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ABSTRACT

This study examines the potential limit in the reliability of tropical cy-

clone (TC) intensity prediction. Using the phase-space reconstruction method

for TC intensity time series, it is found that TC dynamics contains low-

dimensional chaos at the maximum intensity equilibrium. Examination of

several attractor invariants including the largest Lyapunov exponent, the

Sugihara-May correlation, and the correlation dimension captures a consis-

tent range of the chaotic attractor dimension between 4-5 for TC intensity.

In addition, the error doubling time estimated from the largest Lyapunov ex-

ponent for TC intensity is roughly 1-3 hours, which accords with the decay

time obtained from the Sugihara-May correlation at the maximum intensity

equilibrium. Furthermore, the findings in this study reveal a relatively short

limit for TC intensity predictability based on the traditional maximum surface

wind, which is ∼3-9 hours after reaching the mature stage, but noticeably

longer for the minimum central pressure (∼12-18 hours). So long as the tra-

ditional metrics for TC intensity such as the maximum surface wind or the

minimum central pressure is used for intensity forecast, our results support

that TC intensity forecast errors will not be reduced indefinitely in any op-

erational model, even in the absence of all model and observational errors.

As such, the future improvement of TC intensity forecast should be based on

different metrics beyond the absolute intensity errors that are currently used

in real-time intensity verification.
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1. Introduction32

Quantifying how far in advance one can predict weather or climate, the so-called atmospheric33

predictability, is a vital question in real-time forecast. With a wide range of atmospheric systems34

and operational requirements, there exits however no single method to determine the predictability35

for all weather phenomena and variables. For example, a large-scale weather system has a typical36

limit of 2 weeks for geopotential height (Lorenz 1969, 1990, 1996; Leith 1971; Métais and Lesieur37

1986), yet the predictability for rainfall rate or mesoscale cluster development could be much38

shorter (Zhang et al. 2003; Durran et al. 2013). Likewise, weather extremes such as tornadoes39

or convective-scale thunderstorms often cannot be predicted a few hours ahead (Hart and Cohen40

2016a; Stensrud et al. 01 Oct. 2009; Bunker et al. 01 Apr. 2019). Therefore, a question of what41

is the maximum time range that one can reliably predict tropical cylone (TC) intensity or track is42

non-trivial.43

Among many difficulties in understanding TC predictability, one central issue roots in the defini-44

tion of predictability itself. Formally, the predictability of a variable is defined as a maximum time45

interval beyond which the forecast distribution of that variable becomes indistinguishable from its46

climatological distribution (Lorenz 1969; Shukla 1981; Schneider and Griffies 1999; DelSole 0147

Oct. 2004; DelSole and Tippett 2007). From this formal definition, it is apparent that predictabil-48

ity must be associated with one specific variable over a given period during which the climatology49

of the variable is constructed. Thus, predictability is not a universal metric but varies for different50

variables and different constructions of climatology (DelSole and Tippett 2007).51

Given such metric-dependence of predictability, any analysis of TC predictability must be there-52

fore carried out for one particular aspect such as track, intensity, decadal shift in the maximum53

intensity, or seasonal TC frequency. Recent studies by Kieu and Moon (2016); Kieu et al. (2018,54

3



2021) proposed that TC dynamics should possess low-dimensional chaos in order to account for55

the intensity error saturation at 4-5 day lead times as observed in real-time intensity verification.56

Using TC-scale phase space and estimation from idealized simulations, they suggested the size of57

the TC intensity chaotic attractor varies in the range of 3-10 ms−1, depending on TC models. Due58

to various simplifications and uncertainties in their TC-scale framework as well as real-time TC59

analyses, the limit of intensity predictability related to such intrinsic TC chaotic dynamics is still60

inconclusive and the estimation of such an intensity predictability limit still remains open.61

Because TCs are a complex dynamics system, examining their full dynamics from a strict math-62

ematical perspective is unfeasible at present. This is especially apparent in current numerical63

models, which contain various nonlinear interactions among different physical parameterizations.64

In this study, we wish to use the phase-space reconstruction method in nonlinear dynamics to65

examine an important question of TC intensity predictability limit. By analyzing the output of66

TC intensity from a long simulation, our ultimate goal is to establish more affirmatively that TC67

dynamics is inherently chaotic at the maximum intensity equilibrium. The ability to state that TC68

intensity has intrinsic chaos is very significant, because it is critical for future real-time TC fore-69

cast, model development planning, or risk management. Thus, quantifying the properties of TC70

intensity intrinsic chaos will allow one to obtain a proper range of TC intensity predictability for71

operational forecasts.72

The rest of this work is organized as follows. In the next, the methods for detecting chaos73

by using the phase-space reconstruction techniques as well as detailed experiment descriptions74

are provided. Section 3 presents our analyses of TC intensity time series from several different75

angles of chaotic dynamics, while Section 4 discusses some issues related to the phase-space76

reconstruction method. Concluding remarks are then given in the final section.77
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2. Methods78

a. Phase-space reconstruction79

In a strict mathematical sense, the governing equations for TCs are not closed due to our in-80

complete understanding of TC dynamics and thermodynamics. As a consequence, all current rep-81

resentations of TC processes in numerical models must employ empirical parameterizations that82

only approximate the true TC physics. These physical parameterizations generally contain many83

uncertainties and simplifications, which prevent one from fully understanding TC development.84

Early works by Takens and many others (Takens 1981; Brock 1986; Theiler 1987; Sugihara85

and May 1990; Sugihara et al. 1994; Casdagli 1992) have shown, however, that the dynamics of86

a nonlinear system can be reconstructed from a single time series of a state variable under some87

specific conditions, even in the absence of complete governing equations for the system. Assuming88

that a nonlinear system possesses low-dimensional chaos at its statistically stationary state, it is in89

fact possible to examine multidimensional phase portraits of a chaotic attractor by reconstructing90

the attractor in the phase space of time-lagged coordinates. With this phase-space reconstruction,91

different invariants of the original chaotic attractor can be effectively obtained once the embedding92

dimension and time delay are properly chosen Kantz and Schreiber (2003).93

There are a range of techniques that have been proposed to find a proper embedding dimension94

and time delay for phase-space reconstruction such as the averaged mutual information, auto-95

regression, or false nearest neighborhood (Fraser and Swinney 1986; Sugihara et al. 1994; Kantz96

and Schreiber 2003; Wallot and Monster 2018). These methods all share a common principle that97

basic invariants of a chaotic attractor must be intrinsic, regardless of the reconstruction methods if98

the embedding dimension and time lag are correct. Among several approaches to detect chaos in99

a phase space reconstructed from a time series, we will present in this study several measures that100
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most characterize the deterministic chaos, which include the largest Lyapunov exponent (LLE),101

the Sugihara and May (1990)’s correlation (SMC) curve, and the correlation dimension.102

For the LLE measure, an early algorithm for computing LLE from a given time series was103

first proposed by Wolf et al. (1985), which has been later improved in many subsequent studies104

(Rosenstein et al. 1993; Kantz 1994; Balcerzak et al. 2018; Awrejcewicz et al. 2018). For our105

implementation of the LLE algorithm, a modified version of Wolf’s algorithm presented in Brock106

(1986) was chosen because of its efficiency. The basic steps of Brock’s scheme are summarized107

below (see the full proof of the LLE convergence in Brock (1986)):108

• Step 1: From a given time series {ai}; i = 1:::N where N is the number of data sampling,109

generate a set of m-history am
t ≡ {at ;at+t ; :::;at+(m−1)t}; t = 1:::Nm ≡ N− (m− 1)t for the110

phase-space reconstruction, with a given time delay t and an embedding dimension m;111

• Step 2: Initialize an error growth cycle by finding the nearest neighborhood am
t1 of the first112

m-history am
1 such that am

t1 6= am
1 ;113

• Step 3: Choose a prescribed evolution window q and compute g1(q) = d2(1)=d1(1), where114

d(1)
1 = ‖am

t1 − am
1 ‖ and d(1)

2 = ‖am
t1+q− am

1+q‖ are distances in the reconstructed phase space115

with a given metric ‖ · ‖;116

• Step 4: Perform a loop from k = 2 to K = max{k |1 + kq ≤ Nm} that repeatedly does the117

following two main tasks:118

1. Find an index tk of t to minimize a penalty function p(am
t − am

1+(k−1)q;am
tk−1+q −119

am
1+(k−1)q) defined as follows:120

p(am
t −am

1+(k−1)q;am
tk−1+q−am

1+(k−1)q) = ‖am
t −am

1+(k−1)q‖

+w|q(am
t −am

1+(k−1)q;am
tk−1+q−am

1+(k−1)q)|;
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where w is a weighted parameter for the deviation angle q .121

2. Compute and store the divergence rate of the kth loop defined as gk(q) = d2(k)=d1(k),122

where d1(k) = ‖am
tk −am

1+(k−1)q‖, d2(k) = ‖am
tk+q−am

1+kq‖.123

• Step 5: Finally, compute LLE lq by averaging all gk(q) as lq = 1
K SK

k=1
ln(gk(q))

q .124

We should mention that all LLE algorithms assume a priori the values of the embedding dimension125

m and the time delay t . These values are generally not known in advance, given a time series of126

a state output. While one can always search for (m;t) using existing algorithms such as the false127

nearest neighbor or mutual information method (Fraser and Swinney 1986; Sugihara et al. 1994;128

Rhodes and Morari 1997; Wallot and Monster 2018) , it should be noted that the above LLE’s129

algorithm must converge to a correct LLE of a chaotic attractor with a fractal dimension n, if it130

exists, for m > 2n + 1 as proven in Brock (1986). As such, one can plot l (q) as a function of131

(m;t) and search for the values of (m;t) for which LLE becomes stabilized. This approach of132

searching for a LLE in the parameter space (m;t) is chosen in this study, because it can help133

reduce various prescribed thresholds for (m;t) in the current LLE algorithms as also discussed in134

Kantz and Schreiber (2003).135

Along with LLE, Sugihara and May (1990) proposed another measure to detect chaos that is also136

of particular interest because of its simplicity and effectiveness. The main idea behind Sugihara137

and May (1990)’s approach is that a chaotic time series should possess limited predictability,138

whereas true stochastic variation would have no predictability. Practically, this important property139

of chaotic time series implies that the correlation between model forecast and observations must140

decay with time in a chaotic system.141

For the sake of completeness, we summarize here the main step to obtain the Sugihara-May142

correlation as a function of forecast lead time (T ) from a given time series. Detailed discussion143
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of this method as well as its variation can be found in Sugihara and May (1990); Sugihara et al.144

(1994); Kantz and Schreiber (2003) and so will not be duplicated here.145

• Step 1: Given a time series {ai}; i = 1:::N, one first divides it into an ”atlas” (or training) set146

A and a test set T ;147

• Step 2: Reconstruct a phase space with a given embedding dimension m by generating the148

m-histories obtained from lagged time series as am
t = (at ;at+t ; : : : ;at+(m−1)t) for both sets149

A ;T ;150

• Step 3: For each history am
i ∈ T (the so-called predictee in Sugihara and May) in the m-151

dimensional space, search for nb neighbouring points in A with the minimal distance to am
i152

such that the predictee are within a smallest simplex spanned by these nb neighbouring points;153

• Step 4: choose a lead time T , and a prediction for am
i at the lead time T can be then obtained154

by projecting the entire simplex into the future at leading time T , denoted a f
i( j)(T ), where155

j = 1:::nb. The prediction value at lead time T for am
i , denoted by ā f

i (T ), is then computed156

by taking an ensemble average of nb values of a f
i( j)(T );157

• Step 5: construct a pair between the prediction a f
i (T ) and the actual value of am

i evolution158

after T steps forward that is obtained directly from the training set T , i.e., am
i+T ∈T ;159

• Step 6: Repeat Steps 3-5 for all data points ai ∈ T and obtain the correlation r(T ) between160

(ā f
i (T );am

i+T ) for each lead time T ;161

• Step 7: Repeat Steps 3-6 for different values of T to obtain the curve r(T ) as a function of T .162

Note that in Step 4 of the above SMC algorithm, there are several different ways to obtain ā f
i (T )163

(also known as ”the prediction model”) such as weighted average, regression combination, en-164

semble average, or neural network. Regardless of the prediction model, the key property of any165
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chaotic time series is that r(T ) must decay with lead time T in the presence of low-dimensional166

chaos. In this regard, the SMC curve r(T ) comprises a criterion for detecting chaotic time series;167

a deterioration of SMC with the leading time indicates the existence of chaos, whereas a purely168

stochastic time series would have a constant SMC regardless of how far into the future. More ver-169

ification and applications of SMC for different systems can be found in Sugihara and May (1990);170

Sugihara et al. (1994).171

Similar to the LLE algorithm, both the embedding dimension m and the delay time t have172

to be given before computing SMC. Our proposed approach to this freedom in choosing these173

parameters is to again generate an SMC curve r(T ) for a range of values of (m;t) as for the LLE174

analyses. The convergence of the SMC curve for some domain in the (m;t) parameter space will175

then indicate the existence of a low-dimensional chaotic attractor in the embedding phase space.176

By comparing the values of (m;t) obtained from the convergence of the SMC curves to the values177

of (m;t) obtained from the convergence of LLE, one can then further estimate a proper range for178

(m;t) that represents the chaotic regime of TC intensity. More in-depth discussion about other179

methods for choosing optimal parameters (m;t) can be found in Grassberger et al. (1991).180

b. Idealized TC simulations181

Given our approaches of searching for chaos from time series described in the previous sec-182

tion, the next step is to generate a time series of TC intensity for the phase-space reconstruction183

analysis. In principle, one could obtain this time series directly from observation such as flight184

data or satellite imagery. However, the requirement of a stationary time series for the phase-space185

reconstruction imposes a strong constraint on possible choices of time series, as real TC intensity186

contain various stages of TC development in different environments instead of just the mature187

stage. As such, using a TC model to produce the intensity time series in a fixed environment is the188
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most apparent approach for our purpose. Ideally, one should use full-physics three-dimensional189

models that are as much realistic as possible such as the Hurricane Weather Research and Forecast-190

ing (HWRF) model. These types of limited-area models are, nevertheless, designed on a rectangle191

domain with strong constraints by lateral boundary conditions that prevent one from running for a192

very long time to generate a stationary time series. Because of this, we choose herein an idealized193

model that allows for a long integration without the issue of lateral boundary asymmetries.194

In this regard, the axisymmetric configuration of the cloud model (CM1, Bryan and Fritsch195

(2002)) was used to generate different intensity time series for our phase-space analyses. The196

model was configured with 359 grid points on a stretching grid in the radial direction with the197

highest resolution of 2 km in the storm central region and stretched to 6 km outside 1000 km198

radius. In the vertical direction, a setting of 61 levels with a fixed resolution of 0.5 km was chosen.199

The model was initialized from the tropical Jordan sounding on an f -plane, with fixed sea surface200

temperature (SST) = 302.15 K.201

Because of the requirement of a quasi-stationary time series at the maximum intensity equilib-202

rium, the model was configured for 100-day simulations. A stable maxiimum intensity equilibrium203

for this 100-day integration could be obtained by using a suite of physical paramterizations includ-204

ing the YSU boundary layer scheme, the TKE subgrid turbulence scheme, and explicit moisture205

Kessler scheme with no cumulus parameterization. For the radiative parameterization, an ideal-206

ized option with the Newtonian cooling relaxation of 2 K day−1 was applied, similar to what used207

in Kieu and Moon (2016). This choice of the radiative cooling parameterization is sufficient to208

allow for a stable maximum intensity equilibrium during the entire 100-day simulations as shown209

in Figure 1. Given this stable configuration of TC intensity, the time series of UMAX , VMAX , WMAX ,210

and PMIN were then output at an ultra-high sampling frequency of 36 seconds to maximize our211

time series analyses.212
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As a step to further verify the effects of random noise on our analyses, a set of sensitivity213

experiments were also conducted for which random white noise with a given variance was added214

to the CM1 model forcing at every time step. This implementation of additive random noise turns215

the CM1 model into a stochastic system whose output now contains random fluctuations with216

an amplitude proportional to the magnitude of random forcing. As discussed in Nguyen et al.217

(2020), this additive random noise in terms of the Wiener process results in a first-order accuracy218

for the CM1 finite difference scheme, similar to the Euler-Maruyama method. By choosing a219

sufficiently small time step, the model is able to maintain its numerical stability for a range of220

experiments. Note that random noise was applied only to wind components at all CM1 grid points,221

with an variance in the range of [10−3−10−1ms−1]. Beyond this range, we notice that the model222

violates the CFL conditions and quickly loses its stability after just a few steps of integration. The223

main rationale for applying random noise only to the wind field in these sensitivity experiments is224

because wind components generally most fluctuate with time at any grid point. Adding random225

noises to the model temperature, pressure, and moisture fields does not change the outcomes, yet226

these extra noises would cause the model to become more unstable and limit the range of random227

noise amplitude that we can implement for the wind components. Thus, all stochastic simulations228

were carried out only for the wind perturbations in this study.229

3. Results230

Given the traditional practice of forecasting TC intensity based on the maximum 10-m wind231

(VMAX ) and the minimum central pressure (PMIN), the time series of these two metrics is required232

to reconstruct a TC intensity phase space for our analyses. While a single time series of VMAX233

or PMIN may appear to be too little to explore the complex dynamics of hurricanes, the powerful234

phase-space reconstruction theorem by Takens (1981) ensures that any single time series should235
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contain rich information about the underlying dynamics if low-dimensional chaos exists. That236

is, one can explore the main properties of a chaotic attractor for TC intensity from any time se-237

ries, regardless of the output variables (Wolf et al. 1985; Fraser and Swinney 1986; Brock 1986;238

Theiler 1987; Sugihara and May 1990; Casdagli 1992; Sugihara et al. 1994; Wallot and Monster239

2018). Because of this, our aim here is to explore to what degree the TC dynamics contain intrin-240

sic low-dimensional chaos at the maximum intensity limit that can account for intensity limited241

predictability as proposed in recent studies.242

a. Existence of maximum intensity equilibrium243

Since the phase-space reconstruction method requires a stationary time series, it is necessary to244

examine first if the maximum intensity equilibrium exists during TC development. In this regard,245

Figure 1a shows the time series of the maximum surface wind speed obtained from an 100-day246

simulation, using the CM1 model. One notices in Figure 1a that the model vortex experiences247

a brief rapid intensification during the first 3-5 days and quickly settles down to a mature state248

after 9-10 days into the model integration. These behaviors are typical in TC development un-249

der idealized conditions as shown in various studies (see, e.g., Rotunno and Emanuel 1987; Wang250

2001; Bryan and Rotunno 2009; Hakim 2011, 2013; Davis 2015; Kieu and Moon 2016). Although251

the quasi-stationary equilibrium at the maximum intensity is evident in our simulation as seen in252

Figure 1, we note that the existence of such a stable equilibrium is still an open question from the253

practical standpoint due to the sensitivity of this equilibrium to model configurations and envi-254

ronmental assumptions (Montgomery et al. 2009; Hakim 2011; Kieu and Moon 2016). However,255

with the experiment settings described in Section 2, the stable equilibrium of the model maximum256
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intensity (MMI1) can be well captured and maintained during the entire 100-day period, which257

suffices for us to examine the phase-space reconstruction for TC intensity as expected.258

Given the MMI equilibrium, it is apparent that the maximum intensity does not take one single259

value but highly fluctuates with time, similar to what obtained in previous studies (Hakim 2011,260

2013; Kieu and Moon 2016). As shown in Figure 1, temporal fluctuations at the MMI equilib-261

rium are observed not only for VMAX but also for other variables including PMIN , the maximum262

boundary-layer inflow (UMAX ), and the maximum vertical motion in the eyewall region (WMAX ).263

From the statistical standpoint, these fluctuations show no obvious difference between chaotic and264

stochastic variability, thus highlighting an important question in TC dynamics: do these fluctu-265

ations reflect the low-dimensional deterministic chaos of TC intensity, model random truncation266

errors, or a manifestation of high-dimensional nonlinearity projection (the so-called process or267

stochastic noise in Sugihara et al. (1994); Casdagli (1992))?268

From the time series output, it should be noted that all numerical models appear to be stochastic269

(Kantz and Schreiber 2003; Nguyen et al. 2020). This is because numerical truncation errors can270

be amplified by nonlinearity and projected onto the time series, resulting in an unexplained noise271

in the model output (Brock 1986; Casdagli 1992; Sugihara et al. 1994; Kantz and Schreiber 2003).272

This stochastic nature of model time series is especially true for modern modelling systems, which273

employ also various stochastic paramterization schemes or random switches such as convective274

triggering mechanism (Palmer 2001; Christensen et al. 2015; Dorrestijn et al. 2015; Zhang et al.275

2015). As such, the strong fluctuation of TC intensity as shown in Figure 1 is always present for276

any model output.277

There are several different techniques in nonlinear time series analyses that can address the278

distinction between deterministic or stochastic variability as extensively detailed in Kantz and279

1It should be noted that MMI is generally different from the theoretical potential intensity limit obtained in Emanuel (1986).
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Schreiber (2003). In this study, with a large sample size of the TC intensity state at the MMI280

equilibrium, we can directly examine the nonlinear chaotic invariants by dividing the long dataset281

into many smaller overlapped patches, the so-called a sliding window detector method in data282

analysis, to increase the reliability of our estimation. Specifically in this study, three key measures283

of deterministic chaos to be examined are i) the largest Lyapunov exponent, ii) the Sugihara-May284

correlation, and iii) the correlation dimension for TC intensity. These are the main invariants285

of any chaotic attractor, which can help answer the main question of the potential existence of286

low-dimensional chaos for TC intensity that we wish to explore in this study.287

b. Largest Lyapunov exponent288

To examine the nature of the variability in the VMAX , UMAX , WMAX , and PMIN time series, Figure289

2 shows the largest Lyapunov exponent (LLE) l as a function of embedding dimension m, which290

is obtained for a range of delay time (t) between 10-60 minutes. Note that this range of t is based291

on the nature of TC dynamics process, which is strongly governed by convective activities at a time292

scale of minutes to hours. As discussed in Kantz and Schreiber (2003), the choice of t should have293

minimum effects on the attractor invariants if the phase-space reconstruction is effective. Thus,294

it is important to see how sensitive the LLE estimations are to different delay times. Of course,295

a positive LLE is necessary but not sufficient to conclude whether the variability in a time series296

is a result of low-dimensional chaos or not. However, the existence of such a positive LLE is a297

required condition that any chaotic system must possess and so we need to examine it first (Wolf298

et al. 1985; Fraser and Swinney 1986; Theiler 1987; Brock 1986; Sugihara et al. 1994).299

One notices two important features from Figure 2. First, the LLEs derived from all time series300

display a consistent behavior for all t between 10-60 minutes, with a decrease of LLE for larger301

embedding dimension (m) and subsequent leveling off in the range of 0:5− 1:4× 10−4s−1 for302
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m ≥ 10. Note that an LLE of 1× 10−4s−1 is equivalent to a doubling time of ∼ 3 hours in the303

full physical dimension. Thus, the range of LLEs shown in Figure 2 suggests that an initial error304

would be doubled every 1-5 hours at the maximum intensity equilibrium. While this is relatively305

broad range, it is important that all LLEs are positive and convergent towards a stable range when306

m increases. Specifically, the decaying of LLEs with m as seen in Figure 2 suggests that small307

embedding dimension m < 10 would not properly capture TC intensity chaotic attractor. As m308

increases, attractor invariants such as LLEs must converge towards a more stable value, if a low-309

dimensional chaotic attractor truly exists. In this regard, the decay of LLEs with m in Figure 2310

provides some initial indication about possible existence of intensity chaos that we wish to quantify311

next.312

Second, Figure 2 shows further that all LLEs converge towards a stable value for the embed-313

ding dimension m ≥ 10, regardless of the variables or time delay values used to reconstruct the314

phase space. Although the value of the stable LLE cannot be precisely pinpointed due to wide315

range between 0:5− 1:4× 10−4s−1, the fact that such a stable value for LLE exists for m ≥ 10316

is important here. Namely, this convergence of LLEs implies that a low-dimensional chaotic at-317

tractor of TC intensity has an intrinsic dimension n ≈ 4− 5, according to the Takens embedding318

theorem 2. Of course, finding the exact embedding dimension m from a given time series that319

can ensure the Takens theorem is difficult, because this embedding dimension is often ad-hoc and320

dependent on choices of parameters such as time delay, sampling frequency, or sample size (Kantz321

and Schreiber 2003). Nevertheless, our sensitivity estimation of m using different methods such as322

the false nearest neighbor (FNN) method (Fraser and Swinney 1986; Sugihara et al. 1994; Wallot323

2Note that phase space reconstruction generally requires a minimum dimension m = 2n + 1, where n is the dimension of the attractor, such

that the invariants of the attractor can be properly estimated. This attractor dimension n is independent of the embedding space dimension m for

m≥ 2n + 1. See a proof in Brock (1986).
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and Monster 2018) captures a similar minimum range for m ∈ [10−14]. Thus, it is expected that324

the intensity chaotic attractor would require a minimum embedding dimension m∼ 10 for the TC325

intensity phase-space reconstruction as shown in Figure 2.326

It is of interest to note however a distinct behavior of the LLE estimation from Figure 2 that the327

LLE appears to be quite different between the wind (i.e., UMAX , VMAX , and WMAX ) and the pressure328

(i.e., PMIN) time series. Specifically for the CM1 simulations herein, LLE is∼ 0:5−1:4×10−4s−1
329

for VMAX , UMAX , or WMAX , but it is noticeably smaller (∼ 0:1− 0:5× 10−4s−1) for PMIN . In330

addition, the convergence of LLE for the PMIN time series occurs for m ≥ 16 as compared to331

m ≥ 10 for the wind time series. Such difference between LLEs obtained from the wind and the332

pressure variables may reflect different predictability for different state variables in a multi-scale333

system with the co-existence of fast and slow-varying processes (Shukla 1981; Goswami et al. 01334

May. 1997; Lorenz 15 Dec. 1992; DelSole et al. 15 May. 2017). Much like the predictability335

of rainfall is different from that of temperature or 500-hPa geopotential for the same large-scale336

weather systems, it is possible that the TC pressure and wind fields possess inherently different337

predictability ranges. This can help explain why recent studies have proposed to use PMIN as a338

measure for TC intensity in operational forecast instead of VMAX , because it potentially allows for339

more reliable intensity forecast in the long run (see, e.g., Klotzbach et al. 2020).340

While our search for the minimum embedding dimension based on the convergence of LLEs dif-341

fers from other approaches such as the box counting or the correlation dimension method (Nicolis342

and Nicolis 1984; Brock 1986; Casdagli 1992), we note that all phase-space reconstruction meth-343

ods are somewhat subjective and similarly ad-hoc due to the wide range of nonlinear dynamical344

systems and time series characteristics (Kantz and Schreiber 2003). Thus, there is always some345

uncertainty in determining a proper minimum dimension for embedding phase space, which ex-346

plains why m has a range of 10-16 or LLEs∼ 0:5−1×10−4 s−1 as seen in Figure 2. Regardless of347
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this uncertainty, the emergence of low-dimensional chaos for TC intensity with a relatively small348

value of m is still noteworthy, since a large embedding dimension would imply that our time series349

analysis is insufficient to capture chaotic dynamics 3. From this perspective, the LLE analyses350

herein could provide some evidence of low-dimensional chaos for TC intensity, at least from the351

standpoint of error growth on an attractor at the quasi-stationary equilibrium.352

c. Sugihara-May correlation353

As discussed in Sugihara et al. (1994), detecting chaos based on the existence of a positive LLE354

in any time series must be cautioned. This is because any fluctuation in a time series could be355

manifestation of high-dimension nonlinearity or random noise. One could indeed have a non-356

chaotic system with a positive LLE if there is sufficiently large random noise in the time series357

(Brock 1986; Casdagli 1992; Sugihara et al. 1994). As such, a positive LLE as shown in Figure 2358

may not be insufficient to guarantee the existence of low-dimensional chaos.359

To further examine the potential low-dimensional chaos in TC intensity time series, Figure 3360

shows the Sugihara-May correlation (SMC) as a function of forecast lead time T for all four361

variables. Again, SMC is obtained by using a modified version of Sugihara and May’s original362

algorithm, in which the forecast scheme is based on an ensemble average instead of a weighted363

sum (Sugihara and May 1990) or regression method (Casdagli 1992) as described in the Method364

section. Note also that a fixed embedding dimension m = 10 and the delay time t = 30 minutes365

are chosen for this SCM calculation, based on the results from the LLE analyses in the previous366

section.367

3As discussed in Casdagli (1992), a high-dimensional deterministic chaos would be in fact manifested as stochastic variability, even in the

absence of all random noise.
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One notices in Figure 3 that SMCs from all four different variables show rapid decay with368

forecast lead time. As discussed in Sugihara and May (1990), this type of decaying correlation is a369

characteristic of chaotic dynamics, which is distinct from the pure random noise variability whose370

SMC is statistically constant. Of further interest in Figure 3 is the consistency of such decaying371

SMC among all time series, which confirms the limited predictability for TC intensity due to the372

low-dimensional chaos, irrespective of model output. Specifically for our CM1 simulation, we373

observe that SMC decreases from 1.0 to about 0.1 after reaching a limit T ∗ ≈ 3-5 hours for the374

wind variables and 12-18 hours for the pressure variable. Such a chaotic decorrelation time is also375

consistent with the predictability range obtained from the TC energy spectral analyses in Kieu and376

Rotunno (2022) at the maximum intensity equilibrium.377

Similar to the LLE analyses, the time series for the wind components (UMAX , VMAX , WMAX )378

display a consistent range of predictability among themselves (T ∗ ≈ 3-5 hours), while PMIN tends379

to capture a longer decorrelation time (T ′∗ ≈ 12-18 hours) as shown in Figure 3. This difference in380

SMC between the pressure and the wind time series is robust for a range of embedding dimension,381

delay time, model physical options, stochastic forcings, or initial conditions in our analyses, so382

long as the phase space is properly reconstructed. Such a longer decorrelation time in the PMIN383

time series again suggests that the pressure field may contain different dynamics, which may allow384

for more reliable intensity forecast at longer lead times. The fact that both LLE and SMC analyses385

provide such a consistently different behavior between the wind and pressure variables highlights386

the possible different predictability for TC intensity when using VMAX or PMIN as suggested in the387

previous studies.388

Our additional analyses with different delay time t or embedding dimension m confirm that the389

SMC curves display consistent decay and level off only when m ≥ 10, which is comparable with390

the embedding dimension obtained from the LLE convergence for the wind field or FNN method391
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(not shown). For smaller values of m, the SMC curve does not posses a monotonic decay but highly392

fluctuates with forecast lead time. These analyses reiterate the results from the LLE analyses that393

the embedding dimension for TC intensity phase space must be sufficiently large before one can394

attain consistent characteristics of SMC.395

d. Correlation dimension396

The consistent convergences of the SMC curve and the LLE for m≥ 10 is noteworthy, because397

it suggests the existence of a low-dimensional attractor with dimension n ∼ 4− 5 from the Tak-398

ens theorem. To directly verify this intrinsic dimension of the TC intensity chaotic attractor, the399

Grassberger-Procaccia (GP) correlation dimension algorithm Theiler (1987) is used to estimate400

the dimension of the TC intensity attractor directly from the CM1 time series (Figure 4a) 4. While401

this correlation dimension algorithm has some degree of subjectivity in choosing the best linear fit402

for correlation integral, these correlation integral curves do show a saturated slope for m ≥ 10 in403

the scaling region, which corresponds to a correlation dimension of a chaotic attractor n ≈ 5− 7404

(Figure 4b). Note that GP correlation dimension is an invariant of any chaotic attractor. There-405

fore, the consistent slopes of the correlation integrals in Figure 4 when m increases supports the406

existence of a chaotic attractor with dimension n ≈ 5−7, sightly larger than what obtained from407

the LLE and SMC analyses but still within the same range of uncertainty.408

In the search for the intrinsic dimension of TC chaotic attractor, we should recall a common409

underlying assumption that possible contributions from random noise must be sufficiently small.410

This is because noise could strongly interfere with the phase-space reconstruction and result in, e.g,411

an artificially positive LLE or incorrect correlation dimension estimation (Brock 1986; Sugihara412

et al. 1994; Casdagli 1992; Kantz and Schreiber 2003). The existence of noise in any model413

4This correlation dimension algorithm is provided as a built-in function in Matlab’s Predictive Toolbox.
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output is natural even for deterministic systems because of the discretization or numeric errors in414

any model. How random noise impacts our phase-space reconstruction analyses of TC intensity is415

therefore elusive.416

To address the robustness of our correlation dimension estimation in the presence of noise, one417

could employ different statistical testing methods or noise reduction algorithms that could dis-418

tinguish the difference between chaotic and stochastic time series (Brock 1986; Baek and Brock419

1992; Kantz and Schreiber 2003). Within the model simulation framework, we can however ap-420

proach this problem differently by carrying out additional experiments in which random processes421

in the form of stochastic forcing are included in the CM1 model as described in Section 2. Any422

difference in the estimations of attractor invariants such as LLE, SMC, or correlation dimension423

between the stochastic and deterministic time series could therefore reveal the role of random424

noise in the TC intensity phase-space reconstruction.425

In this regard, Figure 5 shows the derived correlation dimension n as a function of the embedding426

dimension m, which is obtained from the CM1 simulation with stochastic forcing implementation.427

Despite the existence of noise in the CM1 model, the correlation dimension shown in Figure 5428

still displays a consistent behavior among all time series, similar to that obtained from the CM1429

deterministic simulation in Figure 4. That is, n increases at first and but levels off for m≥ 10. This430

saturation of n with increasing embedding dimension m in the presence of noise is significant,431

because it indicates that the deterministic signals are more dominant, at least in the scaling region.432

As discussed in Kantz and Schreiber (2003), the random noise generally introduces extra dimen-433

sions to any deterministic chaos. As such, the result obtained in the CM1 stochastic simulation is434

required to establish the existence of TC intensity deterministic chaos, albeit the exact value of the435

TC intensity chaotic attractor is still not known.436
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We wish to note that the consistent behavior of the correlation dimension n between determinis-437

tic and stochastic simulations is only held for a certain range of noise amplitude. For a sufficiently438

large value of stochastic forcing, CM1 would crash due to violation of the model numerical stabil-439

ity, thus preventing us from examining to what extent random processes would dominate chaotic440

variability. Similar analyses of LLE or SMC for these stochastic simulations capture every simi-441

lar results as shown in Figures 2-3, thus all together supporting the existence of low-dimensional442

chaos for TC intensity, even in the presence of random noise.443

4. Discussion444

From the deterministic dynamics perspective, the values of LLE (l ), the SMC de-correlation445

time (T ∗), and the size of a bounded chaotic attractor (G) are all related, and they together dictate446

the range of intensity predictability. Indeed, assuming that an initial intensity error is e0, then the447

time required to reach the saturation level G, which is often considered as the range of predictability448

in practical applications, is given by Te = 1
l

ln( G

e0
). If this interpretation of predictability in terms449

of the saturation time is rational, one would expect that Te is of the same order of the magnitude as450

T ∗. Assume for example G ≈ 8ms−1 from the real-time intensity verification (Tallapragada et al.451

2014, 2015; Kieu and Moon 2016; Bhatia et al. 2017; Kieu et al. 2018, e.g.,), l = 1× 10−4s−1,452

and e0 = 0:5ms−1, one obtains Te ≈ 8hrs, which is of the same order of magnitude as T ∗ obtained453

from the Sugihara-May’s decorrelation time scale (cf. Figure 3). Such consistency thus supports454

the nature of chaotic dynamics in determining TC intensity predictability as proposed in recent455

studies (Kieu and Moon 2016; Kieu et al. 2018; Kieu and Rotunno 2022).456

Note however that unlike l , T ∗, or G, which can be considered as invariants of a chaotic attractor,457

the above estimation of Te depends on the initial condition error e0. In principle, one could reduce458

e0 to as small a value as one wishes such that Te can be arbitrarily long (Palmer et al. 2014).459
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However, the logarithm function in the estimation of Te still imposes a strong constraint on the460

magnitude of Te (i.e., a 10-time reduction in e0 can only lengthen Te by ∼ 2 times). Regardless461

of how long Te is, it is eventually the de-correlation time T ∗ that puts a cut off on the intrinsic462

predictability of a chaotic system as discussed in Sugihara and May (1990), no matter how small463

e0 can be reduced. In this regard, the results obtained herein suggest a maximum range of 18-24464

hours for TC intensity predictability, after reaching the mature stage.465

Although the uncertainty in the estimation of LLE, SMC, or the range of intensity predictability466

as obtained from our analyses is significant and unavoidable, the fact that the existence of low-467

dimensional chaos for TC intensity can be confirmed from different angles as presented in this468

study is alone a profound finding. This is because TC nonlinear dynamics along with various469

physical parameterizations in any TC model make it impossible to directly derive any attractor470

from the governing equations. Therefore, the ability to capture such low-dimensional intensity471

chaos from a single time series of TC intensity is nontrivial. From the practical standpoint, the472

existence of low-dimensional chaos for TC intensity explains why forecasters usually characterize473

different TCs by using very few pieces of information such as VMAX , PMIN , storms size, warm core,474

or cloud top temperature. These pieces of information turn out to be sufficient to classify most475

TCs in practice without all other details, much like one can characterize the thermodynamics of a476

room with few bulk numbers such as temperature, density, or pressure. In this regard, the Takens477

embedding theorem is fundamental herein, as it guarantees that the phase-space reconstruction478

from TC intensity time series is feasible and meaningful if low-dimensional chaos exists.479

5. Concluding remarks480

Determining whether TC intensity has limited predictability, and if so, what is the maximum481

range of TC intensity predictability is of importance for operational forecast. In this study, the482
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phase-space reconstruction method was used to explore possible existence of low-dimensional483

chaos for TC intensity. Using the time series outputs from long TC simulations, we presented how484

the chaotic behaviors of TC dynamics could be examined from these time series.485

With the outputs of wind and pressure variables extracted at the CM1 model maximum intensity486

equilibrium, it is found that TC intensity possesses indeed low-dimensional chaos from several487

perspectives. Specifically, our analyses of the largest Lyapunov exponent (LLE) and the Sugihara-488

May correlation (SMC) revealed a consistent positive LLE and a decaying SMC when the embed-489

ding dimension of the phase space m ≥ 10 as expected for systems with low-dimensional chaos.490

For LLE, all estimations converge towards a rate in the range of∼ 0:5−1×10−4s−1, which corre-491

sponds to an e-folding time of∼ 1-3 hours for the wind variables and∼ 3-6 hours for the pressure492

variable. Similarly, the SMC curve shows a consistent decaying of the predicted correlation af-493

ter ∼ 1− 5× 104s, regardless of the presence of random noise. These results together advocate494

that the variability in TC intensity time series is governed by chaotic dynamics, rather than pure495

stochastic fluctuation or projection of high-dimensional nonlinearity.496

By cross-validating the convergence and the consistency of several attractor invariants including497

LLEs, SMCs, and the slopes of correlation integral, we estimated that the correlation dimension498

for TC intensity chaos attractor is in a range of [4-5]. This lower range indicates the existence of499

TC low-dimensional chaos at the maximum intensity equilibrium, thus offering some insights into500

why the use of minimum dynamical variables in the framework of TC scale phase space could501

reasonably represent TC dynamics as proposed in Kieu (2015); Kieu and Moon (2016); Kieu and502

Wang (2017). This result also helps explain the tendency of using just a few pieces of information503

such as VMAX , PMIN , storms size, warm core, or cloud top temperature to characterize different504

TCs in practice, instead of all possible detailed TC properties.505
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While the LLE and SMC measures depend on a certain choice of embedding dimension thresh-506

olds, model resolution, sampling frequency, or phase-space construction methods, it should be507

noted that our estimations of LLE and SMC are sufficiently robust for a range of sensitivity anal-508

yses. In particular, the convergence of LLE and SMC is consistent among the time series of all509

wind components and the minimum central pressure. Note, nevertheless, that the estimations of510

LLE and SMC from the time series of the minimum central pressure provide somewhat a smaller511

LLE value and a longer decorrelation time, as compared to those obtained from the time series of512

the wind components. This appears to be a notable property of TC dynamics, because it suggests513

then that the wind and the pressure variables tend to have a different range of predictability. The514

fact that a smaller LLE and a larger SMC time obtained from the pressure variable, in this regard,515

indicates that TC intensity would have a longer range of predictability if the minimum central516

pressure is used for intensity forecast.517

Despite such difference between the mass and wind fields, the predictability range for TC in-518

tensity appears to be still within the range of 18-24 hours once TCs attain their quasi-stationary519

stage, depending on the criteria of intensity error saturation. These results provide concrete evi-520

dence about TC chaotic dynamics, and indicates that any future improvement of intensity accuracy521

should be based on different intensity metrics beyond the absolute intensity errors, regardless of522

how perfect our modelling system or observational networks would be in the future.523

A number of caveats regarding the interpretation of TC intensity predictability obtained in this524

study should be cautioned here. First, the uncertainty in our estimations of all TC intensity chaotic525

invariants is significant, and to some extent, unavoidable as intensively discussed in Kantz and526

Schreiber (2003). This is because the choice of the embedding dimension and time delay for phase-527

space reconstruction, the existence of model/numeric noise as well as the finite sample size will528

all prevent one from obtaining the exact values of any deterministic invariants in any time series.529

24



Our nonlinear time series analyses are therefore ad-hoc and contain some inherent subjectivity,530

especially in determining the convergence of deterministic invariants when varying the parameters531

in the phase-space reconstruction. As a result, the range of TC intensity predictability is rather532

broad as shown above.533

Second, our estimation of the intensity predictability range is only applied to TC maximum534

intensity stage such that the stationary time series can be well maintained under fixed environ-535

mental conditions (i.e., the dynamics must be already on a chaotic attractor (Brock 1986; Kantz536

and Schreiber 2003; Alligood et al. 1996; Kieu and Moon 2016)). This restriction limits one from537

examining the variability of TC intensity during the early stage of development or as a function of538

environment. How TC intensity predictability depends on TC track or different intensity metrics539

beyond the few scalar variables used in this study is therefore still elusive.540
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