Analysis Tier I exam

August 2020

Instructions:

1. Be sure to fully justify all answers.
2. Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
3. Please assemble your test with the problems in the proper order.
4. Each problem is worth 11 points.

Problem 1. Let $x_{0}>0$ be a fixed real number and consider the sequence

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{4}{x_{n}}\right), \text { if } n=0,1,2,3, \ldots,
$$

(a) Show that $x_{n+1} \geq 2$, if $n \geq 0$.
(b) Show that $x_{n+1} \leq x_{n}$, if $n \geq 1$.
(c) Show that $x=\lim _{n \rightarrow \infty} x_{n}$ exists.
(d) Find x.

Problem 2. Find the value of $\iint_{E} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\left(y z^{2}, \sin x, x^{2}\right), E$ is the upper half of the ellipsoid $\left\{x^{2}+y^{2}+4 z^{2}=1,0 \leq z\right\}$, and \mathbf{n} is the outward pointing unit normal vector on the ellipsoid.

Problem 3. Find the value of

$$
\iint_{D} \frac{1}{4 x+y} \exp \left(\frac{2 x+y}{4 x+y}\right) d x d y
$$

where D is the quadrilateral with vertices $(1,-2),(1 / 2,-1),(1,-3),(2,-6)$.

Problem 4. Find the absolute minimum of the function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ given by

$$
f(x, y, z, w)=x^{2} y+y^{2} z+z^{2} w+w^{2} x
$$

on the set

$$
S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x y z w=1 \text { and } x>0, y>0, z>0, w>0\right\} .
$$

Problem 5. Set $a_{0}:=0$ and define for $k \geq 1$

$$
a_{k}=\sqrt{1+\frac{1}{2}+\ldots+\frac{1}{k}} .
$$

Assume furthermore that b_{k} is sequence of positive real numbers such that $\sum_{k=1}^{\infty} b_{k}^{2}<\infty$, and that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous, positive valued function so that

$$
f(x) \leq b_{k} \quad \text { when } \quad a_{k-1} \leq|x| \leq a_{k}
$$

for $k=1,2,3, \ldots$. Show that the improper integral $\int_{\mathbb{R}^{2}} f(x) d x$ exists.

Problem 6. Let f be a continuous function on $[0,1]$ and twice differentiable on $(0,1)$ such that $f(0)=f(1)=0$ and $\left|f^{\prime \prime}(x)\right|<2$ for all $x \in(0,1)$.
(a) Show that $f(x) \geq x^{2}-x$ for all $x \in[0,1]$.
(b) Show that

$$
\left|\int_{0}^{1} f(x) d x\right| \leq \frac{1}{6}
$$

Problem 7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a differentiable map (but not necessarily continuously differentiable) with component functions f_{1} and f_{2}, that is $f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Suppose that for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, one has

$$
\left|\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}, x_{2}\right)-2\right|+\left|\frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right|+\left|\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|+\left|\frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}, x_{2}\right)-2\right| \leq \frac{1}{2}
$$

Prove that f is one-to-one ${ }^{1}$ on \mathbb{R}^{2}.

Problem 8. Let I be the interval $[0,1]$, and let $f: I \rightarrow \mathbb{R}$ be a continuous function such that

$$
\int_{I} f(x) x^{n} d x=0 \text { for all } n=3,4,5 \ldots
$$

Show that $f(x)=0$ for all $x \in I$.

Problem 9. Let $f_{n}:[0,1] \rightarrow[0,1]$ be a sequence of functions that converge uniformly to a limit function $f:[0,1] \rightarrow[0,1]$. Assume that each f_{n} maps compact sets to compact sets. Is it true that f also maps compact sets to compact sets? Note that we do not assume that the f_{n} are continuous. Either give a proof, or provide a detailed counterexample.

[^0]
[^0]: $1_{\text {i.e., injective }}$

