinψq−1hqf(x)dθdφ1dφ2 · · · dφpdψ1dψ2 · · · dψq−1).

We take the ε limit of each hi, which will exist by Lemma 28, and integrate the ith term
with respect to ψi for 1 ≤ i ≤ q − 2. When we integrate with respect to ψi, we have

∫ ψi=π

ψi=0

cosψi sin
q−1−i ψihif(x)dψi =

sinq−i ψi
q − i hif(x)

∣∣∣∣
π

ψi=0

−
∫ π

0

sinq−i ψi
q − i hi

∂f

∂ψi
dψi.
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The boundary term is zero, and the second integral yields a factor of r by the chain rule as
demonstrated in the proof of Proposition 30, and so as we take the limit as r goes to zero, it
too will vanish. For i = q − 1, i = q, we have that the bounds of integration will instead be
0 and 2π, and the same argument works in this case as well, showing that the the integral
of Proposition 31 as a whole will be on the order of r, and vanish in the limit.

Now that we have established these two equalities, we can prove an analog of Lemma 20
of [L].

Lemma 32. Let Cp,q be as in (17), then

lim
r→0+

(lim
ε→0

∫

Sr

(1− p− q) x+ ·Dp,qx · f(x)

(N(x) + iεr2)
p+q+1

2

) = iq(1− p− q)ωpωq−1Cp,qf(0).

Proof. We begin by factoring out the (1− p− q) from both sides. We use Corollary 15, and
have ∫

Sr

x+ ·Dp,qx · f
(N(x) + iεr2)

p+q+1
2

=

∫

Sr

x+x̄f

(N(x) + iεr2)
p+q+1

2

dSp,q
r

. (18)

We calculate, if x = x0e0 +
∑p

j=1 xjej +
∑p+q

j=p+1 x̃j ẽj,

x+x̄ = ‖x‖2 − 2x0(

p+q∑

j=p+1

x̃j ẽj) + 2(

p∑

j=1

xjej)(

p+q∑

j=p+1

x̃j ẽj) = ‖x‖2 − 2

q∑

j=p+1

x̃j ẽj(

p∑

j=0

xpei).

We split the integral of (18) into two parts to be analyzed separately,

=

∫

Sr

‖x‖2f

(N(x) + iεr2)
p+q+1

2

dSp,q
r
− 2

∫

Sr

∑q
i=1 x̃j+pẽj+p(

∑p
j=0 xjej)f(x)

(N(x) + iεr2)
p+q+1

2

dSp,q
r

.

Applying Propositions 30 and 31 yields the lemma.

We can prove Theorem 23 up to a constant. If 0 is not contained within our manifold
U , we have that the integral about the boundary will be the integral of Lemma 29 on the
interior, which goes to zero. If not, we can apply Corollary 27, and we have that the first
term goes to zero by Lemma 29, and the second integral goes to iqωpωq−1Cp,q by the Lemma
32.

Lemma 33.
Cp,q = (−i)q ωp+q

ωpωq−1

.

Proof. We prove this by applying both integral formulas to the constant function f(x) =
1

1−p−q on the sphere Sp,q = {x ∈ Rp+q+1 : ‖x‖ = 1}. When we apply the first integral
formula, we obtain for all ε sufficiently close to zero:

∫

(hp,q,ε)∗(Sp,q)

z+Dz

N(z)
p+q+1

2

= ωp+q.
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We note that hp,q,ε is a linear transformation, and we can write this as an integral over the
sphere Sp,q once we calculate the pullback of Dz. We expand the form in the standard basis,
and note that for wj ∈ Sp,q, with hp,q,ε(wj) = zj, if j ≤ p, dzj = (1 + iε)dwj, and if j > p, we
have dzj = (1 − iε)dwj. We expand Dz using (8), and have where D̃w is a constant p + q
form that depends polynomially on ε:

Dz =

p∑

j=0

(−1)jej(1 + iε)p(1− iε)qdŵj −
p+q∑

j=p+1

(−1)jej(1 + iε)p+1(1− iε)q−1dŵj

= Dw + εD̃w.

We let z̃ be defined as

z =

p+q∑

j=0

zjej → z̃ =

p∑

j=0

zjej −
p+q∑

j=p+1

zjej

Using this operator, and Corollary 18 we obtain expressions for the final two terms in our
integral,

z+ = (w + iεw̃)+ = w+ + iεw̃+,

N(z) = (1− ε2)N(w) + iε‖w‖2 = (1− ε2)N(w) + iε,

∫

(hp,q,ε)∗(Sp,q)

z+Dz

N(z)
p+q+1

2

=

∫

Sp,q

(w+ + iεw̃+)(Dw + εD̃w)

((1− ε2)N(w) + iε)
p+q+1

2

=

∫

Sp,q

w+Dw

((1− ε2)N(w) + iε)
p+q+1

2

+

∫

Sp,q

εw̃+D̃w + iεw̃+(Dw + εD̃w)

((1− ε2)N(w) + iε)
p+q+1

2

. (19)

With the first integral of (19), we do the change of variables, ε′ = ε
1−ε2 , ε =

−1+
√

1+4(ε′)2

2ε′ ,
with ε(0) = 0. We note that ε′ is a smooth function of ε for ε sufficiently small.

∫

Sp,q

w+Dw

((1− ε2)N(w) + iε)
p+q+1

2

= (
ε′

ε
)
p+q+1

2

∫

Sp,q

w+Dw

(N(w) + iε′)
p+q+1

2

.

We take the limit as ε goes to zero, and have that the outer term will approach 1, and
the integral will approach iqωpωq−1 by the second formulation of Cauchy Fueter formula, as
ε→ 0 ⇐⇒ ε′ → 0.

For the second integral of (19), we note that we can factor out ε, and then change the
inner coordinates from ε to ε′, and have where Dε′ is a constant differential form that depends
smoothly on ε′:

∫

Sp,q

εw̃+D̃w + iεw̃+(Dw + εD̃w)

((1− ε2)N(w) + iε)
p+q+1

2

= ε(
ε′

ε
)
p+q+1

2

∫

Sp,q

Dε′

(N(w) + iε′)
p+q+1

2

.

We can convert to the spherical coordinates of (15), and apply Lemma 28 in the same manner
as is done in the proof of the second integral formula. When we do this, we have that the
integral approaches a constant C as ε′ goes to zero, so as ε goes to zero, the second term
approaches zero.
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We prove Lemma 33 a second way.

Proof. We apply both integral formulas to the constant function f(x) = 1
1−p−q to show this

equivalence. We let Sp,q,1 be the unit sphere in Rp+q+1. We have by the first integral formula
that there exists an ε1 > 0 such that for all 0 < ε ≤ ε1,

∫

(hp,q,ε)∗(Sp,q,1)

z+Dp+qz

(N(z))
p+q+1

2

= ωp+q.

We note that this is a strict equality, and not a limiting argument, so we can fix this ε1
throughout the proof. We will consider the following integral:

∫

Sp,q,1

z+Dp,qz

(N(z) + iε2)
p+q+1

2

.

We have by the first integral formula

lim
ε2→0

∫

Sp,q,1

z+Dp,qz

(N(z) + iε2)
p+q+1

2

= lim
ε2→0

∫

Sp,q,1

x+Dp+qx

(N(x) + iε2‖x‖)
p+q+1

2

= iqCp,qωpωq−1.

We let Γε2(z) = ( 1

N(z)
p+q+1

2
− 1

(N(z)+iε2)
p+q+1

2
), and have by Stokes’ Theorem, if U is the

manifold bounded by (hp,q,ε1)∗(Sp,q,1) and Sp,q,1:

iqCp,qωpωq−1 =

∫

Sp,q,1

z+Dp,qz

(N(z) + iε2)
p+q+1

2

=

∫

(hp,q,ε1 )∗(Sp,q,1)

z+Dp,qz

(N(z) + iε2)
p+q+1

2

−
∫

U

d(
z+Dp,qz

(N(z) + iε2)
p+q+1

2

)

=

∫

(hp,q,ε1 )∗(Sp,q,1)

z+Dp,qz

(N(z))
p+q+1

2

−
∫

(hp,q,ε1 )∗(Sp,q,1)

z+Γε2(z)Dp+qz −
∫

U

d(
z+Dp,qz

(N(z) + iε2)
p+q+1

2

)

= ωp+q −
∫

(hp,q,ε1 )∗(Sp,q,1)

z+Γε2(z)Dp+qz −
∫

U

d(
z+Dp,qz

(N(z) + iε2)
p+q+1

2

).

We apply the following lemmas, and the constant is computed.

Lemma 34.

lim
ε2→0

∫

U

d(
z+Dp,qz

(N(z) + iε2)
p+q+1

2

) = 0. (20)

Proof. By (9) we have

∫

U

d(
z+Dp,qz

(N(z) + iε2)
p+q+1

2

) =

∫

U

(
z+

(N(z) + iε2)
p+q+1

2

∇+)dVC.

We do a similar computation to Lemma 26:

∇+(
z+

(N(z) + iε2)
p+q+1

2

) = (
z+

(N(z) + iε2)
p+q+1

2

)∇+ =
iε2(p+ q + 1)

(N(z) + iε2)
p+q+3

2

.
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We can parametrize the sphere Sp,q,1 by (15), with ρ = 1, and extend this to a parametrization
of U by considering the parametrization under hp,q,ε as ε varies 0 to ε1. We have that N(z) =
cos 2θ + iε by Corollary 18. We can integrate out the variables φ1, φ2, . . . , φp, ψ1, . . . , ψq−1,
get the integral to be of the form

=

∫ θ=π
2

θ=0

∫ ε=ε1

ε=0

iε2g(θ, ε)

(cos 2θ + iε+ iε2)
p+q+3

2

dεdθ.

In this case, g(θ, ε) a smooth function that arises from the Jacobian of this transformation
(it will be a polynomial in ε, cos θ, sin θ that does not depend on ε2). We prove a very similar
result to Lemma 29 that will prove (20):

Proposition 35. Let g(θ, ε) be a smooth function, and n ≥ 1 an integer.

lim
ε2→0

∫ θ=π
2

θ=0

∫ ε=ε1

ε=0

iε2g(θ, ε)

(cos 2θ + iε+ iε2)
n
2

dεdθ = 0.

We show this inductively, with two base cases corresponding to the parity of n, n = 1
and n = 2. In each of these cases we integrate by parts with respect to ε:

∫ π
2

0

∫ ε1

0

iε2g(θ, ε)

(cos 2θ + iε+ iε2)
1
2

= 2iε2

∫ π
2

0

g(θ, ε)(cos 2θ + iε2 + iε1)
1
2

∣∣∣∣
ε=ε1

ε=0

dθ

− 2iε2

∫ π
2

0

∫ ε1

0

(cos 2θ + iε+ iε2)
1
2
∂g(θ, ε)

∂ε
dεdθ,

∫ π
2

0

∫ ε1

0

iε2g(θ, ε)

(cos 2θ + iε+ iε2)1
= iε2

∫ π
2

0

g(θ, ε) log(cos 2θ + iε2 + iε1)

∣∣∣∣
ε=ε1

ε=0

dθ

− iε2
∫ π

2

0

∫ ε1

0

log(cos 2θ + iε+ iε2)
∂g(θ, ε)

∂ε
dεdθ.

Here, as with the proof of Lemma 18 of [L] and Lemma 29 above, the complex logarithm
and z1/2 are defined everywhere except the negative real axis. We thus have that as ε2 goes
to zero, the limits of the integrals exist, and so when we take into account the factor of ε2
multiplying the integrals, the terms go to zero. We consider the case of general n,

∫ π
2

0

∫ ε1

0

iε2g(θ, ε)

(cos 2θ + iε+ iε2)
n
2

=
2iε2
n− 1

∫ π
2

0

g(θ, ε)

(cos 2θ + iε+ iε2)
n−1
2

∣∣∣∣∣

ε=ε1

ε=0

dθ

− 2iε2
n− 1

∫ π
2

0

∫ ε1

0

∂g(θ,ε)
∂ε

(cos 2θ + iε+ iε2)
n−1
2

dεdθ.

The second integral goes to zero by the inductive hypothesis, so we consider the first,

2iε2
n− 1

∫ π
2

0

g(θ, ε1)

(cos 2θ + iε1 + iε2)
n−1
2

dθ − 2iε2
n− 1

∫ π
2

0

g(θ, 0)

(cos 2θ + iε2)
n−1
2

dθ.
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The magnitude of the integrand in the first of these integral is bounded by Gε
−n−1

2
1 , where

G is the sup of g(θ, ε1) on the interval [0, π
2
], and so the integral is bounded, and when we

multiply it by iε2, and take the limit, it will go to zero. The second integral is similar to
(16) and vanishes by the same reasoning.

Lemma 36. With Γε2(z) = ( 1

N(z)
p+q+1

2
− 1

(N(z)+iε2)
p+q+1

2
), we have

lim
ε2→0

∫

(hp,q,ε1 )∗(Sp,q,1)

z+Γε2(z)Dp+qz = 0.

Proof. We use the Cauchy Schwartz inequality, and let M1 =
∫

(hp,q,ε1 )∗(Sp,q,1)
|z+Dz|, and

have ∣∣∣∣∣

∫

(hp,q,ε1 )∗(Sp,q,1)

z+DzΓε2(z)

∣∣∣∣∣ ≤M1 sup
z∈(hp,q,ε1 )∗(Sp,q,1)

|Γε2(z)|

We note that the sup on (hp,q,ε1)∗(Sp,q,1) of

∣∣∣∣( 1

N(z)
p+q+1

2
− 1

(N(z)+iε2)
p+q+1

2
)

∣∣∣∣ goes to zero. We

note that for all z, both terms are well defined as ε2 goes to zero, as N(z) has positive
imaginary part of at least ε1 by Corollary 18. Utilizing this, one can show that this expression
goes to zero uniformly via binomial expansion.

8 Conformal Mappings acting on Monogenic Functions

In this section, we consider mappings from Rp+q+1 to itself that are conformal with respect
to the quadratic form of signature (p + 1, q), and how these mappings relate to left and
right-monogenic functions. We write Rp+q+1 with this quadratic form as Rp+1,q, and write
the quadratic form as Q(x), to be more consistent with the literature. We observe that
the set of monogenic functions is invariant under translations and scalings of Rp+1,q, as seen
from the definitions. We then provide a group action of O(p, q) on the functions that map
into A(p, q). We then compute the pullback of Dp,qx under the inversion x→ Q(x)−1x, and
compare it to the quaternionic case presented in [Su].

We first consider the group O(p, q) acting on the (p, q)-monogenic functions. For these
arguments, we consider (p, q)-left-monogenic functions, with the (p, q)-right-monogenic func-
tions being acted on in the same way. We consider O(p, q) acting on Rp+1,q by having each
matrix M act linearly on the last p + q coordinates. We consider F = {f : Rp+q+1 → Ap,q :
∇+f(x) = 0}. As Ap,q is a universal Clifford Algebra, we have that there exists a unique
extension of M : Rp+q → Rp+q to an algebra homomorphism M̃ : Ap,q → Ap,q which satisfies
M̃(ej) = M(ej) for 1 ≤ j ≤ p+ q and M̃(e0) = e0. We consider the mapping on F given by

M ∈ O(p, q) : f → M̃(f(M−1(x))). (21)

Lemma 37. This is a group action of O(p, q) on F . Similarly, if we define G = {g :
Rp+q+1 → Ap,q : g(x)∇+ = 0}, we have the following group action of O(p, q) on G:

M ∈ O(p, q) : g → M̃(g(M−1(x))).
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Proof. We prove the result only in the left-monogenic case. We first show that this is indeed
a group action.

M1 ◦ (M2 ◦ f) = M1 ◦ M̃2f(M−1
2 (x)) = M̃1M̃2f(M−1

2 M−1
1 (x)) = M̃1M2f((M1M2)−1x).

To show that the image of a left-monogenic function is left-monogenic, we follow an analogous
method to the proof of Theorem 20 of [Su], and use Corollary 13. We let µ be the action
that maps x to the image of x under M−1 ∈ O(p, q). We calculate the pullback of Dp,qx to
be

µ∗Dp,qx(h1, h2, . . . , hp+q) = Dp,qx(M−1(h1),M−1(h2), . . . ,M−1(hp+q)).

By Definition 10, with det(M) = det(M−1) = ±1, ∀h0, h1, . . . , hp+q ∈ Rp+q+1:

〈M−1(h0), µ∗Dp,qx(h1, . . . , hp+q)〉 = dV (M−1h0, . . . ,M
−1hp+q) = det(M)dV (h0, h1, . . . , hp+q).

Moreover, as M−1 preserves the quadratic form of signature (p + 1, q) it also preserves the
associated bilinear form,

〈M−1(h0),M−1(Dp,qx(h1, . . . , hp+q))〉 = 〈h0, (Dp,qx(h1, . . . , hp+q))〉 = dV (h0, . . . , hp+q).

By noting the similarity of the previous two equations, we have, as M(Dp,qx) = M̃(Dp,qx)

µ∗Dp,qx(h1, . . . , hp+q) = det(M)M−1(Dp,qx(h1, . . . , hp+q))

=⇒ Dp,qx = det(M)M̃(µ∗Dp,qx). (22)

We have by Corollary 13:
d(Dp,qxf) = Dp,qx ∧ df = 0.

We have that by the chain rule, as M̃ is linear:

d(M̃(f(M−1(x)))) = M̃df(M−1(x)) = M̃(µ∗df.)

To test if f ′ = M̃−1(f(M(x))) is also left-monogenic we compute:

d(Dp,qx · M̃(f(M−1(x)))) = Dp,qx ∧ d(M̃(f(M−1(x))))

= det(M)M̃(µ∗Dp,qx) ∧ d(M̃(f(M−1(x)))) = det(M)M̃(µ∗Dp,qx) ∧ M̃(µ∗df)

= det(M)M̃(µ∗(Dp,qx ∧ df)) = det(M)M̃(µ∗(0)) = 0.

We consider a similar method for a modified inversion: x→ Inv(x) = x+

N(x)
. We note that

this is a conformal map with respect to the quadratic form, Q, of signature (p+ 1, q) with a
conformal factor of ± 1

Q(x)
. We write the Jacobian derivative matrix as [D Inv].

Lemma 38. The pullback of the form Dp,qx under the mapping µ : x → Inv(x) = x+

Q(x)
is

given by:

µ∗Dp,qx =
(−1)p+q+1

Q(x)p+q−1
[D Inv(x)]Dp,qx (23)

where [D Inv(x)]Dp,qx denotes applying the linear map corresponding to the derivative of
Inv(x) to Dp,qx.
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Proof. As Inv(x) is conformal with conformal factor Ω = 1
Q(x)

, by expressing Q(x) as the

diagonal matrix Ip+1,q, and using the definition of a conformal mapping ([Sc]),

[D Inv(x)]T Ip+1,q[D Inv(x)] = Ω2Ip+1,q =
1

Q(x)2
Ip+1,q.

We can take the determinant of both sides. det
(

1
Q(x)2

Ip+1,q
)

= Q(x)−2(p+q+1) det(Ip+1,q),

and so det[D Inv] = ±Q(x)−(p+q+1). This determinant will be a rational function, and so to
determine the sign we need to evaluate it at a single point. By substituting x = e0,

[D Inv] =




Q(x)−2x20
Q(x)2

−2x1x0
Q(x)2

. . . 2x0xp+1

Q(x)2
. . . 2x0xp+q

Q(x)2

2x0x1
Q(x)2

−Q(x)+2x21
Q(x)2

. . . −2x1xp+1

Q(x)2
. . . −2x1xp+q

Q(x)2

...
...

. . .
...

. . .
...

2x0xp+1

Q(x)2
2x1xp+1

Q(x)2
. . .

−Q(x)2−2x2p+1

Q(x)2
. . . −2xp+1xp+q

Q(x)2

...
...

. . .
...

. . .
...

2x0xp+q
Q(x)2

2x1xp+q
Q(x)2

. . . −2xp+1xp+q
Q(x)2

. . .
−Q(x)−2x2p+q

Q(x)2




, [D Inv]

∣∣∣∣
(1,0,... )

= −I,

we get this signature to be (−1)p+q+1. This informs us how the volume element dVp,q will
transform under the inversion mapping, which we use to determine how Dp,qx transforms.
We can calculate the pullback of Dp,qx under the inversion (denoted by µ : x → Inv(x)) as
was done in the orthogonal case.

〈[D Inv(x)]h0, Dp,qx([D Inv(x)]h1), . . . , [D Inv(x)]hp+q)〉

= dV ([D Inv(x)]h0, [D Inv(x)]h1, . . . ) =
(−1)p+q+1dVp,q(h0, h1, . . . )

Q(x)p+q+1
,

〈[D Inv(x)]h0, [D Inv(x)]Dp,qx(h1, . . . , hp+q)〉 =
1

Q(x)2
〈h0, Dp,qx(h1, . . . , hp+q)〉 =

dVp,q(h0, h1, . . . )

Q(x)2
.

By comparing these two lines, we see

Dp,qx([D Inv(x)]h1, . . . , [D Inv(x)]hp+q) =
(−1)p+q+1

Q(x)p+q−1
[D Inv(x)]Dp,qx(h1, . . . , hp+q)

µ∗Dp,qx =
(−1)p+q+1

Q(x)p+q−1
[D Inv(x)]Dp,qx.

This is analogous to the pullback of O(p, q), (22), insofar as the differential form is acted
upon by a linear map, although in this case the map is not constant. This feature prevents
a statement similar to Lemma 37, as when we take the exterior derivative of µ∗Dx we get
an additional term due to Liebniz’s rule.

In the quaternionic case, presented in [Su], the pullback under quaternionic inversion is
found to be:

µ∗Dq = −q
−1

|q|4
·Dq · q−1. (24)
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While this appears distinct from (23), we show that they coincide. In quaternionic analysis,
multiplication by a quaternion is a linear map, H → H, which can each be identified with
R4. Expressing these maps as real matrices, we have that multiplication by q−1 on the left
and right correspond to the matrices:

Mleft =
1

|q|2




q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0


 , Mright =

1

|q|2




q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0


 .

We can calculate the matrix, [D Inv(q)] for p = 3, q = 0, and note that it factors into the
above matrices:

[D Inv(q)] =
1

|q|4




|q|2 − 2q2
0 −2q0q1 −2q0q2 −2q0q3

2q0q1 |q|2 − 2q2
1 2q1q2 2q1q3

2q0q2 2q1q2 |q|2 − 2q2
2 2q2q3

2q0q3 2q1q3 2q2q3 |q|2 − 2q2
3




= −MleftMright = −MrightMleft. (25)

As |q|2 serves the role of Q(x), we can write (23) as:

µ∗D3,0x =
1

Q(x)2
[D Inv(x)]D3,0x,

µ∗Dq =
1

|q|4
[D Inv(q)]Dq =

1

|q|4
(−MleftMright)Dq = − 1

|q|4
q−1 ·Dq · q−1.

Thus, our pullback computation is consistent with the quaternionic case. A more elegant
formula similar to (24) seems to be unlikely in the general case as Rp+q+1 is not closed
under multiplication, and so multiplication by an element similar to q−1 on both sides of Dq
would carry the image out of Rp+q+1 and into the full Clifford Algebra Ap,q. Moreover, the
factorization exhibited in (25) appears not extend to general Universal Clifford Algebras.
Despite this, if such an action were to exist, by analogy with similar cases, it would likely
be of the following form:

f(x) ∈ F → x+

N(x)(p+q+1)/2
· f(Inv(x)),

g(x) ∈ G → g(Inv(x)) · x+

N(x)(p+q+1)/2
.

References

[G] D. J. H. Garling, Clifford Algebras: An Introduction, Cambridge Univ. Press, Cam-
bridge, UK, 2011.

[GM] J. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis,
Cambridge Univ. Press, Cambridge, UK, 1991.

28



[KØ] T. Kobayashi, B. Ørsted, Analysis on the minimal representation of O(p, q) I, II, III,
Adv. Math. 180 (2003), no. 2, 486-512, 513-550, 551-595.

[L] M. Libine, An invitation to split quaternionic analysis in I. Sabadini, F. Sommen
(Eds.), Hypercomplex Analysis and its Applications, Birkhäuser, 2011, pp. 161-180;
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1 Abstract

We first look at Ebbens et. al’s 2010 paper and, using abstract diffusion theory
methods, replicate their results concerning the mean square displacement and
effective diffusivity of a spherical particle with both rotational and translational
self propulsion.

We then look at Fan, Pak, and Sandoval’s 2017 paper, in which they used
an approximation to calculate the effective diffusivity of an elliptic particle in
a rotating magnetic field with translational self propulsion. We then apply ab-
stract diffusion theory methods to rigorously verify the claims made in the paper
and show that the effective diffusivity of the anisotropic particle is very similar
to the effective diffusivity of the above self-propelled runner-and-tumbler.

2 Definitions and Lemmas

Before we begin the derivation of the results claimed in the abstract, we first
introduce a handful of definitions from Markov Theory and prove two brief
lemmas that will be useful in the calculations for both papers.

2.1 Definitions

We first recall the elementary definition of the

Definition 2.1 (Markov Property). A stochastic process Xt : Ω → S satisfies
the Markov Property if ∀ f : S → R bounded and measurable,

Ex[f(Xt+s)|Ft] = EXt [f(Xs)] = Psf(Xt)

where Ft = σ{Xr : r ≤ t}.

And thus

Definition 2.2 (Markov Process). A stochastic process Xt is a Markov Process
if and only if it satisfies the Markov Property.

We also have the basic fact that every Markov process Xt admits a semi-
group of operators {Pt}, where Ptf(x) = Ex[f(Xt)] and PsPt = Ps+t.

A Markov Process may also under certain conditions admit a stationary dis-
tribution, which is defined as follows.

Definition 2.3 (Stationary Distribution). ρ is a stationary distribution for
the Markov Process Xt with semigroup {Pt} if ρ(Ptf) = ρ(f) for all f bounded
measurable and t ≥ 0, with ρ(g) :=

∫
g(x) ρ(dx), where g is bounded measurable.

Markov processes also inherently have a transition probability funciton P
that governs the probabilities of moving between states.
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Definition 2.4 (Transition Probability). The transition probability of a Markov
Process Xt is a function P (s, x, t, B) such that P (s, x, t, B) = P (Xt ∈ B|Xs =
x), satisfying the following properties:

1. P (s, x, t, ·) is a probability measure on B(R) for s ≤ t fixed and x ∈ R.

2. P (s, ·, t, B) is B(R)-measurable for s ≤ t fixed and B ∈ B(R).

And further, if it exists,

Definition 2.5 (Transition Density). The transition density of a Markov Pro-
cess Xt is the function p(s, x, t, y) such that P (s, x, t, dy) = p(s, x, t, y)dy.

Remark 2.1. Recall as well that for homogeneous Markov processes, i.e. those
with stationary and independent increments, we can write their transition prob-
abilities as P (s, x, t, B) = P (t− s, x,B).

2.2 Two Lemmas

We now prove two lemmas concerning Markov Processes and their expectations.

Lemma 2.1. Let ft(x) = f(t, x) : R+ × S → R be a bounded integrable func-
tion. Then for any time-homogeneous Markov processes Xt on a state space S,
which admits a stationary measure ρ and a transition density p(t, x, y) with an
eigenfunction expansion

p(t, x, y)ρ(dy) =

(
1 +

∞∑

k=2

e−λktφk(x)φk(y)

)
ρ(dy),

Where {φi} is an orthonormal basis for L2(S, ρ). Then the following holds:

lim
t→∞

1

2t
EX0

∫ t

0

fs(Xs)ds = lim
t→∞

1

2t

∫ t

0

Eρ[fs(Xs)]ds

Proof. Assuming X0 = x0,

1

t
EX0

[ ∫ t

0

fs(Xs)ds
]

=
1

t

∫

S

∫ t

0

fs(y)ds Px0(Xs ∈ dy) =
1

t

∫

S

∫ t

0

fs(y)ds p(s, x0, y)dy

=
1

t

∫

S

∫ t

0

fs(y)

(
1 +

∞∑

k=2

e−λksφk(x0)φk(y)

)
ρ(dy)ds

=
1

t

∫

S

∫ t

0

fs(y)ρ(dy)ds+
1

t

∫

S

∫ t

0

fs(y)
∞∑

k=2

e−λksφk(x0)φk(y)ρ(dy)ds

Then as ft is bounded, let C be the pointwise bound of fs(y), i.e. |fs(y)| < C.
Further, as {φk} is an orthonormal family, ||φk(z)||L2(ρ) ≤ 1∀ z ∈ S. Thus all
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of the φk are at least pointwise bounded on S, so ∀ k ∈ N, |φk(x)| ≤ Bk ∈ R.
Thus

1

t

∫

S

∫ t

0

fs(y)
∞∑

k=2

e−λksφk(x0)φk(y)ρ(dy)ds ≤ C

t

∞∑

k=2

B2
k

∫ t

0

e−λksds

≤ C

t

∞∑

k=2

B2
k(
−e−λkt

λk
+

1

λk
)

Thus,

lim
t→∞

1

t

∫

S

∫ t

0

fs(y)
∞∑

k=2

e−λksφk(x0)φk(y)ρ(dy)ds ≤ lim
t→∞

C

t

∞∑

k=2

B2
k(
−e−λkt

λk
+

1

λk
)

≤ 0

Concluding, by Fubini’s theorem and the previous steps,

lim
t→∞

1

2t
EX0

[ ∫ t

0

fs(Xs)ds
]

= lim
t→∞

1

2t

∫

S

∫ t

0

fs(y)ρ(dy)ds = lim
t→∞

1

2t

∫ t

0

Eρ[f(Xs)]ds

As desired.

Corollary 2.1. Similarly, it follows from 2.1 that by just adding another time
integral, under the same assumptions as 2.1

lim
t→∞

1

2t
EX0

∫ t

0

∫ t

0

fs(Xs)ds2 ds1 = lim
t→∞

1

2t

∫ t

0

∫ t

0

Eρ[fs(Xs)]ds2 ds1

Lemma 2.2. Let ft(x) = f(t, x) : R+×S → R be a bounded integrable function.
Then assuming s1 < s2, for time homogeneous Markov processes Xt on a state
space S and ∀ k ∈ R+,

EXk
[fs1(Xs1)fs2(Xs2)] = EXk

[a(Xs1)]

Where a(x) := EXk
[fs1(x)Ps2−s1fs2(x)].

Proof. Observe that

EXk
[fs1(Xs1)fs2(Xs2)] = EXk

[EXk
[fs1(Xs1)fs2(Xs2)|Fs1 ]]

= EXk
[fs1(Xs1)EXk

[fs2(Xs2)|Fs1 ]]

= EXk
[fs1(Xs1)EXs1

[fs2(Xs2−s1)]]

= EXk
[fs1(Xs1)Ps2−s1fs2(Xs1)]

Where the third equality is justified by Xt being a Markov process and thus
satisfying the Markov property.
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3 Effective Diffusivity of the Runner-Tumbler
Model

We look to calculate the effective diffusivity of the runner tumbler model given
by the following system of SDE’s:

dXt = v cos(θt) +
√

2DdBxt (1)

dYt = v sin(θt) +
√

2DdByt (2)

dθt = w +
√

2DrdBt (3)

Where v is a constant governing the translational velocity and w is a constant
governing the rotational velocity. Further Bt, B

x
t , and Byt are completely un-

correlated Brownian motions.

3.1 Goals

We are looking to first calculate the large-time Mean-Squared Displacement
(MSD) for the position of our particle, as well as the Mean-Squared Angular
Displacement (MSAD). These expressions are given by:

MSD = Eθ0 [X2
t ] + Eθ0 [Y 2

t ] (4)

MSAD = Eθ0 [θ2t ] (5)

Where Eθ0 is expectation with respect to the law of θt at t = 0. The MSD and
MSAD are measures of the deviation of the position and angle, respectively, of
a particle with respect to the initial position (X0, Y0, θ0) over time.

We further look for the effective diffusion coefficient, Deff , of the particle, which
describes the rate at which the particle diffuses. The effective diffusion coeffi-
cient is given by the expression

Deff = lim
t→∞

1

4t
[MSD] (6)

Theorem 3.1 (MSAD). The MSAD for the Runner-Tumbler model is given by
the expression

MSAD = w2t2 + 2Drt (7)

Proof. We first solve for θt. By integration and the fact that for all constants
c,
∫ t
0
c dBs = cBt,

dθt = wdt+
√

2DrdBt

θt = wt+
√

2DrBt
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And so we calculate the MSAD:

MSAD = Eθ0 [(wt+
√

2DrBt)
2]

= Eθ0 [w2t2 + wt
√

2DrBt + 2DrB
2
t ]

= w2t2 + 2Drt

Where the third equality follows from the fact that Bt ∼ N (0, t) and we can
treat t as a constant when taking expectations. Note that this agrees with (4)
in [1], verifying the MSAD.

Theorem 3.2 (Effective Diffusivity of the Runner-Tumbler Model). The effec-
tive diffusivity of the Runner-Tumbler model specified by equations (1), (2), and
(3) is given by the expression

Deff =
v2Dr

2(D2
r + w2)

+D

Proof. We begin by performing a substitution to make θt time homogeneous
and thus into an Ito Diffusion, a class of SDE’s which exhibit very useful prop-
erties. Note that dθt = wdt +

√
2DrdBt =⇒ θt = wt +

√
2DrBt is time

in-homogeneous. So, we define αt = θt − wt = Tt(θt), where Tt(x) = x − wt.
The, by the Ito Formula,

dαt = −wdt+ 1dθt = −wdt+ wdt+
√

2DrdBt (8)

=
√

2DrdBt (9)

And so, αt =
√

2DrBt, ie. scaled Brownian motion. We will consider αt as
Brownian motion on the circle S1 := [0, 2π]/ ∼, as in our calculations, all ap-
pearances of αt are periodic. Thus α(0) = α(2πn)∀n ∈ N. Note further, that
at t = 0, αt = θt and thus Eα0

[·] = Eθ0 [·].

Before we continue with the calculations, we must first determine the station-
ary distribution, if it exists, for the process αt. We can obtain the density r(x)
for the stationary distribution ρ(dy) = r(y)dy as the solution to the stationary
Fokker-Planck, or Forwards Kolmogorov equation:

−∂x[b(x)r(x)] + ∂xx[
(
√

2Dr)
2

2
r(x)] = 0

Lemma 3.1. The stationary distribution for αt is given by

ρ(dy) =
1

2π
dy

Proof. For αt, b(x) as defined above is 0, so we need to solve

∂xx[Drr(x)] = 0 (10)
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This is simple however, and

D2
rr
′′(x) = 0

r′′(x) = 0

r(x) = c1x+ c2

To determine the constants c1 and c2, consider first that as r(x) : S1 → R+

and thus r(0) = r(2π), and so r(0) = c2 = r(2π) = c12π + c2, and thus c1 = 0.
Further, r(x) is a density, and so

∫ 2π

0

r(x)dx = 1 =⇒ 2c2π = 1 =⇒ c2 ≡
1

2π

Thus

ρ(dy) =
1

2π
dy, (11)

Proving the lemma.

We next find the density p(t, x, y) such that Px(αt ∈ dy) = p(t, x, y)ρ(dy)
for the transition probabilities associated to the Markov Process αt. We can
obtain the transition density from solving the Kolmogorov Forwards equation
with dirac delta initial condition, but we rather obtain it from Proposition 2.1
in [3]:

p(t, x, y)dy =

(
1

π

∑

n∈N

[
e(−Drn

2t) cos(n(x− y))
]

+
1

2π

)
dy (12)

p(t, x, y)dy =

(
2
∑

n∈N

[
e(−Drn

2t) cos(n(x− y))
]

+ 1

)
ρ(dy) (13)

This transition density is a reformulation of the natural notion of periodic Brow-

nian motion density: p(t, x, y) = 1√
2πt

∑
n∈Z exp[−

√
2Dr

t (x− y − 2πn)2]

Remark 3.1. Note that as t→∞, p(t, x, y)dy converges absolutely and expo-
nentially fast, with rate Dr to the stationary distribution ρ(dy). Thus for large
t, we can safely approximate

p(t, x, y)dy ∼
(

1

π
e−Drtcos(x− y) +

1

2π

)
dy (14)

We define functions

gt(x) = cos(x+ wt)

ht(x) = sin(x+ wt)
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So that gt(αt) = cos(θt) and ht(αt) = sin(θt). Thus,

Eθ0 [X2
t ] = Eα0 [X2

t ]

= Eα0

[
(v

∫ t

0

gs(αs)ds+
√

2DB1
t )2
]

= v2Eα0

[
(

∫ t

0

gs(αs)ds)
2

]
+ 2Dt

= v2Eα0

[ ∫ t

0

∫ t

0

gs1(αs1)gs2(αs2)ds2ds1

]
+ 2Dt

= v2
∫ t

0

∫ t

0

Eα0

[
gs1(αs1)gs2(αs2)

]
ds2ds1 + 2Dt

= 2v2
∫ t

0

∫ t

s1

Eα0

[
gs1(αs1)gs2(αs2)

]
ds2ds1 + 2Dt

Assuming s1 < s2, as the integrand is symmetric over the diagonal of the square
[0, t]× [0, t]. Similarily for Yt,

Eθ0 [Y 2
t ] = Eα0

[Y 2
t ]

= Eα0

[
(v

∫ t

0

hs(αs)ds+
√

2DB1
t )2
]

= v2Eα0

[
(

∫ t

0

hs(αs)ds)
2

]
+ 2Dt

= v2Eα0

[ ∫ t

0

∫ t

0

hs1(αs1)hs2(αs2)ds2ds1

]
+ 2Dt

= v2
∫ t

0

∫ t

0

Eα0

[
hs1(αs1)hs2(αs2)

]
ds2ds1 + 2Dt

= 2v2
∫ t

0

∫ t

s1

Eα0

[
hs1(αs1)hs2(αs2)

]
ds2ds1 + 2Dt

By Lemma 2.2, we can further reduce these expressions to

Eα0
[X2

t ] = 2v2
∫ t

0

∫ t

s1

Eα0

[
gs1(αs1)Ps2−s1gs2(αs1)

]
ds2ds1 + 2Dt (15)

Eα0 [Y 2
t ] = 2v2

∫ t

0

∫ t

s1

Eα0

[
hs1(αs1)Ps2−s1hs2(αs1)

]
ds2ds1 + 2Dt (16)

And by Lemma 2.1,

lim
t→∞

Eα0 [X2
t ] = 2v2

∫ t

0

∫ t

s1

Eρ
[
gs1(αs1)Ps2−s1gs2(αs1)

]
ds2ds1 + 2Dt (17)

lim
t→∞

Eα0
[Y 2
t ] = 2v2

∫ t

0

∫ t

s1

Eρ
[
hs1(αs1)Ps2−s1hs2(αs1)

]
ds2ds1 + 2Dt (18)
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Recalling that
Ptf(x) = Ex[f(Xt)]

We can expand

Ps2−s1gs2(αs1) =

∫ 2π

0

gs2(αs2−s1)Pαs1 (αs2−s1 ∈ dy)

=

∫ 2π

0

gs2(y)p(s2 − s1, x, y)dy

=

∫ 2π

0

gs2(y)

(
1

π
e−Dr(s2−s1) cos(x− y) +

1

2π

)
dy

By using the n = 1 rate of convergence determining term in the sum of (12).
Thus

lim
t→∞

Eα0
[X2

t ] = 2v2
∫ t

0

∫ t

s1

∫ 2π

0

∫ 2π

0

gs1(x)gs2(y)

(
1

π
e−Dr(s2−s1) cos(x− y) +

1

2π

)
1

2π
dydxds2ds1 + 2Dt

(19)

lim
t→∞

Eα0
[Y 2
t ] = 2v2

∫ t

0

∫ t

s1

∫ 2π

0

∫ 2π

0

hs1(x)hs2(y)

(
1

π
e−Dr(s2−s1) cos(x− y) +

1

2π

)
1

2π
dydxds2ds1 + 2Dt

(20)

But we can simplify this integral, as

∫ 2π

0

∫ 2π

0

gs1(x)gs2(y)dydx = 0 =

∫ 2π

0

∫ 2π

0

hs1(x)hs2(y)dydx

So

lim
t→∞

Eα0
[X2

t ] =
v2

π2

∫ t

0

∫ t

s1

∫ 2π

0

∫ 2π

0

gs1(x)gs2(y)e−Dr(s2−s1) cos(x− y)dydxds2ds1 + 2Dt

(21)

lim
t→∞

Eα0 [Y 2
t ] =

v2

π2

∫ t

0

∫ t

s1

∫ 2π

0

∫ 2π

0

hs1(x)hs2(y)e−Dr(s2−s1) cos(x− y)dydxds2ds1 + 2Dt

(22)

And the overall expression for the effective diffusion:

lim
t→∞

v2

4π2t

∫ t

0

∫ t

s1

∫ 2π

0

∫ 2π

0

(
gs1(x)gs2(y)+

hs1(x)hs2(y)

)
e−Dr(s2−s1) cos(x− y)dydxds2ds1 +D (23)

Using trig identities, we can rewrite gs1(x)gs2(y) + hs1(x)hs2(y) as cos(x− y +
w(s1 − s2)) and then as

cos(x− y) cos(w(s1 − s2)) + sin(x− y) sin(w(s1 − s2))
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Thus the integrand of (23) is given by the expression

e−Dr(s2−s1)(cos2(x− y) cos(w(s1 − s2)) + sin(x− y) cos(x− y) sin(w(s1 − s2)))

To simply this expression, we observe that
∫ 2π

0

∫ 2π

0

sin(x− y) cos(x− y)dydx = 0

And that ∫ 2π

0

∫ 2π

0

cos2(x− y)dydx = 2π2

So the effective diffusion expression (23) reduces to

lim
t→∞

v2

2t

∫ t

0

∫ t

s1

cos(w(s1 − s2))e
−2Dr(s2−s1)

2 ds2ds1 +D (24)

We can explicitly compute the double integral in (24) and obtain the expression

Deff = lim
t→∞

(
v2(w2 −D2

r)

2t (D2
r + w2)

2 +
v2Dr

2(D2
r + w2)

+
v2e−Drt

2t (D2
r + w2)

2 [(D2
r − w2) coswt− 2wDr sinwt] +D

)
(25)

Which finally reduces to

Deff =
v2Dr

2(D2
r + w2)

+D (26)

Proving the theorem.

Remark 3.2. Note that (26) agrees exactly with the effective diffusion coeffi-
cient (6) in [1] when we write Dr = 1/τr, verifying the results of the paper.

4 Effective Diffusivity of the Anisotropic Model

We now look at the effective diffusion coefficients in the x and y directions, Dxx

and Dyy respectively, of the model specified in [2] and given by the following
system of differential equations:

dXt = U cos(θt)dt+
√

2 kBT Γ11(θt) dB
(x)
t (27)

dYt = U sin(θt)dt+
√

2 kBT Γ22(θt) dB
(y)
t (28)

dθt = wc sin[2(wht− θt)]dt+
√

2DrdBt (29)

Where Γij(θt) = D̄δij + 1
2∆D

(
cos(2θt) sin(2θt)
sin(2θt) − cos(2θt)

)
, U is the constant trans-

lational velocity of the particle and both B
(x)
t and B

(y)
t are uncorrelated with

Bt.
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4.1 Goals

We look to calculate the effective diffusion coefficients of the model by rigorous
stochastic analytic methods. We hope that our results will agree with the results
obtained in [2], which were obtained with approximations.

Remark 4.1 (Making the process θt time homogeneous). Recall that

dθt = wc sin[2(wht− θt)]dt+
√

2DrdBt (30)

And thus θt is not a time-homogeneous stochastic process. We first make θt
time homogeneous. Define θ′t := θt − wht. Then

dθ′t = −(wh + wc sin(2θ′t))dt+
√

2DrdBt (31)

And thus θ′t is a time homogeneous stochastic process. In fact, θ′t is of the form

dθ′t = b(θ′t)dt+ σdBt (32)

Where b(x) = −wh − wc sin(2x) and σ =
√

2Dr. Note that both b(x) and σ are
Lipschitz continuous, and thus the process θ′t can be viewed as an Ito diffusion
on R. As an Ito Diffusion, equation (11) admits a unique solution θ′t.

Further, because b(x) is π periodic, we can write define a stochastic process
αt on the circle of radius 1/2, S := [0, π]/ ∼, such that αt := θ′t (mod π).

Lemma 4.1 (Stationary Distribution of αt). The stationary distribution µ(dy)
for αt is given by the expression

µ(dy) = Keh(y)/Drdy

Where Oh(y) = b(y) with b(y) defined in remark 4.1:

h(y) = −why +
wc
2

cos(2y)

And K = (
∫ π
0
eh(y)/Drdy)−1

Proof. We first obtaining the density of the stationary distribution as the solu-
tion to the stationary Forwards Kolmogorov equation. Ie, we solve the differen-
tial equation: {

−∂x[b(x)r(x)] + ∂xx[Drr(x)] = 0
}

(33)

Where dαt = b(αt)dt+
√

2DrDBt, b(x) = −Oh(x),

b(x) = −wh − wc sin(2x)

h(x) = −whx+
wc
2

cos(2x)

We claim that
r(x) = eh(x)/Dr (34)

10



solves the above equation (12) and is thus the stationary density. Observe that

−∂x[b(x)r(x)] + ∂xx[Drr(x)] = −b′(x)r(x)− b(x)r′(x) +Drr
′′(x)

And substituting (13) yields

−b′(x)eh(x)/Dr − b2(x)

Dr
eh(x)/Dr + b′(x)eh(x)/Dr +

b2(x)

Dr
eh(x)/Dr = 0

Thus r(x) = eh(x)/Dr is indeed the stationary density and so our stationary
distribution µ can be written as µ(dy) = Kr(y)dy, where K = (

∫ π
0
r(y)dy)−1.

The normalizing constant, K, is necessary so that µ(S) =
∫ π
0
Kr(y)dy = 1.

Thus the stationary distribution of our process is given by

µ(E) = K

∫

E

eh(y)/Drdy (35)

Or equivalently,
µ(dy) = Keh(y)/Drdy

As we have found a distribution that solves the stationary forwards Kolmogorov
equation, we obtain a unique stationary distribution for αt. We conclude by
checking that this distribution is the stationary distribution for αt by demon-
strating that it is the symmetrizing measure for our space L2(S).

Consider the Hilbert Space L2(S, µ), where µ is the above stationary distribu-
tion and S = [0, π]/ ∼. Then with the usual L2 inner product, ∀f, g ∈ L2(S, µ),

(Lf, g)µ =

∫ π

0

Lf(x)g(x)r(x)dx (36)

= K

∫ π

0

(Dr∂
2
xxf(x) + b(x)∂xf(x))g(x)eh(x)/Drdx (37)

(38)

Note that

∂x(eh(x)/DrDr∂xf(x)) =
b(x)

Dr
Dr∂xf(x)eh(x)/Dr+

eh(x)/DrDr∂
2
xxf(x) = eh(x)/DrLf(x) (39)

11



And so

(36) = K

∫ π

0

∂x(eh(x)/DrDr∂xf(x))g(x)dx (40)

= KDr[g(x)eh(x)/Dr∂xf(x)]π0 −KDr

∫ π

0

∂xg(x)∂xf(x)eh(x)/Drdx (41)

= KDr[g(x)eh(x)/Dr∂xf(x)]π0 −KDr[∂xg(x)eh(x)/Drf(x)]π0+ (42)

K

∫ π

0

f(x)(b(x)∂xg(x)eh(x)/Dr + eh(x)/DrDr∂
2
xxg(x)dx (43)

= K

∫ π

0

eh(x)/DrLg(x)f(x)dx (44)

= (f,Lg)µ (45)

Thus our stationary distribution is in fact the symmetrizing measure.

Lemma 4.2. The transition density function for αt, p(t, x, y) such that

Px(αt ∈ dy) = p(t, x, y)µ(dy),

exists and has a eigen-function expansion

p(t, x, y) = 1 +
∞∑

i=2

eλitφi(x)φi(y) (46)

With
0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ ∞

and {φi} forming an orthnonormal basis for L2(S, µ).

Proof. As our generator for αt, L is defined on a periodic domain, it has periodic
boundary conditions and thus regular boundary conditions. By [4] Theorem
(3.1), the Green operators corresponding to L are compact self-adjoint, and
have a discrete spectrum 0 ≤ µ1 < µ2 ≤ µ3 ≤ ... ≤ −∞ and a corresponding
orthonormal basis of L2(S, µ) of eigenfunctions {φi}. Further, we know that 0 is
an eigenvalue as the stationary density is a solution corresponding to eigenvalue
0. For all of the non-zero eigenvalues µi of the Green operator, the eigenvalues
of the generator L are 1/µi, but with the same eigenfunctions φi. Thus we have
a spectral decomposition for the transition density, which converges uniformly
and absolutely in space and exponentially in time to the stationary density
r(y) = eh(y)/Dr ,

p(t, x, y) = 1 +
∞∑

i=2

eλitφi(x)φi(y) (47)

So

Px(αt ∈ dy) = p(t, x, y)µ(dy) =

(
1 +

∞∑

i=2

eλitφi(x)φi(y)

)
Keh(y)/Drdy (48)

12



Theorem 4.1. The effective diffusion coefficients in the x and y coordinates,
Dxx and Dyy respectively, for the Anisotropic model specified by equations (27),
(28), and (29) is given by the identical expression for both Dxx and Dyy:

Dxx = D̄ +
K1U

2λ2
2(λ22 + w2

h)
= Dyy

Where λ2 is the second eigenvalue in the eigen-function decomposition of p(t, x, y)
defined in Lemma (4.2) and K1 is given by the expression

K1 =

∫ π

0

∫ π

0

cos(x− y)φ2(x)φ2(y)µ(dy)µ(dx)

With φ2 being the eigenfunction corresponding to λ2.

Proof. Recall that our effective diffusion coefficients for both coordinates are
given by the expressions:

Dxx := lim
t→∞

U2

t

(∫ t

0

∫ t

s1

Eθ0 [cos θs1 cos θs2 ] ds2 ds1

+ 2D̄ t+ ∆D

∫ t

0

Eθ0 [cos(2θ(s))] ds

)
(49)

Dyy := lim
t→∞

U2

t

(∫ t

0

∫ t

s1

Eθ0 [sin θs1 sin θs2 ] ds2 ds1

+ 2D̄ t−∆D

∫ t

0

Eθ0 [cos(2θ(s))] ds

)
(50)

In order to make these integrals in terms of αt, we introduce the functions

gt(x) = cos(x+ wht)

ht(x) = sin(x+ wht)

So that gt(αt) = cos(θt) and ht(αt) = sin(θt). Further, observe that αt =
θt − wht (mod π), so at t = 0, α0 = θ0 (mod π), and so on our new state space
S, α0 = θ0.

Thus we can rewrite 49 and 50 as

Dxx = lim
t→∞

1

2t

(
2

∫ t

0

∫ t

s1

U(s1)U(s2)Eα0
[gs1(αs1)gs2(αs2)]ds2ds1

+ 2D̄t+ ∆D

∫ t

0

Eα0
[g2s(2αs)]ds

)
(51)
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Dyy = lim
t→∞

1

2t

(
2

∫ t

0

∫ t

s1

U(s1)U(s2)Eα0 [hs1(αs1)hs2(αs2)]ds2ds1

+ 2D̄t−∆D

∫ t

0

Eα0
[g2s(2αs)]ds

)
(52)

Let’s now first calculate the single time integral in 51 and 52:

lim
t→∞

1

2t
∆D

∫ t

0

Eα0
[g2s(2αs)]ds (53)

By Lemma 2.1,

(53) = lim
t→∞

∆D

2t

∫ t

0

∫ π

0

g2s(2x)µ(dx)ds (54)

By trig identities, we can write g2s(2x) = cos(2x) cos(2whs)− sin(2x) sin(2whs)
and use Fubini to perform the time integration first in 53.Thus,

(53) = lim
t→∞

(
∆D sin(2wht)

4wht

∫

S

...dx+
∆D sin(wht)

2

2wht

∫

S

...dx

)
(55)

= 0 (56)

Consequently, the single integrals do not contribute to the long term effective
diffusivity of the particle. We are now left to calculate the expressions

lim
t→∞

U2

t

(∫ t

0

∫ t

s1

Eα0
[gs1(αs1)gs2(αs2)]ds2ds1

)
+ D̄

lim
t→∞

U2

t

(∫ t

0

∫ t

s1

Eα0
[hs1(αs1)hs2(αs2)]ds2ds1

)
+ D̄

By Lemma 2, we write

Eα0 [gs1(αs1)gs2(αs2)] =

∫ π

0

∫ π

0

gs1(x)gs2(y)p(s2 − s1, x, y)µ(dx)µ(dy) (57)

Eα0
[hs1(αs1)hs2(αs2)] =

∫ π

0

∫ π

0

hs1(x)hs2(y)p(s2 − s1, x, y)µ(dx)µ(dy) (58)

Now, we use the fact that p(t, x, y) converges exponentially fast to the stationary
density, and that the rate of convergence is governed by λ2 to approximate
p(t, x, y) ∼ 1 + e−λ2tφ2(x)φ2(y) Thus we write 57 as

Eα0 [gs1(αs1)gs2(αs2)] =

∫ π

0

∫ π

0

gs1(x)gs2(y)µ(dx)µ(dy)+

∫ π

0

∫ π

0

gs1(x)gs2(y)e−λ2(s2−s1)φ2(x)φ2(y)µ(dy)µ(dx) (59)
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Eα0
[hs1(αs1)hs2(αs2)] =

∫ π

0

∫ π

0

hs1(x)hs2(y)µ(dx)µ(dy)+

∫ π

0

∫ π

0

hs1(x)hs2(y)e−λ2(s2−s1)φ2(x)φ2(y)µ(dy)µ(dx) (60)

We now use the specific trig properties of gs(x) and hs(x) and write them as

gs1(x)gs2(y) =
1

2

(
cos(x+ y) cos(wh(s1 + s2))− sin(x+ y) sin(w(s1 + s2))+

cos(x− y) cos(w(s1 − s2))− sin(x− y) sin(w(s1 − s2))

)
(61)

hs1(x)hs2(y) =
1

2

(
− cos(x+ y) cos(wh(s1 + s2)) + sin(x+ y) sin(w(s1 + s2))+

cos(x− y) cos(w(s1 − s2))− sin(x− y) sin(w(s1 − s2))

)
(62)

Splitting 61 and 62 and distributing among the integrals, we write

Dxx = D̄ + lim
t→∞

U2

2t

( 4∑

k=1

Ik + Jk

)
(63)

Dyy = D̄ + lim
t→∞

U2

2t

( 4∑

k=1

I ′k + J ′k

)
(64)

Where

Ik :=

∫ t

0

∫ t

s1

∫ π

0

∫ π

0

ck(x, y, s1, s2)µ(dy)µ(dx)ds2ds1 (65)

Jk :=

∫ t

0

∫ t

s1

∫ π

0

∫ π

0

ck(x, y, s1, s2)e−λ2(s2−s1)φ2(x)φ2(y)µ(dy)µ(dx)ds2ds1

(66)

I ′k :=

∫ t

0

∫ t

s1

∫ π

0

∫ π

0

dk(x, y, s1, s2)µ(dy)µ(dx)ds2ds1 (67)

J ′k :=

∫ t

0

∫ t

s1

∫ π

0

∫ π

0

dk(x, y, s1, s2)e−λ2(s2−s1)φ2(x)φ2(y)µ(dy)µ(dx)ds2ds1

(68)
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And

c1(x, y, s1, s2) := cos(x+ y) cos(wh(s1 + s2)) (69)

c2(x, y, s1, s2) := − sin(x+ y) sin(wh(s1 + s2)) (70)

c3(x, y, s1, s2) := cos(x− y) cos(wh(s1 − s2)) (71)

c4(x, y, s1, s2) := − sin(x− y) sin(wh(s1 − s2)) (72)

d1(x, y, s1, s2) := −c1(x, y, s1, s2) (73)

d2(x, y, s1, s2) := −c2(x, y, s1, s2) (74)

d3(x, y, s1, s2) := c3(x, y, s1, s2) (75)

d4(x, y, s1, s2) := c4(x, y, s1, s2) (76)

However, we claim that ∀ k ∈ {1, 2, 3, 4}, limt→∞ U2

2t Ik = limt→∞ U2

2t I
′
k =

0. Note that I ′k differs from Ik by at most a sign, so if we can show that

∀k, limt→∞ U2

2t Ik = 0, then our claim is true. ∀ k ∈ {1, 2, 3, 4}, note that by
Fubini we can perform the time integration first, and treat the double space
integral as constant with regards to t.

Observe that

lim
t→∞

U2

2t
I1 = lim

t→∞
U2 sin2

(
wht
2

)
cos(wht)

tw2
h

∫ π

0

∫ π

0

cos(x+ y)µ(dy)µ(dx) = 0

(77)

lim
t→∞

U2

2t
I2 = lim

t→∞
−U

2(sin(2wht)− 2 sin(wht))

4tw2
h

∫ π

0

∫ π

0

sin(x+ y)µ(dy)µ(dx) = 0

(78)

lim
t→∞

U2

2t
I3 = lim

t→∞
U2(1− cos(wht))

2tw2
h

∫ π

0

∫ π

0

cos(x− y)µ(dy)µ(dx) = 0 (79)

lim
t→∞

U2

2t
I4 = lim

t→∞
−U

2(wht− sin(wht))

2tw2
h

∫ π

0

∫ π

0

sin(x− y)µ(dy)µ(dx) (80)

=
−U2

2wh

∫ π

0

∫ π

0

sin(x− y)µ(dy)µ(dx) (81)

=
−U2

2wh

(∫ π

0

∫ π

0

sin(x) cos(y)µ(dy)µ(dx)−
∫ π

0

∫ π

0

cos(x) sin(y)µ(dy)µ(dx)

)

(82)

= 0 (83)

Thus ∀ k ∈ {1, 2, 3, 4}, limt→∞ U2

2t Ik = 0 = limt→∞ U2

2t I
′
k, as claimed.

We now further claim that limt→∞ U2

2t J1 = 0 = limt→∞ U2

2t J2. This conse-

quently would imply that limt→∞ U2

2t J
′
1 = 0 = limt→∞ U2

2t J
′
2, as J ′1, J ′2 differ
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from J1 and J2 by only a sign. To see this, we again use Fubini’s theorem to
perform the time integration first, and obtain

lim
t→∞

U2

2t
J1 = lim

t→∞
U2(cos(twh)

(
whe

−λ2t + λ2 sin(twh)− wh cos(twh)
)
)

2twh (λ22 + w2
h)

∫ π

0

∫ π

0

...µ(dy)µ(dx)

(84)

= 0 (85)

lim
t→∞

U2

2t
J2 = lim

t→∞
U2(λ2 sin2(twh) + whe

−λ2t sin(twh)− 1
2wh sin(2twh))

2t(λ22wh + w3
h)

∫ π

0

∫ π

0

...µ(dy)µ(dx)

(86)

= 0 (87)

Thus as t→∞, U2

2t J1 = U2

2t J2 = U2

2t J
′
1 = U2

2t J
′
2 = 0 Further, one can immedi-

ately observe that J3 = J ′3 and J4 = J ′4, and so Dxx = Dyy ! It remains to
calculate

lim
t→∞

U2

2t
J3 (88)

lim
t→∞

U2

2t
J4 (89)

Again we Fubini the quadruple integrals to first perform the time integration
and obtain the expressions

lim
t→∞

U2

2t
J3 = lim

t→∞
U2

2t

e−λ2t

((
λ22 − w2

h

)
cos(twh)

(
λ22 + w2

h

)2 +

eλ2t
(
λ32t− λ22 + λ2tw

2
h + w2

h

)
− 2λ2wh sin(twh)

)

(
λ22 + w2

h

)2 K1 (90)

So

lim
t→∞

U2

2t
J3 =

K1U
2

2

λ32 + λ2w
2
h

(λ22 + w2
h)2

(91)

lim
t→∞

U2

2t
J4 = lim

t→∞
U2

2t

−e−λ2t

(
wh
(
− eλ2t

)(
λ22t− 2λ2 + tw2

h

)

(
λ22 + w2

h

)2 +

(
w2
h − λ22

)
sin(twh)− 2λ2wh cos(twh)

)

(
λ22 + w2

h

)2 K2 (92)

So, likewise

lim
t→∞

U2

2t
J4 =

K2U
2

2

λ22wh + w3
h

(λ22 + w2
h)2

(93)
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Where

K1 =

∫ π

0

∫ π

0

cos(x− y)φ2(x)φ2(y)µ(dy)µ(dx) (94)

K2 =

∫ π

0

∫ π

0

sin(x− y)φ2(x)φ2(y)µ(dy)µ(dx) (95)

And so,

Dxx = D̄ +
K1U

2

2

λ32 + λ2w
2
h

(λ22 + w2
h)2

+
K2U

2

2

λ22wh + w3
h

(λ22 + w2
h)2

= Dyy (96)

We conclude by claiming that K2 = 0. To see this, observe that

K1 + iK2 =

∫ π

0

∫ π

0

(cos(x− y) + i sin(x− y))φ2(x)φ2(y)µ(dy)µ(dx) (97)

=

∫ π

0

∫ π

0

eixe−iyφ2(x)φ2(y)µ(dy)µ(dx) (98)

=

∫ π

0

eixφ2(x)µ(dx)

∫ π

0

e−iyφ2(y)µ(dy) (99)

=

∫ π

0

eixφ2(x)µ(dx)

∫ π

0

eiyφ2(y)µ(dy) (100)

=

∣∣∣∣
∫ π

0

eixφ2(x)µ(dx)

∣∣∣∣
2

∈ R (101)

And thus as K1 + iK2 is real, K2 must be 0. Finally,

Dxx = D̄ +
K1U

2λ2
2(λ22 + w2

h)
= Dyy (102)

5 Discussion and Further Directions

Observe that up to the constant K1, and noticing that wh controls the rotation
of the anisotropic particle, exactly like w controls the rotation of the spherical
particle in section (3), the effective diffusivity of the anisotropic particle is very
similar to the effective diffusivity of the previous spherical particle. This is a
fascinating result as it states that in large time, these two very different particles
act almost exactly alike. This will hopefully result in simplified computations
for future projects.

For further directions, one could investigate whether particles with other ge-
ometries and propulsions still behave like the self-propelled spherical particle.
One also could add a reflecting or absorbing boundary to the processes Xt and
Yt and observe the long term behaviour of a bounded particle, i.e. one in a cell
or organ.
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Abstract

A p-Bernoulli bond percolation on an infinite, Gromov hyperbolic
graph X is performed by considering each edge in X and removing the
edge with probability 1− p. This results in a random subgraph of X con-
sisting of finite components and possibly infinite components. Gromov
hyperbolic graphs have a well-defined boundary at infinity with a natural
topology. We observe properties of the percolation subgraph, especially
the behavior of the boundary at infinity of the infinite components of the
percolation subgraph.

1 Introduction

All graphs discussed in this paper can be assumed to be connected, infinite, and
locally finite. Given a p-Bernoulli bond percolation on a graph X, the percola-
tion subgraph ω is a subgraph of X such that V (ω) = V (X) and each edge of X
is in ω with probability p. Bernoulli percolation is an invariant percolation on
a graph X, meaning that it is invariant under the automorphism group of X,
Aut(X). The graph X is transitive if Aut(G) acts transitively on the vertices
of X. The graph X is quasi-transitive if the action of Aut(X) on V (X) has
finitely many orbits.

By Kolmogrov’s 0 − 1 law, the probability of a percolation subgraph con-
taining an infinite component is either 0 or 1, depending on the value of p and
the graph X. Let pc(X) be the infimum of the set of p ∈ [0, 1] such that the
p-Bernoulli percolation on X has an infinite component a.s. Let pu(X) be the
infimum of the set of p ∈ [0, 1] such that the p-Bernoulli percolation on X has
exactly 1 infinite component a.s.

Given a p-Bernoulli percolation ω on a graph X, ω̂ is a (1 − p)-Bernoulli
percolation on X such that E(ω̂) = E(X) \ E(ω).

A graph X is Gromov hyperbolic if all triangles in G are δ-thin. A triangle
is δ-thin if there exists a δ > 0 such that each side lies in the δ-thickening of
the other two sides. For some δ, if all triangles in X are δ-thin, then X is called
δ-hyperbolic and δ is called the hyperbolicity constant.

Given a hyperbolic graph X, the boundary of X at infinity the is set of
equivalence classes of geodesic rays to infinity. It is denoted ∂∞X = {γ :

1



[0,∞)→ X}/ ∼. For geodesics γ1 and γ2, γ1 ∼ γ2 if d(γ(t), γ2(t)) < C, for all
t ≥ 0 and some constant C > 0.

Given some point o ∈ X, the Gromov Product of x and y in X is as follows:

(x · y)o =
1

2
[d(x, o) + d(y, o)− d(x, y)]

Then the Gromov product of two points ξ and η in the boundary at infinity of
X is

(ξ, η)o = lim
x→ξ
y→η

=
1

2
[d(x, o) + d(y, o)− d(x, y)]

We define a quasi-metric do(ξ, η) on ∂∞X as do(ξ, η) = e−(ξ·η)o .
Fix a point o ∈ X. Then B(ξ, ε) = {η : do(ξ, η) < ε} is an open ball of

radius ε. Let the subbasis for a topology on the boundary of X be the set of
open balls:

{B(ξ, ε) : ξ ∈ ∂∞X, ε > 0}
This topology is independent of the choice of the point o.

One important characterization of hyperbolic spaces is that balls grow ex-
ponentially. The size of balls of radius r in a hyperbolic graph is approximately
ehr where h is the Hausdorff-dimension of X. Lemma 1.1 uses this exponential
growth and in fact characterizes hyperbolic graphs [2].

Lemma 1.1 Let X be a hyperbolic graph. Let y ∈ S(o,R) be the endpoint of a
path of length s from x ∈ S(o,R). Assume that R is much greater than s. Then
there are constants c and b that depend on R and the hyperbolicity constant of
X, such that d(x, y) ≤ c logb(s).

2 Boundary at Infinity

The following theorem is a generalization from Theorem 4.1 from [1]

Theorem 2.1 Let X be a unimodular, quasi-transitive, hyperbolic graph. Let
ω be a Bernoulli percolation of X. Then a.s. every infinite component of ω
contains a path that has a unique limit point ∂∞X.

The following lemma is from Theorem 1.3 in [5]. Theorem 1.3 is stated for
Cayley graphs, but it is remarked that the theorem applies more generally to
transitive graphs as well. This trivially applies to quasi-transitive

Lemma 2.2 Let X be a unimodular, quasi-transitive graph. Let ω be a p-
Bernoulli percolation of X such that pc(X) < p < 1. Then a.s. every infinite
component of ω is transient and any simple random walk on it has positive drift.

Proof [Proof of Theorem 2.1] Let X be a unimodular quasi-transitive hyperbolic
graph. Let ω be a p-Bernoulli percolation of X such that pc(X) < p < pu(X).
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Let Z(t) be a simple random walk on an infinite component Ki of ω. By Lemma
2.2, there is some λ > 0 such that for sufficiently large t,

d(Z(t), Z(0)) ≥ λt
Let R(t) be the distance between Z(0) and Z(t). Then let u be the point on the
line [Z(0), Z(t+ s)] such that d(u, Z(0)) = R(t). Then by triangle inequality,

d(u, Z(t+ s)) ≥ d(Z(t+ s), Z(t))− d(u, Z(t))

Also note:

d(Z(0), Z(t+ s)) = d(Z(0), u) + d(u, Z(t+ s))

= R(t) + d(u, Z(t+ s))

= d(Z(0), Z(t)) + d(u, Z(t+ s)).

The path from Z(t) to Z(t + s) has maximum length s. For a path of length
s, the maximum lateral distance moved is c logb(s) for some constants c and b
that depend on the hyperbolicity constant δ. Hence,

d(u, Z(t)) ≤ c logb(s),

d(u, Z(t+ s)) ≥ d(Z(t+ s), Z(t))− c logb(s),

(Z(t) · Z(t+ s))Z(0) =
1

2
[d(Z(t), Z(0)) + d(Z(t+ s), Z(0))− d(Z(t), Z(t+ s))]

=
1

2
[d(Z(t), Z(0)) + d(Z(0), u) + d(Z(t+ s), u)− d(Z(t), Z(t+ s))]

≥ 1

2
[2d(Z(t), Z(0)) + d(Z(t+ s), Z(t))− c logb(s)− d(Z(t), Z(t+ s))]

= d(Z(t), Z(0))− c

2
logb(s)

≥ λt− c

2
logb(s)

Then we have an upper bound on the distance between Z(t) and Z(t+ s) with
respect to Z(0):

dZ(0)(Z(t), Z(t+ s)) = e−(Z(t),Z(t+s))Z(0) ≤ eλt+ c
2 logb(s) = e−λts

c
2 log(b)

Let C = c
2 log(b) . Fix some big t and consider the sequence Z(t), Z(2t), Z(3t), ...

Let [a, b]∞ denote the point in ∂∞X that is touched by the ray to infinity
extended from [a, b].

Then the distance with respect to dZ(0) between [Z(0), Z(t)]∞ and [Z(0), Z(kt)]∞
is:

dZ(0)([Z(0), Z(t)]∞, [Z(0), Z(kt)]∞) ≤
k−1∑

i=1

dZ(0)([Z(0), Z(it)]∞, [Z(0), Z(it+ t)]∞)

≤
k−1∑

i=1

tCe−iλt
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lim
k→∞

dZ(0)([Z(0), Z(t)]∞, [Z(0), Z(kt)]∞) =
∞∑

i=1

tCe−iλt <∞

Given some > 0, pick T such that tCe−λtT < ε
2 . Assume that t is large enough

such that e−λt < 1
2 . Then:

dZ(0)([Z(0), Z(tT )]∞, [Z(0), Z(∞)]∞) ≤
∞∑

i=T

tCe−iλt <
∞∑

i=0

tCe−λtT

2i
= tCe−λtT <

ε

2

Hence for any ε > 0, there is a T such that for n,m > T ,

|dZ(0)([Z(0)Z(nt)]∞, [Z(0)Z(mt)]∞)| < ε.

So the sequence Z(t), Z(2t), Z(3t), ... is a Cauchy sequence that converges to
Z(∞).
�

The following lemma is a generalization of Lemma 4.3 from [1]

Lemma 2.3 Let X be a unimodular, quasi-transitive, hyperbolic graph. Let ω
be a Bernoulli percolation of X. Let Y = ∂∞

⋃
iKi be the set of points ξ in

∂∞X such that there is a path to ξ in ω Then a.s. Y = 0 or Y is dense in
∂∞X.

Proof Given some x ∈ X, let dx be the Gromov metric with respect to x. Let
a(v) be the radius of the biggest ball in ∂∞X \ Y in the dv metric. Note that
a(v) does not depend on the choice of v. Let o ∈ X, ε ∈ (0, 1), and let δ be the
probability that ε < a(o) < 1− ε.

Suppose δ > 0. Let R > 0 be very large and let x ∈ X be a uniform random
point on the sphere of radius R about o in X. Given that ε < a(o) < 1− ε, the
event that the geodesic ray from o containing x hits ∂∞X at a point ξ0 with
do(ξ0, Y ) ≥ ε

4 happens with probability greater than ε
4 . This event happens

when ξ0 is in a ball of radius greater than ε
4 inside the largest ball of ∂∞X \ Y

with respect to do. On that event, if R is very large we can make a(x) as close
to 1 as we want, with a(x) 6= 1. But we also have

P [a(x) ∈ (1− t, 1)] = P [a(o) ∈ (1− t, 1)]→ 0

as t decreases to zero. It follows that P [a(x) ∈ (ε, 1 − ε)] = 0. Hence a.s.
a(x) ∈ {0, 1}. The set Y cannot be a single point, because then there would be
a finite measure on X which is automorphism invariant. �

The following lemma gives the result of Lemma 2.3 with a different argument.

Lemma 2.4 Let X be a hyperbolic graph such that for all open sets U ⊆ X the
open cone Co(U) = {γ = [o, ξ] : ξ ∈ U} has critical percolation pc(Co(U)) ≤
pc(X). Let ω be a p-Bernoulli percolation on X with p > pc(X). Let Ki be a

component of ω such that |Ki| =∞. Then a.s. ∂∞X =
⋃

i

∂∞Ki.
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Proof Suppose for contradiction that ∂∞X \
⋃

i

∂∞Ki 6= ∅.

Then ∂∞X \
⋃

i

∂∞Ki = O for some open set O ⊂ ∂∞X. Let U be a proper

open subset of O such that U ⊂ O. Let Co(U) be the open cone consisting
of geodesic rays [o, θ] for all θ ∈ U . Consider Co(U) as a separate graph.
Since no Ki has boundary in U , there is no infinite component in Co(U). But
p > pc(X) ≥ pc(Co(U)). Then a.s. the cone Co(U) has an infinite component
in ω. Contradiction. �

Lemma 2.5 Let X be a hyperbolic graph. Let ω be a Bernoulli percolation on
X with p < 1. Let Ki be a component of ω such that |Ki| < ∞. Then a.s.

∂∞X =
⋃

i

∂∞Ki.

Proof Suppose for contradiction that ∂∞X \
⋃

i

∂∞Ki 6= ∅.

Then ∂∞X \
⋃

i

∂∞Ki = O for some open set O ⊂ ∂∞X. Let U be a proper

open subset of O such that U ⊂ O. Let Co(U) be the open cone consisting of
geodesic rays [o, θ] for all θ ∈ U . Since the points in U are not limit points of the
finite components of ω, there must be some ball centered at o with radius R such
that there are no finite components of ω in Co(U) past radius R. But there is a
finite component N in the cone past radius R with probability p|N | · (1−p)|∂N |.
Where ∂N is the boundary of N , i.e. the edges removed from X that disconnect
the component. Since 0 < p < 1 and both N and ∂N are finite, this probability
is positive. So a.s. there is a finite component in the cone Co(U) past radius R.
Contradiction. �

Lemma 2.6 Let X be a hyperbolic graph. Let ω be a p-Bernoulli percolation
with p > pu(X). Suppose pu(X) < 1 − pc(X). Then a.s. ∂∞K = ∂∞X where
K is the infinite component of ω.

Proof Suppose there is some point ξ ∈ ∂∞X such that ξ 6∈ ∂∞K. Then
there is no sequence in K that limits to ξ. Then all sequences to ξ in X must
have subsequences in ωc. At least some of these subsequences would be infinite.
But ωc is a p′-Bernoulli percolation with p′ < pc(X). So there are no infinite
components in ωc. Contradiction. �

Lemma 2.7 Let X be quasi-transitive, planar and hyperbolic. Let ω be a p-
Bernoulli percolation with p > pc(X). Then for two distinct infinite components
Ki,Kj in ω, the intersection of ∂∞Ki and ∂∞Kj must be finite.

Proof Suppose the boundary of two distinct components Ki,Kj have a non-
empty intersection. Then there is a point ξ in Ki ∩ Kj such that there are

sequences ân ∈ Ki and b̂n ∈ Kj that both have ξ as a limit point. Let η be a
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point on either side of ξ. A path to η from Kj would have to cross ân or vice
versa, which is impossible in a planar graph. Hence η 6∈ ∂∞Ki ∩ ∂∞Kj unless
η is on the edge of the boundary of one of the components. In a planar graph,
the edges of the boundary must be finite. Hence ∂∞Ki ∩ ∂∞Kj <∞. �

Theorem 2.8 Let X be quasi-transitive, planar and hyperbolic. Let ω be a p-
Bernoulli percolation with p > pc(X). Then a.s. the boundary of the infinite
components have empty interior.

Proof Suppose there is an open set U in the boundary at infinity of some infinite
component K0 ⊆ ω. Consider the open cone Co(U) consisting of geodesic rays
[o, θ] ∈ X for all θ ∈ U . Since X is quasi-transitive, pc(Co(U)) = pc(X). Then
a.s. ω restricted to the cone has infinitely many infinite components. Since an
infinite component of X has non-empty interior, an infinite component of Co(U)
a.s. has an infinite component with non-empty interior. By Lemma 2.7, The
boundary of any infinite component Ki ∈ Co(U), i 6= 0 must have finite inter-
section with ∂∞K0 = U . Then K0 is the only infinite component in Co(U) that
has non-empty interior. Since X is quasi-transitive, if one component has non-
empty interior, then infinitely many components have non-empty interior. But
Co(U) only has one infinite component with non-empty interior. Contradiction.
�

For non-planar graphs, the boundary at infinite of infinite components can
overlap much more. The following is a simple example with the potential for
infinite overlap between components.

Example 2.9 Let T be a tree. Then let X be the graph consisting of two copies
of T with added edges between a node and its copy. Formally, V (X) = (0, 1)×T
and [(i,j),(k,l)]∈ E(X) if and only if

{
i < k, and j = l

i = k and [j, l] ∈ E(T )

}

Then for each point ξ ∈ ∂∞X, there are infinitely many geodesic rays γ such
that γ(∞) = ξ.
Suppose ξ ∈ ∂∞Ki ∩ ∂∞Kj . Then Ki and Kj have disjoint geodesics to ξ. The
only way for this to happen is α1 ∈ Ki, α2 ∈ Kj where α1 is the only geodesic
to ξ in {0} × T and α2 is the only geodesic to ξ in {1} × T . Since Ki 6= Kj ,
there must be no edges between α1 and α2. We will call this a disjoint ladder.
Figure 1 shows an example of a disjoint ladder. Let B(o, n) be the ball of radius
n. There are ehn branches in B(o, n) where h is the Hausdorff dimension of
∂∞T and eh is the branching number of T , br(T ). The probability of a disjoint
ladder is pn(1− p)npn. We will calculate a lower bound of the probability that
the sides of the disjoint ladder are in distinct components. At some level n, there
are ≈ br(T ) − 1 branches connected to the same node as the disjoint ladder.
For each of those branches, the probability that at least one of the edge or its
copy is removed is 2p(1− p) + (1− p)2 = 1− p2. Then the probability of there
being a disjoint ladder in a ball of radius n in distinct components is greater
than (p2(1− p))n(1− p2)nbt(t).
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Figure 1: The first 5 levels of a graph X with consisting of two copies of the
binary tree. The red lines are an example of a disjoint ladder. At each level, our
probability calculation required that at least one of the green edges be removed.
Note that X would have disjoint ladders with probability 0, since the branching
number of T is small.

In order for this ladder to occur at radius n, we need

1 ≤ [p2(1−p)(1−p2)br(T )eh]n ⇒ 1 ≤ p2(1−p)(1−p2)br(T )eh ⇒ p2(1−p)(1−p2)br(T ) ≥ 1

eh

Hence if the branching number is big enough and p is small enough, then in-
finitely many of the disjoint ladders will occur a.s. Note that this is feasible
since for any tree T , pc(T ) = 1

br(T ) . A proof of this fact can be found in [4].

Lemma 2.10 Let X a non-planar, hyperbolic graph. Let ω be a p-Bernoulli
percolation with p > pc(X). Then the boundary of the infinite components may
have non-empty interior.

Example 2.11
Let Gi be a hyperbolic Cayley graph such that pu(Gi) < 1 and pu(Gi) <

1 − pc(Gi). Let Z be the graph with V (Z) = Z and E(Z) = {uv : v = u + 1}.
Then Z is the line of integers. Let X be the graph that replaces each vertex i
of Z with Gi and connect Gi and Gi+1 only by their identity elements. Figure
2 shows a diagram of the graph X. Note that pu(X) = 1 since removing a

-2 -1 0 1 2

G−2 G−1 G0 G1 G2

Figure 2: The graph of Example 2
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finite number of edges would result in multiple components. By Lemma 2.6, the
boundary at infinity of ω restricted to some Gi is the entire boundary ∂∞Gi.
Since ∂∞Gi is an open set there are infinitely many components of ω with
non-empty interior.

3 The Structure of Infinite Components

3.1 Quasi-Geodesics

Given two metric spaces (M1, d1), (M2, d2), a function f is a quasi-isometric
embedding if there exists constants A > 0, B > 0 such that ∀x, y ∈M1:

1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad(x, y) +B (1)

Lemma 3.1 Let X be a hyperbolic, one ended, quasi-transitive graph. Let ω be
a p-Bernoulli percolation subgraph of X with p ∈ (0, 1). Then a.s.each infinite
component Ki ⊂ ω is not quasi-isometrically embedded in X.

Proof For any t > 0, there is a positive probability that an entire ball of
radius t will be removed from ω and that a connected component in ω will
surround it. Let B(x0, t) be the ball of radius t centered at xo. There is
some constant c such that the set [B(x0, t+ c) \B(x0, t)] ∩ ω is connected. Let
CS(xo, t) = [B(x0, t+c)\B(x0, t)]∩ω be the connected shell where c is minimal
and B(xo, t) ∩ ω = ∅. Then CS(xo, t+ 1) is in some component Ki of ω.

If Aut(X) acts quasi-transitively on Ki then all geodesics of Ki are a fi-
nite uniform distance from geodesics of X. But there are arbitrarily large t-
configurations CS(xo, t). By Lemma 1.1, geodesics between antipodal points of
CS(xo, t) must have length greater than et which in X they have length t. Since
t can be arbitrarily big, there are no constants A,B which satisfy equation (1).
�

Lemma 3.2 There are infinitely many configurations CS(·, t) in a given com-
ponent K of ω for any t > 0.

Proof Define the function

F (x, y;ω) =

{
1
eht : y ∈ K(x), y ∈ CS(xo, t) ⊂ ω,B(xo, t) ⊂ ωc

0 : otherwise

If there are a finite number of t-configurations in K then

∑

y∈X
F (x, y;ω) <∞.

If x ∈ S(xo, t+1) withB(xo, t) ⊂ ωc, then
∑
y∈X F (y, x;ω) =∞. So

∑
y∈X f(y, x) =

∞. By mass transport principle,
∑
y∈X f(x, y) =∞. Hence, there are infinitely

many t-configurations in a component K. �
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3.2 Balls within an Infinite Component

Lemma 3.3 Let ω be a p-Bernoulli percolation subgraph of a hyperbolic graph
X, with pc(X) < p < pu(X). Let Ki ⊂ ω. Then the ratio

q(x, y, r) =
|B(x,R) ∩Ki|
|B(y,R) ∩Ki|

is exponentially large in R as d(x, y)→∞.

Proof Suppose that x, y ∈ X are in the same infinite component K of ω.

Given some radius R, there is a ball of radius R − d(x,y)
2 contained inside the

intersection of B(x,R) and B(y,R).

|B(x,R) \B(y,R)| ≥ ehR − eh(R− d(x,y)
2 ) = ehR(1− e−h d(x,y)

2 )

ThenK∩|B(x,R)\B(y,R)| could be as big as ehR(1−e−h d(x,y)
2 ). In the case that

K grows towards infinity in the−→xy direction and not in the−→yx direction, we could

haveK∩|B(x,R)\B(y,R)| close to ehR(1−e−h d(x,y)
2 ) andK∩|B(x,R)\B(y,R)|0

close to 0. Then, q(x, y,R) ≈ ehR(1− e−h d(x,y)
2 ) and,

d(x, y)→∞⇒ q(x, y,R)→ ehR

�

4 Mass Transport Principle

The mass transport principle states that the expected total mass transported
into any vertex x ∈ X is equal to the the expected total mass transported out
of x, in an invariant percolation. The statement of mass transport principle can
be simplified depending on the type of automorphism group of the graph X.

Let Γ be a group of automorphisms of a graph X. The stabalizer of x ∈ X is
the set S(x) = {γ ∈ Γ : γx = x}. Note that γ preserves the distance between x
and y, so all γy ∈ S(x)y are the same distance from x. Since X is locally finite
and connected, it follows that the set S(x)y = {γy = γ ∈ S(x)} is always finite.

Theorem 4.1 (MTP) Let Γ be a transitive group of automorphisms of X.
Let F (x, y;ω) be a function that is nonnegative and diagonally invariant under
the action of Γ. That means for all γ ∈ Γ, F (γx, γy; γω) = F (x, y;ω). Let
f(x, y) = E[F (x, y;ω)]ω. Then,

∑

x∈X
f(o, x) =

∑

x∈X
f(x, o)

|S(x)y|
|S(y)x|

If |S(x)y| = |S(y)x| for all x, y such that y ∈ Γx, then Γ is unimodular. Note
that y ∈ Γx means that there is some γ ∈ Γ such that x = γy.
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Corollary 4.2 If Γ is both unimodular and transitive, then:
∑

x∈X
f(o, x) =

∑

x∈X
f(x, o)

An example of the use of mass transport is in the proof of Lemma 4.3.
Given a point x, the diameter of K(x) is the maximum distance between

two points on the boundary at infinity of K(x).

diamx(∂∞K(x)) = max
ξ,η∈∂∞K(X)

dx(ξ, η)

Recall that dx(ξ, η) = e−(ξ·η)x where (ξ · η)x is the Gromov product. Then
clearly 0 ≤ dx(ξ, η) ≤ 1 where dx(ξ, η) = 0 if ξ = η and dx(ξ, η) = 1 if x is on
the geodesic between ξ and η.

Lemma 4.3 For a unimodular, hyperbolic graph X and any point x ∈ Ki ⊂ X,
there are infinitely many points for which the minimum diameter is achieved.

Proof Let X be a quasi-transitive, hyperbolic graph. For a vertex x ∈ X, let
K(x) denote the component of ω containing x. The minimal diameter of K(x)
is the smallest diamx(K(x) for all x ∈ K(x). Let N(y) be the number of points
x ∈ K(y) where the diamx(∂∞K(y)) is minimal. Suppose N(y) is finite. Define
the function:

F (x, y;ω) =

{
1

N(x) : x ∈ K(y), diamx(∂∞K(y)) minimal

0 : otherwise

Let f(x, y) = Eω[F (x, y;ω)]. Then
∑
x∈G f(x, y) ≤ 1. Also,

∑
x∈X f(y, x) =

∞ since
∑
x∈X F (y, x;ω) = ∞ when diamy(∂∞K(y)) is minimal. By mass

transport principle,

∑

x∈X
f(x, y) =

∑

x∈X
f(y, x)

|S(x)y|
|S(y)x|

Then the relative stabilizers must tend to infinity for all y. If X is unimodular,

then |S(x)y||S(y)x| = 1 and we have a contradiction. Hence, if X is unimodular, a.s.

there are infinitely many points in Ki where the minimum diameter of ∂∞Ki is
achieved. �

We can also use mass transport to say something about the density of certain
properties of a graph X within an infinite component Ki of the percolation
subgraph. But first, we need the following lemma.

Lemma 4.4 Let âk be a sequence such that âk converges to zero. Then there
is some sequence b̂k such that

∑∞
k=0 bk =∞ and

∑∞
k=0 akbk <∞.

Proof There is a sequence k0, k1, k2, ... such that for k ∈ [ki, ki+1], |ak| < 1
2i .

Choose bk such that
∑ki+1

k=ki
bk = 1. Then

∞∑

k=0

bk =

k0∑

k=0

bk +
∞∑

i=0

kj∑

k=ki

bk = C +
∞∑

i=0

1 =∞,
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∞∑

k=0

|akbk| =
k0∑

k=0

|akbk|+
∞∑

i=0

ki+1∑

k=ki

|akbk| < C ′ +
∞∑

i=0

1

2i
<∞

�

Proposition 4.5 (Density Argument) Let P be a diagonally-invariant prop-
erty of vertices or edges of a graph quasi-transitive, unimodular and hyperbolic
graph X. Let ω be a p-Bernoulli percolation of X with pc(X) < p < pu(X) and
Ki be an infinite component of ω. Then the asymptotic density of vertices with
property P in a ball of finite radius r in Ki cannot approach 0 as r approaches
infinity.

Let Py = {x ∈ K(y) : P holds for x}. We are defining the asymptotic density
of vertices with property P in Ki as:

lim
r→∞

|Py ∩B(y, r)|Ex∈Py∩S(y,r)

[
1

|B(x, r) ∩K(x)|

]

Proof Using mass transport principle, we can look at the ratio of vertices on
some sphere S(xo, r) with property P as r approaches infinity. Define ar as:

ar = |Py ∩B(y, r)|Ex∈Py∩B(y,r)

[
1

|B(x, r) ∩K(x)|

]
.

Then let b̂r be the sequence constructed in Lemma 4.4 such that
∑∞
r=0 arbr <∞.

Let lx(r) = |B(x,r)∩K(x)|
br

in the dK metric.

F (x, y;ω) =

{
1

lx(d(x,y))
: x ∈ K(y), x satisfies P

0 : otherwise

If x satisfies P , then we have:

∑

y∈X
F (x, y;ω) =

∑

y∈K(x)

1

lx(d(x, y))
=
∞∑

r=0

∑

y∈B(x,r)∩K(x)

1

lx(r)
=
∞∑

r=0

br|B(x, r) ∩K(x)|
|B(x, r) ∩K(x)| =

∞∑

r=0

br =∞

11



So
∑
y∈X f(x, y) =∞. Taking the sum over x, we have:

∑

x∈X
F (x, y;ω) =

∑

x∈K(y)

1

lx(d(x, y))

=
∞∑

r=0

∑

x∈Py∩B(y,r)

1

lx(r)

=
∞∑

r=0

br|Py ∩B(y, r)|Ex∈Py∩B(y,r)

[
1

|B(x, r) ∩K(x)|

]

=
∞∑

r=0

arbr

Thus if the asymptotic density ar approaches 0 then
∑
x∈X f(x, y) wound

be finite. Hence the asymptotic density would approach a constant. �
Define the property P such that x satisfies P if diamx(∂∞K(x)) is mini-

mal. Then by the argument above, we can conclude that number of points that
achieve minimum diameter in a ball of radius r has the same exponential order
of growth as the ball inside K(x).

We speculate that Lemma 2.8 holds holds for all non-planar, quasi-transitive,
hyperbolic graphs. If we assume otherwise, we can define a diagonally-invariant
property using the radius of open balls at infinity. Given a point x, the let R(x)
be the maximum radius of an open ball on the boundary at infinity of K(x)
with respect to x.

R(x) = max
B(ξ,ε)⊂∂∞K(X)

ε

If we can prove that the asymptotic density of the set {x ∈ B(x, r) : R(x) is
minimal} approaches 0 as r approaches infinity, then we can use the density
argument to show a contradiction.
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Abstract

W.-T. Fan and S. Roch [FR17] considered the ancestral state reconstruction problem on a
sequence of trees with uniformly bounded height under the Thorne–Kishino–Felsenstein 1991
model [TKF91, TKF92] of DNA sequence evolution. They provided explicit and consistent
root state estimators that achieve the optimal rate of convergence. In this paper, we study the
rate of convergence of a reversible indel chain to its equilibrium distribution.
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1 Introduction

In computational biology and in phylogenetics, the problems of sequence alignment and phylogeny
reconstruction have become important. A sequence alignment is an array of nucleotides, A, C, G,
T and blank characters (which we may take to be dashes, for instance). From a collection of
unaligned sequences, researchers construct an alignment and try to infer the phylogeny (see Figure
1).

Figure 1: Top: phylogenetic tree. Middle: sequence alignment. Bottom: collection of unaligned
sequences. Source: [Fle04].

The TKF91 indel (insertion-deletion) model models DNA sequence evolution via a continuous-
time Markov chain. The state space has not been well-studied, and this fact poses a difficulty in
the analysis of the chain. The TKF91 indel model has been criticized for being unrealistic [MT01]
and for being computationally unwieldy [BCJ13]. The TKF91 indel model is more realistic, but it
is still unrealistic [MT01]. The Poisson indel model [BCJ13] is a variant that is computationally
wieldy.
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In the context of d-ary trees, the Kesten–Stigum threshold [Mos01, Mos04, KS66, Roc12] for
reconstruction relates the rate of convergence, via the spectral gap, of a certain 2-state Markov
chain to the problem of ancestral reconstruction. If the mixing rate is above a certain threshold,
then reconstruction is always possible; if the mixing rate is below the threshold, then reconstruction
is impossible (success can only happen with probability at most 1/2). Research is still being
conducted on similar results in more general scenarios. This result and this area of research suggest
deep connection between the spectral gap of certain Markov chains and ancestral reconstruction.

In Subsection 1.1, we summarize our results. In Subsection 1.2, we introduce a simplified
version of the TKF91 model. In Subsections 1.3 and 1.4, we provide a refresher of some results
on certain types of convergence.

1.1 New results

We prove exponential ergodicity in total variation distance for the TKF91 indel chain, and fur-
thermore we show the rate is at least as good as µ − λ + ε for all ε > 0. The challenges we
overcame were finding a good coupling and by bounding the coupling time. We addressed these
two challenges, respectively, by drawing inspiration from previous analysis of random walk on a
hypercube, and by separating the coupling time τcouple into two easily analyzable random variables,
τ1 and τ2 (see Lemma 8).

1.2 Binary indel chain

We consider the following model of binary sequence evolution with insertion and deletion, which
is a simplified version of the TKF91 model. C. Daskalakis and S. Roch introduced a related model
that gets rid of the reversibility condition [DR10].

Definition 1 (binary indel chain). The binary indel chain is a continuous-time Markov chain
I = (It)t≥0 on the space

S :=
⋃

M≥0

({•} × {0, 1}M) (1)

of binary sequences appended to an immortal link “•”. We also refer to the positions of a se-
quence (including digit and the immortal link) as sites. Let (ν, λ, µ) ∈ (0,∞)3 with λ < µ be
given parameters. In addition, let π0 = 1/2, π1 = 1/2. The continuous-time Markovian dynamic
is described as follows: if the current state is the sequence ~x, then the following events occur
independently:

• (Substitution) Each digit (but not the immortal link) is substituted independently at rate
ν > 0. When a substitution occurs, the corresponding digit is replaced by 0 and 1 with
probabilities π0 and π1 respectively.

• (Deletion) Each digit (but not the immortal link) is removed independently at rate µ > 0.

• (Insertion) Each site gives birth to a new digit independently at rate λ > 0. When a birth
occurs, a digit is added immediately to the right of its parent site. The newborn site has digit
0 and 1 with probabilities π0 and π1 respectively.
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The length of a sequence ~x = (•, x1, x2, · · · , xM) is defined as the number of digits in ~x and is
denoted by |~x| = M (with the immortal link alone corresponding to M = 0). When M ≥ 1 we
make the identification ~x = (•, x1, x2, · · · , xM) = (x1, x2, · · · , xM).

The binary indel chain is reversible. Further, let r = λ/µ (ratio), and suppose that

0 < λ < µ,

an assumption we make throughout. Then the chain has a stationary distribution Π, given by

Π(~x) = (1− r)
(r

2

)|~x|
. (2)

Under Π, the sequence length is geometrically distributed and, conditioned on the sequence length,
all sites are independent with distribution πsim := (π0, π1).

Throughout this paper, we let P~x be the probability measure when the root state is ~x. If the root
state is chosen according to a distribution Π, then we denote the probability measure by PΠ. From
the previous paragraph, we have for all ~a, ~z ∈ S and all t ≥ 0,

PΠ(It = ~z) = Π(~z) and (3)

P~a(It = ~z)

Π(~z)
=

P~~z(It = ~a)

Π(~a)
. (4)

We also denote by PM the conditional probability measure, under PΠ, for the event that the
root state has length M ≥ 1. The next lemma says that conditioned on having length ≥ N , the
distribution of the first N digits of It under PM are independent with the same distribution πsim.

Remark 2. (Infinitesimal generator and Dirichlet form)
For all ~x, ~y, we write λ(~x, ~y) for the transition rate from ~x to ~y. The infinitesimal generator of

the indel chain I = (It)t≥0 is given as follows: for ~x = (•, x1, · · · , xM) ∈ {0, 1}M where M ≥ 0,

Af(~x) =
∑

~y∈S
λ(~x, ~y)f(~y) (5)

=
λ

2

M∑

j=0

∑

z∈{0,1}
f(~x+z

0 ) +
ν

2

∑

j∈[M ]

f(~xj) + µ
∑

j∈[M ]

f(~x−j )

− f(~x)


ν

∑

j∈[M ]

π1−xj +Mµ+ (M + 1)λ


 ,

where

~xj := (x1, · · · , xj−1, 1− xj, xj+1, · · · , xM) ∈ {0, 1}M

~x−j := (x1, · · · , xj−1, xj+1, · · · , xM) ∈ {0, 1}M−1

~x+z
j := (x1, · · · , xj, z, xj+1, · · · , xM) ∈ {0, 1}M+1
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are obtained respectively by substitution, deletion and insertion of z ∈ {0, 1} for site xj where
j ≥ 1 (for the case j = 0, we define formally ~x +z

j = (z, x1, . . . , xM)). The Dirichlet form of
I = (It)t≥0 on L2(Π) is symmetric and is given by

E(f, g) = −〈Af, g〉Π = −
∑

~x∈S

∑

~y∈S
f(~y)g(~x)λ(~x, ~y)Π(~x) (6)

=
1

2

∑

~x∈S

∑

~y∈S
(f(~y)− f(~x))(g(~y)− g(~x))λ(~x, ~y)Π(~x). (7)

Thus we have
E(f, f) =

1

2

∑

~x∈S

∑

~y∈S
(f(~y)− f(~x))2λ(~x, ~y)Π(~x). (8)

1.3 Total variation distance

We use the notation a ∧ b = min{a, b} and a ∨ b = max{a, b}. For two probability measures µ1,
µ2 on a countable measure space S, let

dTV (µ1, µ2) =
1

2

∑

σ∈S
|µ1(σ)− µ2(σ)| = sup

A⊆S
|µ1(A)− µ2(A)|

= 1−
∑

σ∈S
µ1(σ) ∧ µ2(σ) (9)

be the total variation distance between µ1 and µ2. The last equality follows from noticing that

dTV (µ1, µ2) =
1

2

∑

σ∈S
[µ1(σ) ∨ µ2(σ)− µ1(σ) ∧ µ2(σ)] and

1 =
1

2

∑

σ∈S
[µ1(σ) ∨ µ2(σ) + µ1(σ) ∧ µ2(σ)].

1.4 L2(µ) convergence vs. dTV convergence

In this subsection we show L2(µ) ergodicity is better than dTV ergodicity. This result can be
applied to the indel chain, with µ = Π, and to the length process (see Section 2), with µ = ~γ. The
Poincaré inequality for a reversible Markov chain with Dirichlet form E is

E(f, f) ≥ 1

c
Varµ(f), (10)

where µ is the stationary measure,

Varµ(f) =

∫
f 2 dµ−

(∫
f dµ

)2

= ‖f −
∫
fdµ‖2

µ

is the variance of f and c ∈ (0,∞) is a constant independent of f and ‖ · ‖µ = ‖ · ‖L2(µ) is the L2

norm with respect to measure µ. It is well known (Theorem 11) that for reversible ergodic Markov
chains, (10) is equivalent to the L2 exponential ergodicity

Varµ(Ptf) ≤ e−2t/c Varµ(f), (11)
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or equivalently

‖Ptf −
∫
f dµ‖µ ≤ e−t/c ‖f −

∫
fdµ‖µ. (12)

It can be checked also that the L2 exponential ergodicity (12) implies exponential ergodicity in
total variation distance for all probability measures f (i.e.

∑
x f(x) = 1):

dTV (Ptf, µ) ≤ e−t/c · 1

2

∥∥∥f/µ− 1
∥∥∥
L2(µ)

. (13)

Proof for (12) implies (13). Denote by pt(x, y) := Px(Xt = y) the transition probability. Then we
have symmetry µx pt(x, y) = µy pt(y, x) and

dTV (Ptf, µ) =
1

2

∑

x

|Ptf(x)− µx|

=
1

2

∑

x

∣∣∣
∑

y

(f(y)− µx) pt(x, y)
∣∣∣

=
1

2

∑

x

µx

∣∣∣
∑

y

(
f(y)

µx
− 1

)
pt(x, y)

∣∣∣

=
1

2

∥∥∥
∑

y

(
f(y)

µ
− 1

)
pt(· , y)

∥∥∥
L1(µ)

≤ 1

2

∥∥∥
∑

y

(
f(y)

µ
− 1

)
pt(· , y)

∥∥∥
L2(µ)

≤ 1

2

∥∥∥Pt(f/µ− 1)
∥∥∥
L2(µ)

≤ 1

2
e−t/c

∥∥∥f/µ− 1
∥∥∥
L2(µ)

.

The assumption
∑

x f(x) = 1 guarantees that inequality (12) is applicable in the last inequality.

Fixing x and taking f = 1x, we obtain

‖pt(·, x)− µ‖TV ≤ e−t/c
∥∥∥1x/µ− 1

∥∥∥
L2(µ)

.

2 Sequence length chain

For each t ≥ 0, we write Lt = |It| to mean the sequence length at time t, and we write pt(i, j) =
Pi(Lt = j) for the transition function, for all i, j ≥ 0.

It is clear that the sequence length L := (Lt)t≥0 evolves as a birth-death process with equilib-
rium distribution ~γ := (γM)M≥0, where

∀M ≥ 0 γM = (1− r)rM . (14)

Convergence rate towards equilibrium for L was studied by A. Mitrophanov and M. Borodovsky
[MB07].
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2.1 Length chain: Generator and Dirichlet form

The generator of the length chain is given by

Qi,i+1 = (1 + i)λ (i ≥ 0), Qi,i−1 = iµ (i ≥ 1), Qi,j = 0 (|j − i| ≥ 2).

The Dirichlet form of the length chain is

E(f, g) = −
∞∑

i=0

( ∞∑

j=0

Qi,jf(j)

)
g(i)

(
1− λ

µ

)(
λ

µ

)i

=
µ− λ

2µ

∞∑

i=0

∞∑

j=0

Qi,j(f(j)− f(i))(g(j)− g(i))

(
λ

µ

)i

=
1

2
(1− r)

∞∑

i=0

∞∑

j=0

Qi,j(f(j)− f(i))(g(j)− g(i))ri.

Note we have

E(f, f) =
1

2
(1− r)

(∑

i≥0

(1 + i)λ(fi+1 − fi)2ri +
∑

i≥1

iµ(fi − fi−1)2ri

)
.

We have ∑

i≥1

iµ(fi − fi−1)2ri =
∑

i≥0

(i+ 1)µ(fi+1 − fi)2ri+1

and
∀i ≥ 0 (i+ 1)µ(fi+1 − fi)2ri+1 = (i+ 1)λ(fi+1 − fi)2ri,

so

E(f, f) =
1

2
(1− r)

(∑

i≥0

(1 + i)λ(fi+1 − fi)2ri +
∑

i≥1

iµ(fi − fi−1)2ri

)

= (1− r)
∑

i≥0

(1 + i)λ(fi+1 − fi)2ri = (1− r)λ
∑

i≥0

(1 + i)ri(fi+1 − fi)2. (15)

2.2 Not the Poincaré inequality

By a previous result (Theorem 10), we have

∀M ≥ 0
∞∑

n=0

n|pt(M,n)− γn| ≤
(
M +

λ

µ− λ

)
e−(µ−λ)t.

The triangle inequality gives the following result.

Proposition 3.

∀M ≥ 0 dTV (pt(M, ·), ~γ) ≤
(
M +

λ

µ− λ

)
e−(µ−λ)t.
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Proof. We have

∞∑

n=1

|pt(M,n)− γn| ≤
∞∑

n=1

n|pt(M,n)− γn| =
∞∑

n=0

n|pt(M,n)− γn|

and

|pt(M, 0)− γ0| =
∣∣∣∣∣

(
1−

∞∑

n=1

pt(M,n)

)
−
(

1−
∞∑

n=1

γn

)∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

pt(M,n)−
∞∑

n=1

γn

∣∣∣∣∣

=

∣∣∣∣∣
∞∑

n=1

(pt(M,n)− γn)

∣∣∣∣∣ ≤
∞∑

n=1

|pt(M,n)− γn|,

so

dTV (pt(M, ·), ~γ) =
1

2

∞∑

n=0

|pt(M,n)− γn| ≤
(
M +

λ

µ− λ

)
e−(µ−λ)t.

2.3 Poincaré inequality

For the length process, we that the Poincaré inequality holds, and further that the best constant in
the Poincaré inequality is

inf
f∈L2(~γ):~γf=0,Var~γf=1

E(f, f) =: gap(E) = µ− λ

[Che04, Section 9.3, second example under heading “Examples 9.27”].

2.4 Explicit formula for transition density: The Karlin–McGregor theorem

Karlin and J. McGregor proved [KM58] that the transition function pt(i, j) for the birth-death
process L can be represented as

pt(i, j) = rj
∫ ∞

0

e−xtQi(x)Qj(x) dφ(x), i, j ∈ Z+, t ≥ 0, (16)

where φ is the spectral measure of the transition matrix and {Qn}n∈Z+ are orthogonal polynomials.
More explicit expressions are given below according to different cases:

Case 1 (λ < µ). There is a stationary distribution given by γn = (1 − r)rn. Moreover, in (16), the
orthogonal polynomials are given by Meixner polynomials

Qn(x) = Mn

(
x

µ− λ ; 1, r

)
, n ∈ Z+,

and φ is the probability distribution assigning mass wn := γn at the points (µ− λ)n.
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Case 2 (λ = µ). In (16), the orthogonal polynomials are given by Laguerre polynomials

Qn(x) = L(0)
n

(x
λ

)
, n ∈ Z+,

and φ is the probability density function of the Gamma distribution Γ(1, λ) (exponential with
intensity 1/λ), that is,

dφ(x) =
e−x/λ

λ
dx.

The case λ > µ is not needed here so we do not type it out. Interested readers can consult Chapter
3 of Schoutens’s book [Sch00, Ch. 3, Birth and Death Processes, Random Walks, and Orthogonal
Polynomials] and take β = 1 there. Anderson’s continuous-time Markov chain book is also a good
reference on the Karlin–McGregor theorem (see [And91, Ch. 8, Birth and Death Processes]).

By (16), we have the explicit formula

pt(i, j) = rj
∑

n≥0

e−(µ−λ)ntMi(n; 1, r)Mj(n; 1, r) γn

= (1− r)rj
∑

n≥0

e−(µ−λ)ntMi,nMj,n r
n

= (1− r)rj
∑

n≥0

[re−(µ−λ)t]nMi,nMj,n, (17)

where Mi,n are Meixner polynomials defined by

Mi(n; 1, r) =
i∑

k=0

(−1)k
(
i

k

)(
n

k

)
k!(n+ 1)i−kr

−k,

where the Pochhammer symbol denotes the rising factorial.
See the Appendix of W.-T. Fan and S. Roch’s 2017 preprint [FR17] for more properties of the

indel chain I and the sequence length chain L.

3 Coupling

3.1 Coupling of the length chain

In this subsection, we establish the following result.

Proposition 4. Say M ∈ {0} ∪ N, and say t ∈ [0,∞). Then

dTV (pt(M, ·), ~γ) ≤ e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)
.

Remark 5. Note

M +
2rM+1 − r

1− r ≤M +
r

1− r
for all M ≥ 0, with strict inequality for all M ≥ 1. Thus this bound is better than the bound we
obtained in Subsection 2.2 in Proposition 3.
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Proof of Proposition 4. Say M ∈ {0} ∪ N, and say t ∈ [0,∞). Define the following coupling
of pt(M, ·) and ~γ : (Xt)t∈[0,∞), (Yt)t∈[0,∞) are birth-death processes with rate parameters λn =
(n + 1)λ (n ≥ 0), µn = nµ (n ≥ 1) with X0 ∼ δM and Y0 ∼ ~γ that run independently until they
meet, from which point they stay together. By the coupling theorem (Theorem 12), we see

dTV (pt(M, ·), ~γ) ≤ P(Xt 6= Yt) =
∞∑

i=0

γiP(Xt 6= Yt | Y0 = i) ≤
∞∑

i=0

γiE|Xt − Yt|

=
∞∑

i=0

γi|i−M |e−(µ−λ)t.

We see
∞∑

i=0

γi|i−M |e−(µ−λ)t = (1− r)
∞∑

i=0

ri|i−M |e−(µ−λ)t = e−(µ−λ)t(1− r)
∞∑

i=0

ri|i−M |.

We have
∞∑

i=0

ri|i−M | =
M∑

i=0

ri(M − i) +
∞∑

i=M+1

ri(i−M).

If M ≥ 1, we have

M∑

i=0

ri(M − i) = 1rM−1 + · · ·+Mr0 = (rM−1 + · · ·+ r0) + · · ·+ r0 =
1− rM
1− r + · · ·+ 1− r

1− r

=
1

1− r ((1− r) + · · ·+ (1− rM)) =
1

1− r (M − (r + · · ·+ rM)).

We have r + · · ·+ rM = r(1− rM)/(1− r), so

M∑

i=0

ri(M − i) =
1

1− r

(
M − r(1− rM)

1− r

)
.

In addition, we have
∞∑

i=M+1

ri(i−M) = rM
∞∑

i=M+1

ri−M(i−M)e−(µ−λ)t = rM
∞∑

i=1

rii.

We have
∞∑

i=1

rii = r + 2r2 + 3r3 + · · · = (r + r2 + r3 + . . . ) + (r2 + r3 + . . . ) + (r3 + . . . ) + . . .

=
r

1− r +
r2

1− r +
r3

1− r + · · · = r/(1− r)
1− r =

r

(1− r)2
.

Thus ∞∑

i=M+1

ri(i−M) =
rM+1

(1− r)2
.
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Thus

e−(µ−λ)t(1− r)
∞∑

i=0

ri|i−M | = e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)
.

3.2 Indel coupling

In this subsection, we establish the following result.

Theorem 6. Say ~x ∈ S, and say t ∈ [0,∞). Let M = |~x|. Then

dTV (pt(~x, ·),Π)

≤ e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)(
(µ− λ)

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)
+
µ+ ν

λ+ ν
·M + 1

)
.

Before we prove this result, we record the following corollary, which summarizes our result
more succinctly.

Corollary 7. Say ~x ∈ S. For all ε > 0, there is a finite constant C such that

∀t ≥ 0 dTV (pt(~x, ·),Π) ≤ e(ε−(µ−λ))tC

(and moreover, C can be chosen to depend only on |~x|).

Proof of Theorem 6. Let X = (Xt)t∈[0,∞), Y = (Yt)t∈[0,∞) be two indel chains coupled as follows:
X0 ∼ δ~x for some ~x, Y0 ∼ Π; X and Y run independently until they have the same length;
once X, Y have the same length, X, Y perform insertion and deletion together (putting in the
same new element, for insertion), and in matched coordinates they substitute together (putting in
the same new element) but in unmatched coordinates they substitute independently (independent
times and independent choices of new elements); and once the processes meet, they stay together.
Let M = |~x|.

Let τcouple = inf{t ∈ [0,∞) : Xt = Yt} denote the coupling time. Let τ1 = inf{t ∈ [0,∞) :
|Xt| = |Yt|} denote the time it takes for the lengths to couple, and let τ2 = τcouple − τ1. Then
τcouple = τ1 + τ2, so we have P(τcouple ≥ t) = P(τ1 + τ2 ≥ t).

We have
P(τ1 + τ2 ≥ t) =

∫

[0,∞)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds)

=

∫

[0,t)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds) +

∫

[t,∞)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds).

We can bound the second term by
∫

[t,∞)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds) =

∫

[t,∞)

P(τ1 ∈ ds) = P(τ1 ≥ t)

≤ e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)
,

using the inequality from Subsection 3.1.
We record the following result, which we will prove at the end of this subsection.

11



Lemma 8. Say ~y ∈ {•} × {0, 1}M , and let T = τcouple. Let d = |{|i ∈ [M ] : xi 6= yi} denote the
number of spots at which ~x and ~y differ (alternatively, the Hamming distance of ~x and ~y). Then
T = τ2 and

P(T ≥ t | Y0 = ~y) = 1− (1− e−(µ+ν)t)d ≤ 1− (1− e−(µ+ν)t)M ≤Me−(µ+ν)t.

We will now derive an upper bound for P(τ2 ≥ t− s | τ1 = s) via Lemma 8.
Let Λ denote the common length ofX and Y when they obtain the same length (so Λ = |Xτ1| =

|Yτ1|). For each s ∈ [0, t), we have

P(τ2 ≥ t− s | τ1 = s) =
∞∑

j=0

P(τ2 ≥ t− s | τ1 = s,Λ = j)P(Λ = j | τ1 = s)

≤ (Lemma 8 & Markov property)
∞∑

j=0

je−(µ+ν)(t−s)P(Λ = j | τ1 = s) (18)

= e−(µ+ν)(t−s)
∞∑

j=0

jP(Λ = j | τ1 = s) = e−(µ+ν)(t−s)E(Λ | τ1 = s) = e−(µ+ν)(t−s)(M+(µ−λ)s).

Thus we have
∫

[0,t)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds) ≤
∫

[0,t)

e−(µ+ν)(t−s)(M + (µ− λ)s)P(τ1 ∈ ds)

= e−(µ+ν)t

∫

[0,t)

e(µ+ν)s(M + (µ− λ)s)P(τ1 ∈ ds).

We have ∫

[0,t)

e(µ+ν)s(M + (µ− λ)s)P(τ1 ∈ ds)

= M

∫

[0,t)

e(µ+ν)sP(τ1 ∈ ds) + (µ− λ)

∫

[0,t)

se(µ+ν)sP(τ1 ∈ ds).

We have
∫

[0,t)

e(µ+ν)sP(τ1 ∈ ds) = E(e(µ+ν)τ11τ−1
1 ([0,t]))

∗
=

∫ t

−∞
(µ+ ν)e(µ+ν)sP(s ≤ τ1 ≤ t)ds

≤
∫ t

−∞
(µ+ ν)e(µ+ν)se−(µ−λ)s

(
M +

2rM+1 − r
1− r

)
ds

=

(
M +

2rM+1 − r
1− r

)
(µ+ ν)

∫ t

−∞
e(λ+ν)sds =

µ+ ν

λ+ ν

(
M +

2rM+1 − r
1− r

)
e(λ+ν)t

(thus

e−(µ+ν)tM

∫

[0,t)

e(µ+ν)sP(τ1 ∈ ds) ≤
µ+ ν

λ+ ν
·M

(
M +

2rM+1 − r
1− r

)
e−(µ−λ)t

).

12



Justification of the equality marked with an asterisk (∗): By Fubini’s theorem, we see
∫ t

−∞
(µ+ ν)e(µ+ν)s

∫

Ω

1τ−1
1 ([s,t])(ω)P(dω)ds =

∫

Ω

∫ t

−∞
(µ+ ν)e(µ+ν)s1τ−1

1 ([s,t])(ω)dsP(dω).

For each ω ∈ Ω, we have 1(−∞,t](τ1(ω)) = 1[0,t](τ1(ω)) and

∫ t

−∞
(µ+ ν)e(µ+ν)s1τ−1

1 ([s,t])(ω)ds = 1(−∞,t](τ1(ω))

∫ τ1(ω)

−∞
(µ+ ν)e(µ+ν)sds

= 1(−∞,t](τ1(ω))
[
e(µ+ν)s

]τ1(ω)

−∞ = 1(−∞,t](τ1(ω))e(µ+ν)τ1(ω).

Thus
∫

Ω

∫ t

−∞
(µ+ ν)e(µ+ν)s1τ−1

1 ([s,t])(ω)dsP(dω) =

∫

Ω

1[0,t](τ1(ω))e(µ+ν)τ1(ω)P(dω)

= E
(
e(µ+ν)τ11τ−1

1 ([0,t])

)
.

We now desire an upper bound for
∫

[0,t)
se(µ+ν)sP(τ1 ∈ ds). We have

∫

[0,t)

se(µ+ν)sP(τ1 ∈ ds) = E(τ1e
(µ+ν)τ11τ−1

1 ([0,t]))
∗
=

∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)sP(s ≤ τ1 ≤ t)ds

≤
∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)se−(µ−λ)s

(
M +

2rM+1 − r
1− r

)
ds

=

(
M +

2rM+1 − r
1− r

)∫ t

−∞
((µ+ ν)s+ 1)e(λ+ν)sds.

Justification of the equality marked with an asterisk (∗): By Fubini’s theorem, we see
∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)s

∫

Ω

1τ−1
1 ([s,t])(ω)P(dω)ds

=

∫

Ω

∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)s1τ−1

1 ([s,t])(ω)dsP(dω).

For each ω ∈ Ω, we have 1(−∞,t](τ1(ω)) = 1[0,t](τ1(ω)) and

∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)s1τ−1

1 ([s,t])(ω)ds = 1(−∞,t](τ1(ω))

∫ τ1(ω)

−∞
((µ+ ν)s+ 1)e(µ+ν)sds

= 1(−∞,t](τ1(ω))
[
se(µ+ν)s

]τ1(ω)

−∞ = 1(−∞,t](τ1(ω))τ1(ω)e(µ+ν)τ1(ω).

Thus
∫

Ω

∫ t

−∞
((µ+ ν)s+ 1)e(µ+ν)s1τ−1

1 ([s,t])(ω)dsP(dω) =

∫

Ω

1[0,t](τ1(ω))τ1(ω)e(µ+ν)τ1(ω)P(dω)

13



= E(τ1e
(µ+ν)τ11τ−1

1 ([0,t])).

Next, we have
∫ t

−∞
((µ+ ν)s+ 1)e(λ+ν)sds =

∫ t

−∞
e(λ+ν)s((λ+ ν)s+ 1)ds+

∫ t

−∞
e(λ+ν)s(µ− λ)sds.

Then, we have ∫ t

−∞
e(λ+ν)s((λ+ ν)s+ 1)ds =

[
se(λ+ν)s

]t
−∞ = te(λ+ν)t

and
∫ t

−∞
e(λ+ν)s(µ− λ)sds =

µ− λ
(λ+ ν)2

[
((λ+ ν)s− 1)e(λ+ν)s

]t
−∞ =

µ− λ
(λ+ ν)2

((λ+ ν)t− 1)e(λ+ν)t,

so ∫ t

−∞
((µ+ ν)s+ 1)e(λ+ν)sds = e(λ+ν)t

((
µ− λ
λ+ ν

+ 1

)
t− µ− λ

(λ+ ν)2

)

= e(λ+ν)t

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)
,

so
e−(µ+ν)t(µ− λ)

∫

[0,t)

se(µ+ν)sP(τ1 ∈ ds) (19)

≤ e−(µ+ν)t(µ− λ)

(
M +

2rM+1 − r
1− r

)
e(λ+ν)t

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)
(20)

= (µ− λ)

(
M +

2rM+1 − r
1− r

)
e−(µ−λ)t

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)
. (21)

Thus ∫

[0,t)

P(τ2 ≥ t− s | τ1 = s)P(τ1 ∈ ds)

≤ µ+ ν

λ+ ν
·M

(
M +

2rM+1 − r
1− r

)
e−(µ−λ)t

+(µ− λ)

(
M +

2rM+1 − r
1− r

)
e−(µ−λ)t

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)

= e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)(
µ+ ν

λ+ ν
·M + (µ− λ)

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

))
.

Thus we have
dTV (pt(~x, ·),Π) ≤ P(Xt 6= Yt) ≤ P(τcouple ≥ t)

≤ e−(µ−λ)t

(
M +

2rM+1 − r
1− r

)(
(µ− λ)

(
µ+ ν

λ+ ν
· t− µ− λ

(λ+ ν)2

)
+
µ+ ν

λ+ ν
·M + 1

)
. (22)
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Proof of Lemma 8. Let

D : S2 → P([M ]) : (~a,~b) 7→ {i ∈ [M ] : ai 6= bi}.

Note for the continuous-time Markov chain ((Xt, Yt))t∈[0,∞), the non-zero distance-changing tran-
sition rates are

Q((~a,~b), (~aj,~b)) = νπ1−aj , Q((~a,~b), (~a,~bj)) = νπ1−bj (j ∈ D(~a,~b)),

Q((~a,~b), (~a −j ,
~b −j )) = µ, (j ∈ [M ]).

In addition, note d = D(~x, ~y). We can view deleting coordinates as matching them. For each
initially unmatched coordinate i ∈ [M ], let

Zi = inf{t ∈ [0,∞) : (Xt)i = (Yt)i}

denote the time it takes to match the coordinates or delete them. Then the random variables Zi (i ∈
D(~x, ~y)) are independent exponential random variables, with rates νπ0 + νπ1 + µ = µ + ν. If
D(~x, ~y) 6= ∅, then we have T = maxi∈D(~x,~y) Zi. Thus P(T ≤ t) = (1− e−(µ+ν)t)d0 .

Thus
P(T ≥ t) = 1− (1− e−(µ+ν)t)d ≤ 1− (1− e−(µ+ν)t)M ≤Me−(µ+ν)t. (23)

(For the last inequality, use Bernoulli’s inequality (Theorem 13).)
(Note: We drew inspiration from Aldous and Fill’s Reversible Markov Chains and Random

Walks on Graphs [AF02, Subsection 12.1.4, Continuous-time random walk on the d–cube].)

4 Further directions

We obtained exponential dTV ergodicity via coupling, and further we found the rate to be at least
as good as µ − λ + ε for all ε > 0. In this section, we detail further directions of research,
namely improving our bound to get rid of the ε, proving a Poincaré inequality, proving a spectral
decomposition and investigating similar models.

4.1 Improvement of dTV coupling bound

We suspect we can improve our µ− λ+ ε term to µ− λ. For instance, the estimate

1− (1− e−(µ+ν)(t−s))j ≤ je−(µ+ν)(t−s)

may be good when we fix j, but it is not good when we fix t and s and vary j, as je−(µ+ν)(t−s) →∞
as j →∞ and 1− (1− e−(µ+ν)(t−s))j ≤ 1 for all j.

A new proof might replace the sentence with equation 18 by the following sentence. For each
s ∈ [0, t], we have

P(τ2 ≥ t− s | τ1 = s) =
∞∑

j=0

P(τ2 ≥ t− s | τ1 = s,Λ = j)P(Λ = j | τ1 = s)
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≤
∞∑

j=0

(1− (1− e−(µ+ν)(t−s))j)P(Λ = j | τ1 = s) = 1−
∞∑

j=0

(1− e−(µ+ν)(t−s))jP(Λ = j | τ1 = s)

= 1− E((1− e−(µ+ν)(t−s))Λ | τ1 = s).

Can we find a good bound for the expression 1− E((1− e−(µ+ν)(t−s))Λ | τ1 = s)?

4.2 Poincaré inequality: canonical paths

We use an idea from Theorem 3.2 in Berestycki’s notes [Ber16] and Theorem 3.2.1 in Saloff-
Coste’s notes [SC97] that applies for irreducible, reversible Markov chains. Let Γ denote the set of
directed paths. Let γ : S2 → Γ such that for all ~x, ~y, the directed path γ(~x, ~y) starts at ~x and ends
at ~y. For all ~u,~v ∈ S such that e := (~u,~v) is an edge, let Q(e) = 2−1λ(~u,~v)Π(~u). Let

C = sup
e




1

Q(e)

∑

~x,~y∈S:
γ(~x,~y)3e

|γ(~x, ~y)|Π(~x)Π(~y)


 .

Define the function R from the edge set to R by

R(e) =
2(1− r)

λ(~u,~v)(r/2)|~u|

∑

~x,~y∈S:
γ(~x,~y)3e

|γ(~x, ~y)|
(r

2

)|~x|+|~y|
,

where ~u,~v are the unique elements of S such that e = (~u,~v). (“R” is the next letter after “Q”.)
Then

C = sup
e
R(e).

Proposition 9. For all f,
VarΠ(f) ≤ CE(f, f).

(As usual, we interpret∞ · a =∞ (a ∈ (0,∞)) and∞ · 0 = 0.)

Proof. For all ~u,~v ∈ S such that e := (~u,~v) is an edge, we define the operator ∆e by ∆e(f) =
f(~v)− f(~u). Using this notation, we see

∀f E(f, f) =
∑

e

∆e(f)2Q(e),

by equation 8. We see for all f,

VarΠ(f) = (by definition)
∑

~x∈S
(f(~x)−

∑

~y∈S
Π(~y)f(~y))2Π(~x)

= (since
∑

~y∈S
Π(~y) = 1)

∑

~x∈S


∑

~y∈S
(f(~x)− f(~y))Π(~y)




2

Π(~x)
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≤ (Cauchy–Schwarz)
∑

~x∈S


∑

~y∈S
(f(~x)− f(~y))2Π(~y)


Π(~x)

=
∑

~x∈S

∑

~y∈S

(
(f(~x)− f(~y))2Π(~x)Π(~y)

)
=
∑

~x,~y∈S


 ∑

e∈γ(~x,~y)

∆e(f)




2

Π(~x)Π(~y)

≤ (Cauchy–Schwarz)
∑

~x,~y∈S
|γ(~x, ~y)|

∑

e∈γ(~x,~y)

∆e(f)2Π(~x)Π(~y)

=
∑

~x,~y∈S

∑

e

[e ∈ γ(~x, ~y)]|γ(~x, ~y)|∆e(f)2Π(~x)Π(~y) =
∑

e

∑

~x,~y∈S:
γ(~x,~y)3e

|γ(~x, ~y)|∆e(f)2Π(~x)Π(~y)

=
∑

e




1

Q(e)

∑

~x,~y∈S:
γ(~x,~y)3e

|γ(~x, ~y)|Π(~x)Π(~y)


∆e(f)2Q(e) ≤ CE(f, f).

4.3 Spectral decomposition

In this section, we abbreviate pt(~x, ~y) = P~x(Xt = ~y), overloading the symbol p.
By Kendall’s representation theorem (Theorem 1.6.5 in [And91]), there exists a doubly-indexed

set {γ~x,~y}~x,~y∈S of finite signed measures B([0,∞)) → R such for each ~x, γ~x,~x is a probability
measure and such that the transition function P has the representation

∀~x, ~y ∈ S ∀t ≥ 0 pt(~x, ~y) =

(
r|~y|−|~x| ·

∏
i∈[|~y|] πyi∏
i∈[|~x|] πxi

)1/2 ∫

[0,∞)

e−txdγ~x,~y(x).

The Karlin–McGregor theorem (Theorem 8.2.1 in [And91]; see also Subsubsection 2.4) con-
cerns continuous-time birth-death processes, and it is more refined than Kendall’s theorem (The-
orem 1.6.5 in [And91]). The Karlin–McGregor theorem not only states existence of some finite
signed measures, but also tells us we can choose the measures such that satisfy a certain relation
involving a sequence of polynomials.

Perhaps we can derive an analogue of the Karlin–McGregor theorem for the indel chain. Ques-
tions to consider: Does the chain have discrete spectrum? Does it have a spectral gap?

4.4 Other models

Do similar results hold for other indel models, such as the Poisson indel model of Bouchard-Côté
and Jordan [BCJ13]?
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A List of theorems

Theorem 10 (see Theorem 3 in [MB07]).

∀i ≥ 0
∞∑

n=0

n|pt(i, n)− γn| ≤
(
i+

λ

µ− λ

)
e−(µ−λ)t.

Theorem 11 (Poincaré inequality; Theorem 2.18 in [vH16]). Say Pt is a reversible ergodic Markov
semigroup with stationary measure µ. Say c ∈ (0,∞). The following statements are equivalent:
1. ∀f E(f, f) ≥ cVarµ(f) (Poincaré inequality);
2. ∀f ∀t ≥ 0 ‖Ptf − µf‖L2(µ) ≤ e−ct‖f − µf‖L2(µ);
3. ∀f ∀t ≥ 0 E(Ptf, Ptf) ≤ e−2ctE(f, f);
4. ∀f ∃κ ∀t ≥ 0 ‖Ptf − µf‖L2(µ) ≤ κe−ct;
5. ∀f ∃κ ∀t ≥ 0 E(Ptf, Ptf) ≤ κe−2ct.

Theorem 12 (Coupling; Proposition 4.7 in [LP17]). Say X is a countable (i.e., finite or denu-
merable (i.e., countably infinite)) set, and say µ, ν : P(X ) → R are two probability measures.
Then

dTV (µ, ν) = inf{P(X 6= Y ) : (X, Y ) is a coupling of µ and ν}.
Theorem 13 (Bernoulli’s inequality [Wik19]). (See Figure 2.) For all real numbers x ≥ −2 and
integers r ≥ 0, (1 + x)r ≥ 1 + rx.

Theorem 14 (Variance identity). Say X is a countable (i.e., finite or denumerable (i.e., countably
infinite)) set, and say µ : P(S)→ R is a finite measure such that ∀x ∈ X µ({x}) > 0. Say
f ∈ L2(µ). For each x, let µx = µ({x}). Then

Varµ(f) =
1

2

∑

x

∑

y

(f(x)− f(y))2µxµy.

Proof. We have

1

2

∑

x

∑

y

(f(x)− f(y))2µxµy =
1

2

∑

x

µx
∑

y

((f(x)2 − 2f(x)f(y) + f(y)2)µy

=
1

2

∑

x

µx(
∑

y

f(x)2µy− 2
∑

y

f(x)f(y)µy +
∑

y

f(y)2µy =
1

2

∑

x

µx(f(x)2− 2f(x)µf +µf 2)

=
1

2

∑

x

µxf(x)2 − 2
∑

x

µxf(x)µf + µf 2) = µf 2 − (µf)2 = Varµ(f).
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Figure 2: Bernoulli’s inequality. Here, r = 3.

Theorem 15 (Variance inequality; see [Fan19, Lemma 1] or [SC97, First two sentences, Proof of
Theorem 3.2.1]). Say S is a countable (i.e., finite or denumerable (ie., countably infinite)) set, and
say X is an irreducible Markov chain. Let A denote the set of arcs with positive transition
probability. Let Γ denote the set of directed paths in the digraph (X,A), and let γ : S2 → Γ such
that for all x, y ∈ S γ(x, y) begins at x and ends at y. Say µ : P(S)→ R is a finite measure such
that ∀x ∈ S µ({x}) > 0. Say f ∈ L2(µ), and for each arc e let ∆f (e) = f(e2)− f(e1). (Note:
We treat arcs as ordered pairs.) Then

Varµ(f) ≤ 1

2

∑

x,y∈S
µxµy|γ(x, y)|

∑

e∈γ(x,y)

∆f (e)
2.

Proof. For all x, y ∈ S, we have f(y)− f(x) =
∑

e∈γ(x,y) ∆f (e). and so, applying the
Cauchy–Schwarz inequality, we have

(f(y)− f(x))2 ≤ |γ(x, y)|
∑

e∈γ(x,y)

∆f (e)
2.

Thus
1

2

∑

x,y∈S
(f(x)− f(y))2µxµy ≤

1

2

∑

x,y∈S
µxµy|γ(x, y)|

∑

e∈γ(x,y)

∆f (e)
2.

By Theorem 14, the left-hand side equals Varµ(f).
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[Ber16] Nathanaël Berestycki. Mixing times of Markov chains: Techniques and examples,
November 22, 2016. Lecture notes retrieved from http:
//www.statslab.cam.ac.uk/˜beresty/Articles/mixing3.pdf.

[Che04] Mu-Fa Chen. From Markov chains to non-equilibrium particle systems. World
Scientific, second edition, 2004.

[DR10] Constantinos Daskalakis and Sebastien Roch. Alignment-free phylogenetic
reconstruction. In Annual International Conference on Research in Computational
Molecular Biology, pages 123–137. Springer, 2010.
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