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This annotated bibliography contains four sections. Section 1 contains an annotated bibliography of

my work on representation homology and closely related topics from 2019 onwards. Section 2 contains

an annotated bibliography of my work (from 2019 onwards) on derived Poisson structures and string

topology. Section 3 contains a reference to a recent (submitted) preprint on spaces of quasi-invariants.

Each section begins with a short preamble. Section 4 contains a list of references that includes papers

of other authors, as well as papers of mine from before 2019, that are cited in this bibliography. These

citations use lettered references, as opposed to numbered references, which are used in the first three

sections.

1. Representation homology

There are several (equivalent) ways to define representation homology. Historically the first and

(arguably) most appealing definition comes from derived algebraic geometry (see, e.g., [K, PT, PTVV,

TV1, TV2]). Let G be an affine algebraic group defined over a field k. Given a pointed connected CW

complexX, the classical representation scheme RepG[π1(X)], parametrizing the k-linear representations

of the fundamental group of X in G, has a natural derived extension given by a derived affine k-

scheme DRepG(X). The latter may be defined as the homotopy fibre of the derived mapping stack

Map(X,BG) → BG parametrizing the flat G-bundles on (unpointed) space X in the Toën-Vezzosi

category of derived stacks (see [1, Appendix]). The structure sheaf of DRepG(X) can be represented by a

simplicial commutative k-algebra whose homotopy groups we denote by HR∗(X,G) := π∗O[DRepG(X)]

and call the representation homology of X in G. The HR∗(X,G) is a graded commutative k-algebra,

which is naturally a homotopy invariant of X, with HR0(X,G) being isomorphic to the affine coordinate

ring of RepG[π1(X)]. The full representation homology HR∗(X,G) depends not only on π1(X) but the

entire homotopy type of X: it thus provides an interesting — and quite nontrivial — refinement of the

classical representations variety RepG[π1(X)].

References

[1] Vanishing theorems for representation homology and the derived cotangent complex, Algebraic &

Geometric Topology 19 (2019), no. 1, 281-339 (with Yu. Berest and W.-K. Yeung).

In this paper, we study the cotangent complex of the derived G-representation scheme DRepG(X)

of a pointed connected topological space X. We construct an (algebraic version of) unstable Adams

spectral sequence relating the cotangent homology of DRepG(X) to the representation homology

HR∗(X,G) := π∗[DRepG(X)] and prove some vanishing theorems for groups and geometrically

interesting spaces. Our examples include virtually free groups, Riemann surfaces, link complements

in R3 and generalized lens spaces. In particular, for any f.g. virtually free group Γ, we show that

HRi(BΓ, G) = 0 for all i > 0. For a closed Riemann surface Σg of genus g ≥ 1, we have HRi(Σg, G) =

0 for all i > dimG. The sharp vanishing bounds for Σg actually depend on the genus:

Conjecture 1. If g = 1, then HRi(Σg, G) = 0 for i > rankG, and if g ≥ 2, then HRi(Σg, G) = 0

for i > dim Z(G) , where Z(G) is the center of G.

In particular, for g ≥ 2 and G complex semisimple, we conjecture that HRi(Σg, G) = 0 for i > 0.

We prove Conjecture 1 locally on the smooth locus of the representation scheme RepG[π1(Σg)]

in the case of complex connected reductive groups. One important consequence of our results is
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the existence of a well-defined K-theoretic virtual fundamental class for DRepG(X) in the sense

of Ciocan-Fontanine and Kapranov [CK]. We give a new “Tor formula” for this class in terms of

functor homology. This paper ends with an appendix comparing our (relatively elementary) con-

struction of the derived representation scheme DRepG(X) in [2] with the Toën-Vezzosi construction

Map(X,BG) of the derived mapping stack of flat G-bundles on X, as well as with Kapranov’s

original construction RLocG(X) of the derived moduli space of G-local systems on X.

[2] Representation homology of topological spaces, International Mathematics Research Notices IMRN

2022, no. 6, 4093-4180 (with Yu. Berest and W.-K. Yeung).

Our starting point in this paper was the simple observation that HR∗(X,G) can be defined in an

elementary way parallel to the usual (simplicial) definition of ordinary homology H∗(X;A) and the

Loday-Pirashvili definition of higher Hochschild homology HH∗(X,R). Specifically, the coordinate

ring O(G) of the algebraic group G can be viewed as a monoidal functor on the (skeletal) category G

of f.g. free groups: Fn 7→ O(G)⊗n that extends naturally to the category of all groups: Gr→ Commk.

Combining this last functor with GX : ∆op → Gr, the classical (Kan) simplicial group model of the

space X, we get a simplicial commutative algebra O(X,G) : ∆op → Commk whose homotopy groups

are precisely the representation homology: HR∗(X,G) ∼= π∗O(X,G) .

Using our definition of representation homology, we constructed a natural spectral sequence:

E2
pq = TorGp (H q(ΩX; k),O(G)) ⇒p HRn(X,G) ,

relating representation homology of a space X to the homology of its based loop space. Here, G

stands for the PROP of finitely generated free groups. This spectral sequence allows us to establish

basic properties and compute representation homology in a number of interesting cases. For exam-

ple, for X = BΓ, it collapses, giving an isomorphism: HR∗(BΓ, G) ∼= TorG∗ (k[Γ], O(G)) , where

the group algebra k[Γ] and the Hopf algebra O(G) are viewed as monoidal functors G → Vectk.

This ‘Tor’ formula is remarkable for two reasons: first, it gives a natural interpretation of represen-

tation homology in terms of usual (abelian) homological algebra, placing it in one row with other

classical invariants such as Hochschild and cyclic homology; second, it provides an efficient tool for

computations.

Our elementary definition shows that representation homology may be thought of as a ‘multiplica-

tive version’ of ordinary homology, where the commutative Hopf algebra O(G) plays the role of coef-

ficients. In this regard, the HR∗(X,G) is analogous to the higher Hochschild homology, HH∗(X,R),

which can be viewed as a homology of X with coefficients in a commutative algebra R (see [Pir]).

The two homology theories are, in fact, closely related: we show that there is a natural isomorphism

HR∗(ΣX+, G) ∼= HH∗(X,O(G))

for any space X. There is also an important difference: unlike HH∗(X,R), the HR∗(X,G) carries

a natural algebraic G-action induced by the adjoint action of G. Examples show that this action

depends on the space X in a nontrivial way, which makes representation homology a richer and

‘more geometric’ theory than Hochschild homology. As noted in [3], it turns out to be related to

some of the deeper problems in Lie theory and representation theory.

We also compute HR∗(X,G) explicitly for basic spaces of interest in geometric topology: e.g., the

Riemann surfaces, the link complements in R3 and S3, and the classical lens spaces). For instance,

the representation homology of the complement of (a tubular neighborhood of) a link L in R3 can

be expressed as a Hochschild homology of a commutative algebra with coefficients in an asymmetric

bimodule. If L is the closure of a braid β on n strands, we have

HR•(R3 \ L,G) ∼= HH•(O(Gn),O(Gn)β) ,
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where the left action of O(Gn) on the coefficient bimodule is by multiplication and the right action

is multiplication after applying an automorphism determined by β.

[3] Representation homology of simply connected spaces, Journal of Topology 15 (2022), no. 2, 692-744

(with Yu. Berest and W.-K. Yeung).

In this paper, we use Quillen’s rational homotopy theory [Qui69], to compute the representation

homology of an arbitrary simply connected space X over a field k of characteristic zero. One of our

main results is that if X is a simply connected pointed space of finite rational type with Sullivan

model AX , then for any affine algebraic group G with Lie algebra g, there are isomorphisms

HR∗(X,G) ∼= H−∗
CE(g(ĀX); k) , HR∗(X,G)G ∼= H−∗

CE(g(AX), g; k) ,

where H−∗
CE denotes the Chevalley-Eilenberg cohomology of the current Lie algebra g(AX) = g⊗AX .

When X is simply connected (so that HR0(X,G) = k) and G is reductive over k, it is natural

to treat HR∗(X,G) as an object of representation theory — or even classical invariant theory (in

the spirit of [Weyl]) — and ask basic questions about the structure of HR∗(X,G) as a G-module

and its subalgebra HR∗(X,G)G of G-invariants. From this perspective, the first basic question is:

When is the algebra HR∗(X,G)G free and (locally) finitely generated ? We address this question by

constructing a natural map which we call the Drinfeld homomorphism:

ΨG(X) : Λk

[
⊕l

i=1H
S1, (mi)
∗ (LX; k)

]
→ HR∗(X,G)G

Here, m1, . . . ,ml are the exponents of G and the H
S1, (m)
∗ (LX; k) are the common eigenspaces of the

Frobenius (power) operations on H
S1

∗ (LX; k). The Drinfeld homomorphism relates the representation

homology of a space X to the S1-equivariant homology of its free loop space LX = Map(S1, X);

it is a topological analog of the derived character map of Lie algebras studied in our earlier work

[BFPRW]. The above question can then be made more specific: For which spaces X and reductive

groups G is ΨG(X) an isomorphism? We answer it our next main result:

Theorem 1.1. Assume that the rational cohomology algebra H∗(X;Q) of X is either generated by

one element (in any dimension) or freely generated by two elements: one in even and one in odd

dimensions. Then ΨG(X) is an isomorphism for X and any complex reductive group G.

Theorem 1.1 can be viewed as a broad topological generalization of the Fishel-Grojnowski-Teleman

Theorem [FGT] that settles the so-called Strong Macdonald Conjecture, a celebrated conjecture

in representation theory proposed by I. Macdonald, B. Feigin and P. Hanlon in the early 80s (see

[M, H1, H2]). To illustrate this result, consider the spaces X with H∗(X;Q) ∼= Q[z]/(zr+1) , where

the generator z is in even dimension d ≥ 2. (The most familiar examples of such X’s are the even-

dimensional spheres S2n (r = 1, d = 2n) and the classical projective spaces: the complex ones,

CPr (r ≥ 1, d = 2), the quaternionic HPr (r ≥ 1, d = 4) and the octonionic (Cayley) plane OP2

(r = 2, d = 8).) For such spaces, Theorem 1.1 gives

HR∗(X,G)G ∼= Λ [ξ
(i)
1 , ξ

(i)
2 , . . . , ξ(i)r : i = 1, 2, . . . , l] ,

where the generators ξ
(i)
j have degrees deg ξ

(i)
j = (d(r + 1) − 2)mi + dj − 1, with mi being the

exponents of the Lie group G. The original Strong Macdonald Conjecture corresponds to the special

case X = CPr.

[4] Symmetric homology and representation homology, Transactions of the American Mathematical

Society 376 (2023), no. 9, 6475-6496 (with Yu. Berest).

Symmetric homology (HS) is a natural generalization of cyclic homology (HC) in which symmetric

groups replace the cyclic groups. Introduced by Z. Fiedorowicz [F] in the early 90s, this homology
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is known to be notoriously hard to compute even in most basic cases. The reason seems to be that,

unlike cyclic or Hochschild, the HS theory is not easily accessible by algebraic methods and has to

be approached topologically. Some 15 years ago, Ault and Fiedorowicz [AF] (see also [Au]) proposed

a number of conjectures on symmetric homology of algebras, including the following main one on

polynomial rings (see [AF, Conjecture 1]):

(1.1) HS∗(k[x1, . . . , xn]) ∼= H∗

(
n∏

i=1

C∞(S0)×
n∏

i=2

Ω∞Σ∞(Si−1)(
n
i); k

)
where Ω∞Σ∞ is the stable homotopy functor and C∞ is the monad associated to the little ∞-

cubes operad, both defined as functors on the category of based topological spaces Top∗. Somewhat

surprisingly, for n ≥ 2, this conjecture remained open (in fact, HS∗(k[x1, . . . , xn]) was not known!)

even in the rational case: when k is a field of characteristic zero.

In this paper, we first observe that for any associative k-algebra A, there is a canonical algebra map

SR∗(A) : HS∗(A)→ HR∗(A, k) induced by the derived character map Tr∗(A) : HC∗(A)→ HR∗(A, k)

constructed in [BKR13]. We then show that when k is a field of characteristic zero, the map SR∗(A)

is an isomorphism of graded commutative algebras

(1.2) HS∗(A) ∼= HR∗(A, k) .

The above result enables us to settle one of the conjectures of Ault and Fiedorowicz over fields

of characteristic 0. It further allows us to translate known facts about representation homology

to symmetric homology: we show that if Ua is the universal enveloping algebra of a Lie algebra

a defined over a field k of characteristic 0, then there is an isomorphism of graded commutative

algebras

(1.3) HS∗(Ua) ∼= Symk(H∗+1(a; k)) ,

where H∗(a; k) is the reduced (Chevalley-Eilenberg) homology of a with trivial coefficients and Sym

stands for graded symmetric algebra. As a special case of (1.3), we obtain for V a finite dimensional

k-vector space in homological degree 0,

(1.4) HS∗(Symk V ) ∼= Symk

(
dimk V⊕
i=1

∧iV [i− 1]

)
,

from which Conjecture (1.1) (over fields of characteristic 0) follows without much difficulty.

[5] Derived character maps of group representations, to appear in Algebraic & Geometric Topology,

arXiv:2210.01304 (with Yu. Berest).

The cyclic homology of group algebras has a beautiful topological interpretation that goes back to

the work of Burghelea, Goodwillie, Fiedorowicz and others (see, e.g., [L, Chapter 7]). Specifically,

for Γ a (homotopy) simplicial group, there is a natural isomorphism

(1.5) HC∗(k[Γ]) ∼= H∗(ES1 ×S1 L(BΓ); k)

where the right hand side is the S1-equivariant homology of the free loop space L(BΓ) :=

Map(S1, BΓ) of the classifying space of Γ. In fact, (1.5) is one of a list of several classical iso-

morphisms relating algebraic homotopy theories associated with crossed simplicial groups [FL] to

stable homotopy theory. One of these isomorphisms is the isomorphism

(1.6) HS∗(k[Γ]) ∼= H∗(ΩΩ∞Σ∞(BΓ); k)

for symmetric homology originally discovered by Fiedorowicz [F] but proven more recently by Ault

[Au]. The first main result of this paper adds representation homology to the list mentioned above.
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To be precise, for any commutative ring k, let HR∗(k[Γ]) := HR∗(BΓ,Gm(k)). We prove that for

any (homotopy) simplicial group Γ, there is a natural isomorphism

(1.7) HR∗(k[Γ]) ∼= H∗(Ω SP∞(BΓ); k) .

Our other main result is a topological interpretation of the derived character maps

(1.8) Tr∗ : HC∗(k[Γ])→ HR∗(k[Γ])

of one-dimensional representations of k[Γ]. We show that with the identifications (1.5) and (1.7),

the derived character maps (1.8) are induced on homology by a natural transformation

CRBΓ : ES1 ×S1 L(BΓ)→ ΩSP∞(BΓ)

which, in turn, factors (as a homotopy natural transformation) through the Carlsson-Cohen map

CSBΓ : ES1 ×S1 L(BΓ) → ΩΩ∞Σ∞(BΓ). The induced map SRBΓ : ΩΩ∞Σ∞(BΓ) → ΩSP∞(BΓ)

is the (looped once) canonical natural transformation Ω∞Σ∞ → SP∞ relating stable homotopy to

(reduced) singular homology of pointed spaces. This shows that the derived character map (1.8)

factors through symmetric homology, and that the induced map SRBΓ,∗ : HS∗(k[Γ])→ HR∗(k[Γ]) is

determined by maps that are well-known in topology. Topological results then allow us to conclude

that SRBΓ,∗ is an isomorphism when BΓ is simply connected. These results led to our subsequent work

[4] summarized above, where the isomorphism between symmetric homology and one-dimensional

representation homology (in characteristic 0) is established in full generality.

2. Derived Poisson structures

In [Cr], Crawley-Boevey proposed a notion of Poisson structure for associative algebras that agrees

with the usual definition for commutative algebras and has nice categorical properties. The idea of [Cr]

was to find the weakest structure on A that induces natural Poisson structures on the moduli spaces

Repn(A)//GL(n) of finite dimensional semi-simple representations of A. It turns out that such a weak

Poisson structure is given by a Lie bracket on HC0(A) = A/[A,A] satisfying some extra conditions. It

is thus called a H0-Poisson structure in [Cr]. Derived Poisson structures, introduced in [BCER], are

a homological generalization of Crawley-Boevey’s Poisson structures. In particular, a derived Poisson

structure on a (associative) DG algebra A induces a graded Lie bracket on HC∗(A) along with com-

patible graded Poisson structures (see [BCER]) on the representation homologies HR∗(A,n)
GL (of the

associative DG algebra A, see [BKR13]) for all n.

References

[6] Cyclic pairings and derived Poisson structures, New York Journal of Mathemetics 25 (2019), 1-44

(with Y. Zhang)

By a fundamental theorem of D. Quillen, there is a natural duality - an instance of general Koszul

duality - between differential graded (DG) Lie algebras and DG cocommutative coalgebras defined

over a field k of characteristic 0. A cyclic pairing (i.e., an inner product satisfying a natural cyclicity

condition) on the cocommutative coalgebra gives rise to a derived Poisson structure on a universal

enveloping algebra Ua of the Koszul dual (DG) Lie algebra a. This, in turn, yields a graded Lie bracket

on the (reduced) cyclic homology HC∗(Ua). A prototypical example is the graded Lie structure with

the so-called string topology bracket on the (reduced) S1-equivariant homology H
S1

∗ (LX;Q) of the free

loop space LX of a simply connected closed oriented manifold X, which arises in this manner from

the Poincaré duality pairing on a suitable chain coalgebra of X (see [LS]).

In this paper, we study such derived Poisson structures on Ua, and their relation to the classical

Poisson structures on the derived moduli spaces DRepg(a) of a in a finite dimensional reductive Lie
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algebra g. Recall that HC∗(Ua) has a canonical direct sum decomposition

(2.1) HC∗(Ua) ∼=
∞⊕
p=1

HC
(p)
∗ (a) ,

which is called the Lie Hodge decomposition (see [BFPRW, Ka]). The Drinfeld trace

Trg(P, a) : HC
(p)
∗ (a) → HR∗(a, g) associated with invariant polynomial P ∈ Symp(g∗)ad g of de-

gree p is a certain derived character map with values in the representation homology of a in g (see

[BFPRW]). Extending results obtained in [BRZ], we show that the Drinfeld trace maps intertwine the

derived Poisson bracket with the classical Poisson bracket on the representation homology HR∗(a, g).

[7] Hodge decomposition of string topology, Forum of Mathematics, Sigma 9 (2021), Paper No. e33,

31pp (with Yu. Berest and Y. Zhang)

Let X be a simply connected closed oriented manifold, and let LX denote the free loop space. Chas

and Sullivan [CS] showed that the (reduced) rational S1-equivariant homology of LX carries a graded

Lie algebra structure with the so called string topology bracket:

{–, –} : H
S1

∗ (LX;Q)×H
S1

∗ (LX;Q)→ H
S1

∗ (LX;Q) .

This bracket is intrinsically related to the geometry of LX, and has many interesting properties that

have been extensively studied in recent years.

On the other hand, there is a natural (Hodge) decomposition

(2.2) H
S1

∗ (LX;Q) ∼=
∞⊕
p=0

H
S1,(p)
∗ (LX;Q)

where the direct summands are the common eigenspaces of the Frobenius (power) operations on

H
S1

∗ (LX;Q). In this paper, we show that the string topology bracket is compatible with the Frobenius

operations. More precisely, we prove the following:

Theorem 2.1. Assume that the manifold X is rationally elliptic as a topolgical space, i.e.,∑
i≥2 dimπi(X)⊗Q <∞. Then

{HS1,(p)
∗ (LX;Q),H

S1,(q)
∗ (LX;Q)} ⊆ H

S1,(p+q−1)
∗ (LX;Q) , ∀p, q ≥ 0 , p+ q ≥ 1 .

Theorem 2.1 settles a conjecture of our earlier work [BRZ], albeit under the additional assumption

that X is rationally elliptic. This result appears to have been not anticipated in earlier literature in

spite of the compatibility of the Hodge decomposition (2.2) with various natural operations, including

string topology operations, having been widely studied [FT, FTV, G1, G2, HL, W].

We deduce Theorem 2.1 from an abstract algebraic result on the compatibility of derived Poisson

structures on the universal enveloping algebra Ua of a Lie algebra a with Lie-Hodge decomposition.

Recall that any DG Lie algebra a has a minimal model, which is given by an L∞-structure on the

homology H∗(a) together with a L∞-quasi-isomorphism a
∼→ H∗(a). Such a structure is unique upto

L∞-quasi-automorphism of H∗(a). We denote this minimal model simply by H∗(a).

Theorem 2.2. Let a be a nonegatively graded DG Lie algebra over a field k of characteristic 0.

Assume that H∗(a) is finite-dimensional and nilpotent as a L∞-algebra. Further assume that a has

a Koszul dual DG cocommutative coalgebra C that is finite-dimensional. Then, the derived Poisson

bracker associated with a(ny) cyclic pairing on C preserves the Lie-Hodge decomposition (2.1), i.e.,

{HC(p)
∗ (a),HC

(q)
∗ (a)} ⊆ HC

(p+q−2)
∗ (a) , ∀p, q ≥ 1 .

Besides Quillen models of rationally elliptic simply connected spaces, Theorem 2.2 applies to an ordi-

nary finite-dimensional nilpotent Lie algebra a, with derived Poisson bracket coming from the natural

pairing on the Chevalley-Eilenberg complex C∗(a; k) = ∧∗a.
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3. Spaces of quasi-invariants of compact Lie groups

Fix a finite Coxeter group W acting in its reflection representation V . Denote by A := {H} the set

of reflection hyperplanes of W in V and write sH ∈ W for the reflection operator in H. The group

W acts naturally on the polynomial algebra C[V ]. Note that the invariant polynomials p ∈ C[V ]W are

determined by the equations

(3.1) sH(p) = p , ∀H ∈ A .

To define quasi-invariants we modify (‘weaken’) the equations (3.1) in the following way. For each

reflection hyperplane H ∈ A, we choose a linear form αH ∈ V ∗ such that H = Ker(αH) and fix a

non-negative integer mH ∈ Z+, assuming that mw(H) = mH for all w ∈ W . In other words, we choose

a system of roots of W in V ∗, which (abusing notation) we still denote by A, and fix a W -invariant

function m : A → Z+, H 7→ mH , the values of which will be called multiplicities of hyperplanes (or

roots) in A. Now, with these extra data in hand, we replace the polynomial equations (3.1) by the

polynomial congruences

(3.2) sH(p) ≡ p mod ⟨αH⟩2mH , ∀H ∈ A ,

where ⟨αH⟩ denotes the principal ideal in C[V ] generated by the form αH . Following [CV90], we call

Qm(W ) the algebra W -quasi-invariant polynomials of multiplicity m. Note that Q0(W ) = C[V ], while

for “m =∞”, we have Q∞(W ) = lim←− Qm(W ) = C[V ]W . In general, C[V ]W ⊆ Qm(W ) ⊆ C[V ] : thus,

for varying m, the quasi-invariants interpolate between the W -invariants and all polynomials. Despite

its simple definition, the algebras Qm(W ) have a complicated structure: they do not seem to admit

a good combinatorial description, nor do they have a natural presentation in terms of generators and

relations. Nevertheless, these algebras possess many remarkable properties, such as Gorenstein duality

(see [EG02, BEG03, FV02]), and are closely related to some fundamental objects in representation

theory, such as Dunkl operators and double affine Hecke algebras (see [BEG03, BC11]).

References

[8] Topological realization of algebras of quasi-invariants, I, Submitted preprint, 2023,

arXiv:2305.10604 (with Yu. Berest).

This is the first in a series of papers, whose goal is to give a topological realization of the algebras

of quasi-invariants as (equivariant) cohomology rings of certain spaces naturally attached to compact

connected Lie groups. Our main result can be viewed as a generalization of a well-known theorem of A.

Borel [Bo53] that realizes the algebra of invariant polynomials of a Weyl group W as the cohomology

ring of the classifying space BG of the associated Lie group G. As the algebras Qm(W ) are defined over

C, we should clarify what we really mean by “topological realization”. It is a fundamental consequence

of Quillen’s rational homotopy theory [Qui69] that every reduced, locally finite, graded commutative

algebra A defined over a field k of characteristic zero is topologically realizable, i.e. A ∼= H∗(X; k) for

some (simply-connected) space X. When equipped with cohomological grading, the algebras Qm(W )

have all the above-listed properties; hence, the natural question: For which values of m the Qm(W )’s

are realizable, has an immediate answer: for allm. A more interesting (and much less obvious) question

is whether one can realize quasi-invariants topologically as a diagram of algebras {Qm(W )} (indexed
by m) together with natural structure that these algebras carry (e.g., W -action). To make this precise,

equip the set M(W ) of multiplicities on A a natural partial order, letting m′ ≥ m iff m′
α ≥ mα

for all α ∈ A . The algebras of W -quasi-invariants of varying multiplicities then form a contravariant

diagram of shapeM(W ) (i.e., a functor onM(W )op) that we simply depict as a filtration on C[V ]:

(3.3) C[V ] = Q0(W ) ⊇ . . . ⊇ Qm(W ) ⊇ Qm′(W ) ⊇ . . . ⊇ C[V ]W
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The schemes Vm(W ) = SpecQm(W ) with natural projections pm : Vm(W ) → V//W then form a

covariantM(W )-diagram (tower) over V//W that is dual to (3.3):

(3.4) V = V0(W )→ . . .→ Vm(W )
πm,m′
−−−−→ Vm′(W )→ . . .→ V//W .

The morphisms πm,m′ in (3.4) have interesting algebro-geometric properties (see [BEG03]). Axiom-

atizing these in homotopy theoretic terms, we can ask for a topological analog of the tower (3.4),

where the schemes Vm(W ) are replaced by CW complexes Xm(G,T ). We refer to this problem as the

Realization Problem.

In this paper, we solve our realization problem in the rank one case using the Ganea fiber-cofiber

construction (see [Gan65]). It can be briefly described as follows. Starting with a (homotopy) fibration

sequence (well-pointed) spaces: F
i−→ X

p−→ B , one can construct a new fibration sequence on the

same base: F1
i1−→ X1

p1−→ B by taking X1 := hocof∗(i) ∼= X ∪ C∗(F ) to be the homotopy cofibre of

the fibre inclusion i : F → X and defining F1 := hofib∗(p1) . The map p1 : X1 → B (called ‘whisker

map’) is obtained by extending p : X → B to X1 so that the cone C∗(F ) erected over X contracts to

the basepoint of B. This homotopy-theoretic construction can be iterated ad infinitum, producing a

tower of fibrations over B:

(3.5)

F - F1
- F2

- . . .

X

i

?
π0- X1

i1
?

π1- X2

i2
?

- . . .

B

p

?
=== B

p1
?
=== B

p2
?
=== . . .

Now, given a compact connected Lie group G with maximal torus T , we can apply the above con-

struction to the fundamental Borel fibration sequence of classifying spaces

(3.6) G/T
i−→ BT

p−→ BG ,

Theorem 3.1. For G = SU(2), the diagram of spaces (3.5) obtained by the successive application of

the fibre-cofibre construction to the fibration sequence (3.6) solves the Realization Problem. Moreover,

the resulting spaces Xm(G,T ) are the unique, up to rational homotopy equivalence, solution to the

Realization Problem.

The spaces Xm(G,T ) in Theorem 3.1 can be naturally realized as Borel homotopy quotients of the

spaces Fm(G,T ) := G/T ∗Em−1G (equipped with the diagonal G-action). Here, ∗ stands for join and

Em−1G is Milnor’s model for the (m− 1)-universal G-bundle. Hence, for G = SU(2)

H∗
G(Fm(G,T );C) ∼= H∗(Xm(G,T );C) ∼= Qm(W ) .

Here, W = Z/2Z is the Weyl group of G. We call the spaces Fm(G,T ) the m-quasi-flag manifolds

and their Borel homotopy quotients Xm(G,T ) the spaces of m-quasi-invariants. We further extend

our construction of spaces quasi-invariants to a large class of finite loop spaces ΩB of homotopy

type of S3, originally introduced Rector [Rec71], called the Rector spaces (or fake Lie groups of type

SU(2)). In addition, we compute the G-equivariant K-theory and G-equivariant (complex analytic)

elliptic cohomology of the m-quasi-flag manifolds Fm(G,T ) (for G = SU(2)), identifying them with

exponential quasi-invariants Qm(W ) (for W = Z/2Z) and elliptic quasi-invariants for W = Z/2Z
respectively. In the case of elliptic cohomology, we express the result in two ways: geometrically (as

coherent sheaves on a given Tate elliptic curve E) and analytically (in terns of Θ-functions and q-

difference equations). Finally, we study the cochain spectra C∗(Xm(G,T ), k) associated to the spaces

of quasi-invariants and show that these are Gorenstein commutative ring spectra in the sense of Dwyer,

Greenlees and Iyengar [DGI06].
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[TV2] B. Toën and G. Vezzosi, Homotopical algebraic geometry II. Geometric stacks and applications, Mem. Amer. Math.

Soc. 193 (2008).

[W] N. Wahl, Universal operations in Hochschild homology, J. Reine Angew. Math. 720 (2016), 81–127.

[Weyl] H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J.,

1939.

10


	1. Representation homology
	References
	2. Derived Poisson structures
	References
	3. Spaces of quasi-invariants of compact Lie groups
	References
	4. External references
	References

