TIER 1 ANALYSIS EXAM, JANUARY 2020

Write the solution to each of the following problems on a separate, clearly identified page. Each problem is graded on a scale of zero to ten.

Problem 1. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of nonnegative real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Show that there exist infinitely many $n \in \mathbb{N}$ with the following property:

$$
a_{m} \leq a_{n} \text { for every } m \geq n
$$

Problem 2. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of nonnegative real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ and

$$
\left|a_{n}-a_{n+1}\right| \leq \frac{1}{n^{2}} \text { for every } n \in \mathbb{N}
$$

Prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges.
Problem 3. Denote by X the collection of all sequences $x=\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with the property that $x_{n} \in[0,1]$ for every $n \in \mathbb{N}$. Define a metric on X by

$$
d(x, y)=\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|, \quad x=\left\{x_{n}\right\}_{n \in \mathbb{N}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}} \in X
$$

Let $f: X \rightarrow \mathbb{R}$ be a uniformly continuous function. Show that f is bounded. (NOTE: Take for granted the fact that d is in fact a metric. The conclusion is not correct if f is just continuous.)

Problem 4. Define a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ as follows:

$$
a_{1}=1, a_{2}=\sqrt{2}, a_{3}=\sqrt{2 \sqrt{3}}, \ldots, a_{n}=\sqrt{2 \sqrt{3 \sqrt{\cdots \sqrt{n}}}}, \quad n \geq 3
$$

Show that the sequence converges in \mathbb{R}.
Problem 5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function such that $f(0,0)=0$. Show that the improper integral

$$
\iint_{x^{2}+y^{2} \leq 1} \frac{f(x, y)}{\left(x^{2}+y^{2}\right)^{4 / 3}} d x d y
$$

converges, that is,

$$
\lim _{\varepsilon \downarrow 0} \iint_{\varepsilon \leq x^{2}+y^{2} \leq 1} \frac{f(x, y)}{\left(x^{2}+y^{2}\right)^{4 / 3}} d x d y
$$

exists.
Problem 6. Let $f: \mathbb{R} \rightarrow(0,+\infty)$ be a differentiable function such that $f^{\prime}(x)>$ $f(x)$ for every $x \in \mathbb{R}$.
(1) Show that there exists a constant $k>0$ such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x) e^{-k x}=+\infty \tag{0.1}
\end{equation*}
$$

(2) Find the least upper bound of the numbers k for which (0.1) can be proved.

Problem 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is uniformly continuous and $\lim _{x \rightarrow+\infty} f(x)=2020$. Does the limit $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ necessarily exist? (NOTE: Prove if true, provide an example if false.)

Problem 8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x+1)=f(x)$ for every $x \in \mathbb{R}$. Define functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, n \in \mathbb{N}$, as follows:

$$
f_{1}(x)=f(x), f_{n}(x)=\frac{1}{2}\left(f_{n-1}\left(x-2^{-n}\right)+f_{n-1}\left(x+2^{-n}\right)\right), \quad x \in \mathbb{R}, n \geq 2 .
$$

Show that the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly on \mathbb{R}.
Problem 9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuously differentiable function. Suppose that the Jacobian determinant $\operatorname{det} D f(0,0)$ is equal to zero. Show that for every $\varepsilon>0$ there exist $M, \delta>0$ with the following property:

If B_{r} is the closed disk of radius $r<\delta$ centered at $(0,0)$, then $f\left(B_{r}\right)$ is contained in a rectangle with sides $M r$ and εr.

