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Department of Mathematics-Indiana University 

Analysis Qualifying Exam 

August, 1996 

You should attempt all nine of the following problems. Good luck! 

1. Let X be the metric space 
X = {(z,y) E R

2
: y ~ lz1213

} 

with the usual Euclidean distance, and define / : X - R by /(z, y) = .Zy3 y4 for (z, y) # (0, 0), and 
X + 

/(0, 0) = 0. Decide whether or not f is continuous at (0, 0), and prove your answer by applying the 
£ - 6 definition of continuity. Is / continuous at (O, 0) when considered as a mapping from R 2 into R? 
Prove your answer. 

2. Define g: [-1,l)- R by g(x) = (-1)1'/l:2 for lzl E (1/(l:+ 1),1/l:}, l: = 1,2, ... , and g(O) = 0. 
Decide whether or not g is differentiable at 0, and prove your answer. 

3. Let {an}~0 be the Fibonacci sequence {1,l,2,3,5,8, ... }, {Thus an+l = an +an-l for n 2: I.) Show 
. oo l 

that the series L ;;- converges. 
n=O n 

4. Compute f curlF-NdA,whereFisthevectorfieldF(z,y,z)= (-z,y~z) ,4>:[0,l]x[0,2~)-R3 

J«> Jx'i + z- + 1 
is the surface 4>(r,O) = (rcos0,r2 ,rsin8), }\' is a unit normal vector on 4>, and dA is the surface area 
element. 

5. Let E be an open set in R", and let F : E - R" be C 1
• Show that, if the function IFl2 has a nonzero 

relative minimum at a point zo E £, then the linear transformation F'(zo) must be singular. 

6. Let/: [O,oo) - R be continuous, and assume that Jim /(z) exists and is a finite number L. \\"hat 
z-oc, 

can be said a bout 

Prove your answer. 

7. Let A be the set of real numbers in [O, 1] whose decimal expansions contain only the digits 3 and 8. Is 
A countable? ls A dense in [O, JJ? Is A closed? Prove your answers. 

8. Let EC R 2 be open and nonempty. Prove that there is no one-to-one, C1 function mapping E into R. 

9. Let EC R 2 be open, and Jet F: E - R have continuous second order derivatives in E. Denote by /" 

the matrix of second partial derivatives [ t: ~::]. 
a. Show that the set of points in Eat which /" has repeated eigenvalues is closed relati\"e to E. 

b. Suppose that/" is positive definite in E; that is, suppose that, for each z EE and h E R 2 - {O}, 
(/"(z)h) • h > 0. Show that, for any compact subset /( CE, there is a positive constant. £ such 
that 

(f"(z)h) · h ~ clhl2 

for aU :t EK and all h E R 2• 
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1. Does ak = 1
·
3·;~~--~·.·.-gz+i) converge or diverge? Prove your assertion. 

2. Let S c lR.3 be the "tin can without a lid". 

{(x, y, z) : x2 + y2 = 1, 0 < z < 1} U {(x, y, z) : x2 + y2 < 1, z = 0} 

Compute the flow ffs F · N dA "out" of the can if F = (x(y + z), -zy,-zy) 

3. Definition: A transformation of class C 1 F : IR3 
-+ IR3 is called volume pre

serving if for every cube C C IR3
, with faces parallel to the coordinate planes, 

volume (F(C)) = volume (C). 

(i) Show that F(x, y, z) = (x + y, z - 4, z2 
- y) is volume preserving. 

(ii) Show that if G : IR.3 
-+ JR.3 is volume preserving then the determinant of its 

derivative G' equals ±1, and G maps open sets into open sets. 

4. Let fn(x) = f~
2 

arctan2 (t/n) dt n = 1, 2, · · · 

(i) Show that E:= 1 f~(x) (sum of der~vatives) is uniformly convergent on (-1, 1). 

(ii} Show that g(x) = I::=l fn(x) is differentiable for all x. 

5. Let I; be a countable family of closed intervals whose interiors are pairwise 
disjoint and such that U/3 = [O, 1}. Show directly (without fancy integration 

theorems) that E;':1 II;I = 1. 

6. Give a counterexample to this statement: Every f : IR---+ IR with the property 
that f- 1 (K) is compact for any compact K is continuous. 

7. Let g : IR.2 
--+ 1R be a C 00 function with O E IR.2 a critical point. Suppose the 

matrix of second partials ( 0!
2

09xi (0)) has eigenvalues -2 and 0. Show that the 

origin is NOT a local minimum of g. 

8. Definition : A metric space is said to have property Z if every sequence with 

exactly one cluster point converges. (Recall that every neighborhood of a cluster 
point of {xn} contains infinitely many Xn). 

(i) Give an example of a metric space that has property Zand an example of a 
metric space that does not. 

{ii) What properties of metric spaces are implied by or equivalent to property Z? 
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Instructions: Answer all seven questions. Each of the seven questions is equally weighted. 

Notation: R denotes the set of all real numbers. 

I. State whether each of the following limit exists, and prove your assertions. 

(a) lim x
2
y3 (b) r x

2

y3 
(z,y)-(0,0) x 1 + y1 (z,y)~O,O) x1 + y6 

2. Suppose / : R -+ R is a uniformly continuous function on R. If 

1
...-+(1/I:) 

f,:(x)=k z J(t)dt for x ER and k = 1, 2, 3, ... , 

prove that the sequence {/I:} converges to / uniformly on R. 

3. Comp_ute the surface integral j ls (x2 + y2)dA, where Sis the boundary of the set {(x, y, z) E R 3
: ✓ x 2 + y2 S z S l}, -

and dA denotes the surface area element. 

4. Let ,r1 : R 2 -+ R and ,r2 : R 2 - R be the projection maps 

for (x,y) E R 2
, 

and let S be the horizontal strip S = {(x,y) E R 2 
: -1 Sy S I}. State whether each of the following assertions is 

TRUE or FALSE, and prove your assertions. 

(a) If Eis a dosed subset of R 2 such that EC S, then the image ,r1(E) must be a closed subset of R. 

(b) If Eis a closed subset of R 2 such that EC S, then the image 1r2(E) must be a closed subset of R. 

5. If/ is a continuous function on fO, I], prove that 

Jim [c1 - -t) I)" f(t 1 
)] = f 1 f(x) dx. 

tfl k=o lo 

6. Let n be a bounded, connected open set in Rn, and let/ be a continuous real-valued function on the closure of 0. Suppose 

that / is of class C 00 on the set n, and suppose that for each point p E n there is at least one index i E { I, 2, ... , n} 
such that 

£Pf 
ax~(p) < o. 

a 

If 

f(p) ~ 0 for every point p in the boundary of n, 

prove that 

f(p) ~ 0 for every point p in n. 

7. Let n be a convex open set in R 2
• Let f : n - R and g : n - R be functions of class coo I and assume that for each 

· point p E n we have 

Define T: 0 - R 2 by T(p) = (f(p),g(p)) for each point p En. Prove that the image T{O) is an open subset of R 2 , 

and that T is a one-to-one mapping from n onto T{O). 
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1. Consider the sequence of functions fk(x) := {sin(kx)}, k = 1, 2, . . . , and observe
that sin(kx) = 0 if x = mπ/k for all integers m. Given an arbitrary interval
[a, b], show that {fk} has no subsequence that converges uniformly on [a, b].

2.
(a) Given a sequence of functions fk defined on [0, 1], define what it means for

{fk} to be equicontinuous.

(b) Let G(x, y) be a continuous function on R2 and suppose for each positive
integer k, that gk is a continuous function defined on [0, 1] with the property
that |gk(y)|  1 for all y 2 [0, 1]. Now define

fk(x) :=

Z 1

0

gk(y)G(x, y) dy.

Prove that the sequence {fk} is equicontinuous on [0, 1].

3. Let Ω ⇢ Rn be an open connected set and let Ω
f

�! Ω be a C1 transformation
with the property that determinant of its Jacobian matrix, |Jf |, never vanishes.
That is, |Jf(x)| 6= 0 for each x 2 Ω. Assume also that f−1(K) is compact
whenever K ⇢ Ω is a compact set. Prove that f(Ω) = Ω.

4. Let G(x, y) be a continuous function defined on R2. Consider the function f
defined for each t > 0 by

f(t) :=

Z Z

x2+y2<t2

G(x, y)
p

t2 � x2 � y2
dx dy.

Prove that
lim

t→0+
f(t) = 0.

5. Let (X,d) be a compact metric space and let G be an arbitrary family of open
sets in X. Prove that there is a number λ > 0 with the property that if x, y 2 X
are points with d(x, y) < λ, then there exists an open set U 2 G such that both
x and y belong to U .

6. Let Γ := {(x, y, z) 2 R3 : exy = x, x2 + y2 + z2 = 10}. The Implicit Func-
tion theorem ensures that Γ is a curve in some neighborhood of the point

p = (e, 1
e
,
q

10 � e2 � 1
e2 ). That is, there is open interval I ⇢ R1 and a C1

mapping I
γ

�! Γ such that γ(0) = p. Find a unit vector v such that v = ± γ
0(0)

|γ0(0)| .

7. Suppose that a hill is described as {(x, y, z) 2 R3 : (x, y, f(x, y))} where
f(x, y) = x3 +x�4xy�2y2. Suppose that a climber is located at p = (1, 2, �14)
on the hill and wants to move from p to another location on the hill without
changing elevation. In which direction should the climber proceed from p? Ex-
press your answer in terms of a vector and completely justify your answer.
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8. Suppose g and fk (k = 1, 2, . . . ) are defined on (0,1), are Riemann integrable
on [t, T ] whenever 0 < t < T < 1, |fk|  g, fk ! f uniformly on every compact
subset of (0,1), and

Z

∞

0

g(x) dx < 1.

Prove that

lim
k→∞

Z

∞

0

fk(x) dx =

Z

∞

0

f(x) dx.



Tier 1 Analysis Examination

January 1999

1. Prove that the function

f(x) =

⇢

x + 2x2 sin(1/x) if x 6= 0

0 if x = 0

satisfies f 0(0) > 0, but that there is no open interval containing 0 on which f is
increasing.

2. Let F :R2 ! R2 be a mapping defined by F (x, y) = (u, v) where

u = u(x, y) = x cos(y)

v = v(x, y) = y cos(x).

Note that F (�π/3,π/3) = (�π/6,π/6).
(i) Show that there exist neighborhoods U of (�π/3,π/3), V of (�π/6,π/6), and

a differentiable function G:V ! U such that F restricted to U is one-to-one,
F (U) = V and G(F (x, y)) = (x, y) for every (x, y) 2 U .

(ii) Let U, V and G be as in part (i), and write

G(u, v) = (x, y), with x = x(u, v), y = y(u, v).

Find
∂x

∂u
(�π/6,π/6) and

∂y

∂v
(�π/6,π/6).

3. Beginning with a1 � 2, define a sequence recursively by an+1 =
p

2 + an. Show
that the sequence is monotone and compute its limit.

4. Let f :K ! Rn be a one-to-one continuous mapping, where K ⇢ Rn is a compact
set. Thus, the mapping f�1 is defined on f(K). Prove that f�1 is continuous.

5. Let S denote the 2-dimensional surface in R3 defined by F :D ! R3 where
D = {(x, y) : x2 + y2  4} and F (x, y) = (x, y, 6 � (x2 + y2)). Let ω be the
differential 1-form in R3 defined by ω = yz2 dx+xz dy+x2y2 dz. After choosing
an orientation of S, evaluate the integral

Z

S

z dx ^ dy + dω.

6. Let f :U ! R1 where U := (0, 1) ⇥ (0, 1). Thus, f = f(x, y) is a function of two
variables. Assume for each fixed x 2 (0, 1), that f(x, ·) is a continuous function
of y. Let F denote the countable family of functions f(·, r) where r 2 (0, 1)
is a rational number. Thus, for each rational number r 2 (0, 1), f(·, r) is a
function of x. Assume that the family F is equicontinuous. Now prove that f is
a continuous function of x and y; that is, prove that f :U ! R1 is a continuous
function.
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7. Let f1 � f2 � f3 � . . . be a sequence of real-valued continuous functions defined
on the closed unit ball B ⇢ Rn such that lim

k!1

fk(x) = 0 for each x 2 B. Prove

that fk ! 0 uniformly on B. This is a special case of Dini’s theorem. You may
not appeal to Dini’s theorem to answer the problem.

8. Let f :R1 ! R1 be a nonnegative function satisfying the Lipschitz condition
|f(x1)�f(x2)|  K|x1 �x2| for all x1, x2 2 R1 and where K > 0. Suppose that

Z

1

0

f(x) dx < 1.

Prove that
lim

x!1

f(x) = 0.

9. Let F be a nonnegative, continuous real-valued function defined on the infinite
strip {(x, y) : 0  x  1, y 2 R1} with the property that F (x, y)  4 for all
(x, y) 2 [0, 1]⇥ [0, 2]. Let fn be a continuous piecewise-linear function from [0, 1]
to R1 such that fn(0) = 0, fn is linear on each interval of the form [ i

n
, i+1

n
],

i = 0, 1, . . . , n � 1, and for x 2 ( i
n
, i+1

n
), f 0

n(x) = F ( i
n
, fn( i

n
)). Prove that there

is a subsequence {fnk
} of {fn} such that fnk

converges uniformly to a function
f on [0, 1/2].
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There is no unusual notation in this exam: R stands for the real line, Rn for n-dimensional 
Euclidean space, and llxll for the Euclidean norm of a vector x E Rn {distance from x to 0). You 
must do eight of the following problems. Please indicate which of the nine problems should not 

be graded. 

1. Let f: (0, oo) ➔ R be a bounded continuous function. Show that there exists c E {O, oo) such 

that /
0

00 
e-:i: f(x) dx = J(c). 

2. Let f : Rn ➔ Rn be a a continuous function such that llf(x)II < llxll for every point x =I= 0. 
Fix a point x 1 E Rn, and define recursively Xn+I = f(xn) for n > 1. Show that the sequence 

(xn)~=l converges to 0. _ 
3. Let / : Rn ➔ Rn be a mapping of class C 1 such that the Jacobian determinant J1(x) is 

different from zero for a.11 points x. Assume in addition that {x: 11/(x)II < M} is a bounded 
set for every M > O. Show that / is onto. That is, show that for every y E Rn there exists at 
least one point x E Rn such that f(x} = y. 

4. Consider the surface S surface in R 3 consisting of all points of coordinates (x, y, z) such that 

x 2 + y 2 + z2 = 1 and x ~ ½, and choose an orientation for S. Calculate the integral fs w, 

where the 2-form w is defined by 

w(x, y, z} = xdx Ady+ ydy I\ dz+ zdz A dx 

for ( x, y, z) E R 3 • 

5. Denote by D = {(x, y): x > O} the right half:...plane in R2
, and let / be a function of class C 1 

defined on D. Assume that 

8/ 1 8/ 
-. (x y) < -. and -(x y) <1 
ax ' - vx 8y ' -

for all {x, y) ED. Show that/ is uniformly continuous on D. 

6. Assume that the function f: R ➔ R is differentiable at every point, and (an)~=l and {bn}ri'=l 
are two sequences converging to zero with an < bn for all n. Do the quotients 

J(bn} - /(an) 

bn -an 

necessarily converge to /'(O}? {Prove if yes, give a counterexample if no.) 

7. Let / : [O, 1) x [O, 1) ➔ R be a continuous function, and define g : [O, 1) ➔ R by g(x) = 
IDaJCye[o,1J f(x, y). Show that g is continuous. 

8. Let {an)~=I be a sequence of real numbers, and define Sn= I:;=l ak. Assume that 
illlln ➔ oo ...fiian = 1 and prove that limn ➔ oo sn/ ,In = 2. 

9. Consider a complete metric space (X, d), and a sequence F 1 2 F2 ·=> • • • of nonempty, closed 

subsets of X. Assume that for each n, the set Fn can be covered by a finite number of balls 

of radius 1/n. For ea.ch n, select a point Xn E Fn. Prove that the sequence (xn)~=l has a 
convergent subsequence. 
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1. Let Ω be an open set in R
2. Let u be a real-valued function on Ω. Suppose that for

each point a ∈ Ω the partial derivatives ux(a) and uy(a) exist and are equal to zero.

(i) Prove that u is locally constant, i.e. for every point in Ω there is a neighborhood

on which u is a constant function.

(ii) Prove that if Ω is connected, then u is a constant function on Ω .

2. Let S be the surface in the Euclidean space R
3 given by the equation x2 + y2 − z2 =

1 , 0 ≤ z ≤ 1, oriented so that the normal vector points away from the z-axis. Find
∫

S

F · dS , where F is the vector field defined by

F(x, y, z) = (−xy2 + z5, −x2y, (x2 + y2)z) .

3. Let f(x) = ex − cos x for x ∈ R .

(i) Show that on a neighborhood around x = 0, f has an inverse function g with

g(0) = 0 .

(ii) Compute g′′(0) .

(iii) Show that there exists a > 0 such that f : (−a,∞) → (f(−a),∞) is a homeo-

morphism.

4. For positive numbers k1, k2, k3, . . . we define [k1] = 1
k1

, [k1, k2] = 1
k1+[k2]

,

[k1, k2, k3] = 1
k1+[k2,k3]

, and inductively, [k1, . . . , kn+1] = 1
k1+[k2,...,kn+1]

. Prove

that lim
n→∞

[k1, . . . , kn] exists if kn ≥ 2 for all n.

5. Two circular holes of radius 1 in are drilled from the centers of two faces of a solid

cube of volume 64 in3 . Compute the volume of the remaining solid.

6. Let ϕ1, ϕ2, ϕ3, . . . be non-negative continuous functions on [−1, 1] such that

(i)
∫ 1

−1
ϕk(t)dt = 1 for k = 1, 2, 3, . . . ;

(ii) for every δ ∈ (0, 1) lim
k→∞

ϕk = 0 uniformly on [−1,−δ] ∪ [δ, 1] .

1



Prove that for every continuous function f : [−1, 1] → R we have

lim
k→∞

∫ 1

−1

f(t)ϕk(t)dt = f(0) .

7. Suppose lim
n→∞

an = a , lim
n→∞

bn = b , and let

cn =
a1bn + a2bn−1 + · · ·+ anb1

n
.

Prove that lim
n→∞

cn = ab .

8. Let f : R → R be a uniformly continuous function on R. Prove that there exist

positive constants A and B such that

|f(x)| ≤ A|x| + B for all x ∈ R .

9. Let f : R → R be a differentiable function. Suppose lim
x→∞

f(x)
x = 1. Prove that there

exists a sequence {xn}
∞

n=1 such that lim
n→∞

xn = ∞ and lim
n→∞

f ′(xn) = 1 .

2
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It is important to justify your answers. A correct answer, without justification (for 

example to #3 or #4) will receive no credit. 

1. Evaluate the limit 

lim {-l-+_l_+ ... +-1-} 
n ➔ oo n + I n + 2 n + n 

by interpreting it as a definite integral. 

2. Consider the I-form F defined on IR2 \{0} by 

F = _x_dy_-_y_d_x 

x2 + y2 

(a) Evaluate J~c F, where C is the unit square, [-1, I] x [-1, I], in IR2
, positively 

oriented. 

(b) Is F exact on IR.2 \{0}? 

3. Suppose that {fn}~=I is a sequence of continuous, real-valued fonctions on [O, I] that 

converges uniformly to a function f on [O, l]. Must f have a zero in [O, I] (i.e. f(x) = O 

for some x E [O, I]) if each fn has a zero in [O, I]"? 

4 D tl • '-'oo cos(log n) . l' ? . oes 1e senes L-m=I n · converge or c 1verge. 

5. Let J be a continuous function on [0, I]. Show that 

fo
1 

J(:r) sin(n:r) d:r ➔ 0 

as n ➔ CXJ. 

6. Is the function f(:r) = -Jx uniformly continuous on [0,CXJ)? 

7. Consider the function f = IR.2 ➔ JR defined by 

{ 

xy 

J(:r, y) = [/+y2 (x, y) f (0, 0) 

(x,y) = (0,0) 

Show that !! exists everywhere on IR2 but that ~t is not continuous everywhere. 



S. Let 

{ 
f : [O, 2rr] -+ JR: f is continuous } 

X-
and If( x) I ~ 1 for all x E [O, 2rr} 

Put a metric d on X by defining 

(You may assume that d actually does define a metric on X.) 

Is (X, d) compact? 

9. Let JR.2 xz denote the set of all real 2 x 2 matrices. Make it a metric space by identifying 

JR2
X

2 with the 4-dimensional Euclidean space JR4 via 

(: ~) ~ ( a, b, c, d) 

Let X C JR2 x 2 denote the subset of all invertible 2 x 2 matrices. Is X connected? 

10. Consider· the two equations 

F ( . ) = x2-y2 5 - 3 - 0 
1 x, y, u, v _ e u v -

D (·· ) - u2-v2_,.2 2 - 0 r2 .i:, y, u, tJ = e ,., - y -

Prove that there exists a neighborhood, U, of ( 1, 1) E IR2 and functions u( x, y) and 

v(x,y) on U with tt(l, 1) = v(l, 1) = 1 such that 

F1 (;i:,y,u(:t,y),v(:i:,y)) = F2 (x,y,u(x,y),v(x,y)) = 0 \/x,y EU. 

Find 8u(x,y) I . 
ax (1,1) 

11. Letfn: JR-+ JR(n = 1,2, ... )beanequicontinuoussequenceoffunctions. Iff
11
(x)-+ O 

as n -+ ex> for each :i: E JR, does it follow that the convergence is uniform on IR? 
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l curl F · N dA , 

where S is that part of the surface y = x 2 + z2 in IR3 for which 0 :S y :s; 1, N 

is the unit normal to S pointing toward the y-axis, dA is the area element, and 

F: JR3 ➔ IR3 is the mapping . 

) x2+z2( ) F(x,y,z = e z,y,-x . 

2. Suppose that f: (0, oo) ➔ IR 1 is a nonnegative, uniformly continuous function 

and that 

1= f(x) dx < oo. 

Prove that lim f(x) = 0. 
x-;= 

3. Let f : IR2 ➔ IR 1 be continuous, and define 

g(y) = 11 

f(x, y)dx . 

Assume that ~~ is continuous on IR 2
, and compute g'(y). Prove your result. 

4. The function 
3
\x4 + x 2 y2 

- x 3 -y3 
- xy3 has critical points at (24, 0) and (0, 0). 

By a careful analysis, determine whether each point is a local maximum, local 

minimum or a point which is neither a local maximum nor a local minimum. 

5. Let f: B ➔ IR 1 be a uniformly continuous function, where B C !Rn is an open 

ball. Prove that there is a uniformly continuous function F defined on the 

closure of B such that F restricted to B is equal to f. 
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6. Let g: JR2 -t JR2 be defined for points x = (x, y) by 

(a) Give the definition of the differential of g at x 0 , denoted by dg(x0 ). 

(b) Determine those points x 0 E JR2 where dg(x0 ) exists and where it does not 

exist. In both cases, justify your answer. Be sure to analyze the case x 0 = 0. 
( c) Find those points x 0 E JR2 where g locally has a differentiable inverse and 

where it does not. In both cases, justify your answer. 

7. Let n be an integer greater than 1, and consider the following statement: If 

w is a differential 2-form on ]Rn with the property that w I\ >. = 0 for every 

differential 1-form >., then w must be the zero form. For what n is the above 

statement true? For what n is it false? Prove your answers. 

8. (a) Let F: JR3 -t JR2 be defined by 

F(x, y, z) = (z2 + xy - 1, z2 + x2 
- y

2 
- 2) 

and observe that F(a) = (0,0) where a= (-1,0,1). Prove that there exist an 

open interval (a, b), a C 1 curve of the form ,(t) = (J(t), g(t), h(t)) with a< t < b, 
and an open set U C JR3 containing a such that 

(b) Compute r'(to) = (!'(to), g'(to), h'(to)) where "((to)= a. 

9. Let f: [0, 1] -t lR1 be defined by 

) { 
fl. if k+1i < x S: ¼, k = 1, 2, ... 

J(x = 
0 for X = 0. 

(a) For any given E > 0, show how to construct a partition P of the interval 

[O, 1] such that 

U(P, f) - L(P, f) < t:. 

(U(P, f) and L(P, f) are the upper and lower Riemann sums for f over the 
partition P). 

(b) Find an expression for 

and justify your answer. 



TIER I ANALYSIS EXAMINATION 
August 24, 2001 

NOTATION: For x E ]Rn, let !xi denote the Euclidean norm of x (i.e. the Euclidean 

distance of x from the origin OE JRn). 

1. Let f : JR2 ---+ JR be a function such that 

~(o) = of (O) = o. 
OX1 OX2 

(a) Does it follow that f differentiable at x = O? Explain. 

(b) Prove or give a counterexample that f is continuous at x = 0. 

2. Let {fn}~1 be a sequence of real valued, differentiable functions on the real line 

such that 

(a) fn(x)---+ 0 for each x E [O, 1) 
(b) lf~(x)I:::; 1 for all x E [0, 1] and all n · 1, 2, .... 

Show that the sequence {fn}~=l converges uniformly on [0, 1] to 0. 

3. Let E C ]Rn be nonempty. For x E ]Rn define 

D(x) - inf{lx - yj : y EE} . 

(a) Show that Dis a continuous function on ]Rn (under the usual topology on JR and 
JRn). 

(b) Show that {x E ]Rn: D(x) = lxl} is closed in lRn. 

4. Let w be a smooth 1-form on JR2 that satisfies 

w I\ dx = -d(x2
) I\ dy 

and 

w I\ dy = dx I\ d(y2
). 

Let 1 : [0, 1] ---+ JR2 be the differentiable path that joins (0, 0) to (-1, 4) given by 

,(t) = (- sin it, 4t3
) fort E [0, 1). Compute i w. 

5. a) Prove or provide a counterexample to the following statement: If f: JR---+ JR is a 
continuous function, then there exists a real number L such that 

lim J f(x) dx = L 
£--+O E.$lxl.SI X 

b) What is your answer to part a) if there exist positive constants C and a such that 

for all x =/. y E JR 

lf(x) - f(y)I < Clx - Yla ? 

Again, prove that the limit exists or give a counterexmple. 



6. Suppose that for each j = 1, 2, ... , gi : [O, 1)-+ JR is a continuous function such that 
1 

J lgi(x)ldx =:::; 1000. Suppose h : [0, 1] -+ JR is a continuous function. Suppose that 
0 

for each n = 0, l, 2, ... , 

1 1 

Jim J xngj(x)dx = J xnh(x)dx . 
J->00 

0 0 

Let f : [O, 1) -+ JR be a continuous function. Prove that 

1 1 

~im jf(x)gi(x)dx = J f(x)h(x)dx. 
J->00 

0 0 

7. Let f = (!1, h): JR2 -+ lR2 be defined by fi(x1, x2) = X1 and for X2 2: 0 

{ 

x2 - x2 if x2 2: xf 

h(x1, x2) = x! - :2, if xf 2: x2 > 0 
X1 
0 if X2 = 0 

If x2 < 0, define f2 by h(x1, x2) = - h(x1, -x2)- This function f is differentiable at 

0, and you may use this fact without proving it, whenever needed, below. 

(a) Show that f is differentiable (at all points in JR.2). Show that f'(O) = identity. 

(b) Prove that J is not one-to-one in any small neighborhood of the origin 0. 
( c) State the inverse function theorem. In view of part b), the theorem does not 

apply to f near the origin x = 0. EXPLAIN. Explicitly what condition of the 

theorem is not met by the function f ( at 0)? 

8. Let f : JR.n -+ Rn be continuously differentiable. 

(a) Assume that the Jacobian matrix (ofdoxi) has rank n everywhere. Prove that 
f (Rn) is open. 

(b) Suppose that J- 1(K) is compact whenever K C JR.n is compact. Prove that 

f (Rn) is closed. 

(c) Assume that the Jacobian matrix (ofdoxi) has rank n everywhere, and that 
1-1(K) is compact whenever KC JR.n is compact. Prove that f(JR.n) = JR.n 

9. Define the function g : [O, oo) -+ JR. as follows: 
X 

( ) J sin
3 

ud 
gx= --u. 

u 
0 

Note that this integral is well defined, since I sin ul :::; u for all u > 0. Prove that 
lim g(x) exists in JR.. (You don't have to find the limit.) 

X->00 



Name ID number

Analysis Qualifying Exam, Spring 2002, Indiana University

Instructions. There are nine problems, each of equal value. Show your work,

justifying all steps by direct calculation or by reference to an appropriate theorem.

Good luck!

1. Let a0, a1, ..., an be a set of real numbers satisfying

a0 +
a1

2
+ · · · +

an

n + 1
= 0.

Prove that the polynomial Pn(x) = a0 + a1x + · · · + anxn has at least one root in

(0, 1).

2. Let fn : R → R be differentiable, for all n, with derivative uniformly bounded

(in absolute value) by 1. Further assume that limn→∞ fn(x) = g(x) exists for all

x ∈ R. Prove that g : R → R is continuous.

3. Let f : R2 → R have the property that for every (x, y) ∈ R2, there exists

some rectangular interval [a, b] × [c, d], a < x < b, c < y < d, on which f is

Riemann integrable. Show that f is Riemann integrable on any rectangular interval

[e, f ] × [g, h].

4. Show that the sequence

1/2, (1/2)1/2, ((1/2)1/2)1/2, (((1/2)1/2)1/2)1/2, . . .

converges to a limit L, and determine this limit.

5. Let f , g : R2 → R be functions with continuous first derivative such that the

map F : (x, y) → (f, g) has Jacobian determinant

det

(

fx fy

gx gy

)

identically equal to one. Show that F is open, i.e., it takes open sets to open sets.

If also f is linear , i.e. fx and fy are constant, show that F is one-to-one.

6. Let f : (0, 1] → R have continuous first derivative, with f(1) = 1 and

|f ′(x)| ≤ x−1/2 if |f(x)| ≤ 3. Prove that limx→0+ f(x) exists.



2

7. Letting S = {(x, y, z) : x2 + y2 + z2 = 1} denote the unit sphere in R3,

evaluate the surface integral

F = −

∫ ∫

S

P (x, y, z)ν dA,

where ν(x, y, z) = (x, y, z) denotes the outward normal to S, dA the standard

surface element, and:

(a) P (x, y, z) = P0, P0 a constant.

(b) P (x, y, z) = Gz, G a constant.

Remark (not needed for solution): F corresponds to the total buoyant force

exerted on the unit ball by an external, ideal fluid with pressure field P .

8. Compute the integral

∫

C

y(z + 1)dx + xzdy + xydz,

where C : x = cos θ, y = sin θ, z = sin3
θ + cos3 θ, 0 ≤ θ ≤ 2π.

9. Let X and Y be metric spaces and f : X → Y . If limp→x f(p) exists for all

x ∈ X, show that g(x) = limp→x f(p) is continuous on X.



Tier 1 Analysis Examination – August, 2002

1. In the classical false position method to find roots of f(x) = 0, one begins with two approximations
x0, x1 and generates a sequence of (hopefully) better approximations via

xn+1 = xn − f(xn)
xn − x0

f(xn) − f(x0)
for n = 1, 2, . . .

Consider the following sketch in which the function f(x) is to be increasing and convex:

Fig. 1.2
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The sequence {xn} is constructed as follows. We begin with the two approximations (x0, f(x0)) and
(x1, f(x1)) = (0, f(0)) The chord is drawn between these two points; the point at which this chord crosses
the x–axis is taken to be the next approximation x2. One then draws the chord between the two points
(x0, f(x0)) and (x2, f(x2)). The next approximation x3 is that point where this chord crosses the axis, as
shown. For f strictly increasing and convex and for initial approximations x0 > 0, x1 = 0 with f(x0) > 0,
f(x1) < 0, prove rigorously that this sequence must converge to the unique solution of f(x) = 0 over [x1, x0].

2. (a) Show that it is possible to solve the equations

xu2 + yzv + x2z − 3 = 0

xyv3 + 2zu − u2v2
− 2 = 0

for (u, v) in terms of (x, y, z) in a neighborhood of (1, 1, 1, 1, 1).

(b) Given that the inverse of the matrix

(

2 1
0 1

)

is

(

1
2 −

1
2

0 1

)

find ∂u
∂x at (1, 1, 1).

3. Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if
it is closed.

4. Suppose f :K → R
1 is a continuous function defined on a compact set K with the property that f(x) > 0

for all x ∈ K. Show that there exists a number c > 0 such that f(x) ≥ c for all x ∈ K.

5. Let f(x) be a continuous function on [0, 1] which satisfies

∫ 1

0

xnf(x) dx = 0 for all n = 0, 1, . . .



Prove that f(x) = 0 for all x ∈ [0, 1].

6. Show that the Riemann integral
∫

∞

0
sin x

x dx exists.

7. Let

G(x, y) =

{

x(1 − y) if 0 ≤ x ≤ y ≤ 1
y(1 − x) if 0 ≤ y ≤ x ≤ 1

Let {fn(x)} be a uniformly bounded sequence of continuous functions on [0, 1] and consider the sequence

un(x) =

∫ 1

0

G(x, y)fn(y) dy.

Show that the sequence {un(x)} contains a uniformly convergent subsequence on [0, 1].

8. Let f be a real–valued function defined on an open set U ⊂ R
2 whose partial derivatives exist everywhere

on U and are bounded. Show that f is continuous on U .

9. For x ∈ R
3 consider spherical coordinates x = rω where |ω| = 1 and |x| = r. Let ωk be the k’th component

of ω for any k = 1, 2, 3. Use the divergence theorem to evaluate the surface integral

∫

|ω|=1

ωk dS.

10. Let {fk} be a sequence of continuous functions defined on [a, b]. Show that if {fk} converges uniformly
on (a, b), then it also converges uniformly on [a, b].

11. Let f : Rn → R
k be a continuous mapping. Show that f(S) is bounded in R

k if S is a bounded set in R
n.



Tier 1 Analysis Exam

January 2003

1. Consider a function f : R → R. Which of the following statements is equivalent to

the continuity of f at 0? (Provide justification for each of your answers.)

a) For every ε ≥ 0 there exists δ > 0 such that |x| < δ implies |f(x) − f(0)| ≤ ε.

b) For every ε > 0 there exists δ ≥ 0 such that |x| < δ implies |f(x) − f(0)| ≤ ε.

c) For every ε > 0 there exists δ > 0 such that |x| ≤ δ implies |f(x) − f(0)| ≤ ε.

2. Consider a uniformly continuous real-valued function f defined on the interval [0, 1).

Show that lim
t→1−

f(t) exists. Is a similar statement true if [0, 1) is replaced by [0,∞)?

3. Let f be a real-valued continuous function on [0, 1] such that f(0) = f(1). Show that

there exists x ∈ [0, 1/2] such that f(x) = f(x + 1/2).

4. If f is differentiable on [0, 1] with continuous derivative f ′, show that

∫ 1

0

|f(x)|dx ≤ max

{
∣

∣

∣

∣

∫ 1

0

f(x)dx

∣

∣

∣

∣

,

∫ 1

0

|f ′(x)|dx

}

5. Let f : R
2
→ R be continuous and with compact support, i.e. there exists R > 0

such that f(x, y) = 0 if x2 + y2 ≥ R2.

a) Show that the integral

g(u, v) =

∫ ∫

R
2

f(x, y)
√

(x − u)2 + (y − v)2
dxdy

converges for all (u, v) ∈ R
2, and show that g(u, v) is continuous in (u, v).

b) Show that, if in addition f has continuous first order partial derivatives, then so

does g and

∂g

∂u
(u, v) =

∫ ∫

R
2

∂f
∂x (x, y)

√

(x − u)2 + (y − v)2
dxdy .

1



6. Show that for any two functions f , g which have continuous second order partial

derivatives, defined in a neighborhood of the sphere S = {(x, y, z) ∈ R
3 : x2+y2+z2 =

1} in R
3, one has

∫

S

(∇f ×∇g) · dS = 0

where ∇f , ∇g are the gradient of f , g respectively.

7. Show that if {xn} is a bounded sequence of real numbers such that 2xn ≤ xn+1 +xn−1

for all n, then lim
n→∞

(xn+1 − xn) = 0.

8. For a non-empty set X , let R
X be the set of all maps from X to R. For f, g ∈ R

X ,

define

d(f, g) = sup
x∈X

|f(x) − g(x)|

1 + |f(x) − g(x)|
.

a) Show that (RX , d) is a metric space.

b) Show that fn → f in (RX , d) if and only if fn converges uniformly to f .

9. Show that if f : [0, 1] → R is continuous, and
1
∫

0

f(x)x2ndx = 0, n = 0, 1, 2, · · · then

f(x) = 0 for all x ∈ [0, 1].

10. a) Let f : R
n
→ R be a differentiable function. Show that for any x, y ∈ R

n, there

exists z ∈ R
n such that

f(x) − f(y) = Df(z) · (x − y)

where Df(z) denotes the derivative matrix of f (in this case it is the same as the

gradient of f) at z, and “·” denotes the usual dot product in R
n.

b) Let f : R
n
→ R

n be a differentiable map. Show that if f has the property that

||Df(z) − I|| < 1
2n for all z ∈ R

n, where I is the n × n identity matrix, then f is

a diffeomorphism, i.e. f is one-to-one, onto and f−1 is also differentiable. ( For a

matrix A = (aij), ||A|| = (
∑

i,j

a2
ij)

1/2. )

2



Tier I exam in analysis - August 2003 

Answer all the problems. Justify your answers. 

1. Let f ( x) be a function that is continuous in [-1, 1], differentiable in (-1, 1), and 

satisfies f(~l) == -1r/2, f(l) = 1r/2, f'(x) ~ ✓ i~x 2 in (-1, 1). Prove that f(x) = 
arcsin(x) in [-1, I]. 

2. Determine the values of x E R such that the series 

00 1 

J; nJln(n + x2 ) 

converges. 

3. Recall that a square matrix Jvf is called orthogonal if its rows form an orthonormal 

set. The set of all orthogonal matrices will be denoted by 0. (Note that an 

orthogonal matrix necessarily satisfies the condition J\1 Mt = I where 1'1
1 denotes 

the transpose of J\1.) 

Let Mo= (: ! ) 
be a given element of O where a, b, c and d are real numbers. 

(i). Prove that, except for 4 special matrices 1\,10 , there always exists a number 

J > 0 and three functions f, g, h, continuously differentiable for x E (a - S, a+ S), 

such that 

( g(x) {~:~ ) E 0, 

for all x E (a - S, a+ 5) with f(a) = b, g(a) = c and h(a) = d. 

(ii). What are the four exceptional matrices of part (i)? 

4. A vector field F: R 2 
- R 2 is said to be conservative in an open set D if the line 

integral fc F · ds = 0 for every closed curve C C D. Find all numbers a and b 

such that the vector field 

is conservative in 

F(x, y) = ( x + ay, bx+ y) 
xz + yz · x2 + yz 

1 1 
D = { ( x' y) : 9 < xz + yz < 4}. 

5. Consider the triangle with vertices (3, 0) (5, 0) and (5, 1) in the (x, y)-plane. 

Revolve it around the y-axis in (x, y, z )-space R3 to sweep out a "triangular 

torus" T, evaluate the surface integral 

h V · ii dS. 

Here v: R 3 
- R 3 is the vector field iJ(x, y, z) = (-y, x, z), ii is the outward 

unit normal field on T , and dS is the usual surface-area element on T . 



6. Suppose f: R 2 
- Risa c= function that has a critical point at (0, 0). Suppose 

that f(O, 0) = 0 and that all the first and second order partial derivatives of f 

vanish at (0, 0). Also, assume that not all third order partial derivatives vanish 

at (0, 0). Show that f can have neither a local max nor a local min at the critical 

point (0, 0). 

7. Recall that a function g: [a, bJ - R is said to be Lipschitz if there is a constant K 
such that lg(x) -g(y)I ::; K Ix - YI for all x, y E [a, bJ. 

Assume that f is a bounded Riemaµn integrable function on [a, bJ. Prove that for 

each E. > 0, there exists a Lipschitz function g such that 

1b lf(x) - g(x)I dx < £. 

8. (a) If B c R" is a bounded set and f: B --+ R is uniformly continuous, show 

that f(B) is bounded. 

(b) Give an example to show that the conclusion of part (a) is not necessarily 

true if f is merely continuous on B. 



TIER 1 Analysis Exam January 2004

Instruction: Solve as many of these problems as you can. Be sure to justify all
your answers.

1. Let {pn}
∞

n=0 and {qn}
∞

n=0 be strictly increasing, integer valued, sequences.
Show that if for each integer n ≥ 1,

pn · qn−1 − pn−1 · qn = 1,

then the sequence of quotients pn/qn converges.

2. Consider the following system of equations

x · ey = u,

y · ex = v.

(a) Show that there exists an ǫ > 0 such that given any u and v with |u| < ǫ

and |v| < ǫ, the above system has a unique solution (x, y) ∈ R
2.

(b) Exhibit a pair (u, v) ∈ R
2 such that there exist two distinct solutions

to this system. Justify your answer.

3. Let f : R → R be a differentiable function such that f ′(a) < f ′(b) for some
a < b. Prove that for any z ∈ (f ′(a), f ′(b)), there is a c ∈ (a, b) such that
f ′(c) = z. Note: The derivative function f ′ may not be continuous.

4. Let f : R
4 → R

4 be continuously differentiable. Let Df(x) denote the
differential (or derivative) of f at the point x ∈ R

4. Prove or provide
a counter-example: The set of points x where Df(x) has a null space of
dimension 2 or greater is closed in R

4.

5. Let C([0, 1]) denote the collection of continuous real valued functions on
[0, 1]. Define Φ : C([0, 1]) → C([0, 1]) by

[Φ(f)](t) = 1 +

t
∫

0

s2e−f(s)ds t ∈ [0, 1]

for f ∈ C([0, 1]). Define f0 ∈ C([0, 1]) by f0 ≡ 1 (i.e. the function of
constant value 1). Let fn = Φ(fn−1) for n = 1, 2, . . . .
(a) Prove that 1 ≤ fn(t) ≤ 1 + 1/3 for all t ∈ [0, 1] and n = 1, 2, . . ..
(b) Prove that

|fn+1(x) − fn(x)| <
1

3
sup

t∈[0,1]

|fn(t) − fn−1(t)|

for all x ∈ [0, 1] and for n = 1, 2, . . . . Hint: Show that |e−(x+δ) −

e−x| < δ for x > 0 and δ0.
(c) Show that the sequence of functions {fn} converges uniformly to some

function f ∈ C([0, 1]). Be sure to indicate any theorems that you use.

1
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6. Let I be a closed interval in R, and let f be a differentiable real valued
function on I, with f(I) ⊂ I. Suppose |f ′(t)| < 3/4 for all t ∈ I. Let x0 be
any point in I and define a sequence xn by xn+1 = f(xn) for every n > 0.
Show that there exists x ∈ I with f(x) = x and limxn = x.

7. Let

f(x, y) =

⎧

⎨

⎩

xy

x2 + y
if x2 + y ̸= 0,

0 if x2 + y = 0.

(a) Show that f has a directional derivative (in every direction) at (0, 0),
and show that f is not continuous at (0, 0).

(b) Prove or provide a counterexample: If P1 : R
2 → R

2 and P2 : R
2 →

R
2 are any two functions such that P1(0, 0) = (0, 0) = P2(0, 0), and

such that f ◦Pi is differentiable at (0, 0), with nonvanishing derivative
at (0, 0) for i = 1, 2, then f ◦ (P1 + P2) is differentiable at (0, 0).

8. Let B = {(x, y, z) ∈ R
3 | x2 + y2 + z2 ≤ 1} be the unit ball. Let v =

(v1, v2, v3) be a smooth vector field on B, which vanishes on the boundary
∂B of B and satisfies

div v(x, y, z) =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
= 0, ∀(x, y, z) ∈ B.

Prove that
∫

B

xnv1(x, y, z)dxdydz = 0, ∀n = 0, 1, 2, · · · , .

9. Suppose that f : [0, 1] → R is a continuous function on [0, 1] with

1
∫

0

f(x)dx =

1
∫

0

f(x)(xn + xn+2)dx

for all n = 0, 1, 2, . . . . Show that f ≡ 0.

10. Suppose that f : [0, 1] → R has a continuous second derivative, f(0) =
f(1) = 0, and f(x) > 0 for all x ∈ (0, 1). Prove that

∫ 1

0

∣

∣

∣

∣

f ′′(x)

f(x)

∣

∣

∣

∣

dx > 4.



Tier I Analysis Exam-August 2004

1. (A) Suppose A and B are nonempty, disjoint subsets of R
n such

that A is compact and B is closed. Prove that there exists a pair of
points a ∈ A and b ∈ B such that

∀x ∈ A, ∀y ∈ B, ∥x − y∥ ≥ ∥a − b∥ .

Prove this fact from basic principles and results; do not simply cite
a similar or more general theorem. Here and in what follows, ∥.∥
denotes the usual Euclidean norm: for x = (x1, x2, . . . , xn) ∈ R

n,
∥x∥ = (x2

1 + x2
2 + · · ·+ x2

n)1/2.

(B) Suppose that in problem (A) above, the assumption that the set
A is compact is replaced by the assumption that A is closed. Does the
result still hold? Justify your answer with a proof or counterexample.

2. (A) Prove the following classic result of Cauchy: Suppose r(1), r(2),
r(3), . . . is a monotonically decreasing sequence of positive numbers.

Then
∑∞

k=1 r(k) < ∞ if and only if
∑∞

n=1 2nr(2n) < ∞.

(B) Use the result in part (A) to prove the following theorem: Sup-

pose a1, a2, a3, . . . is a monotonically decreasing sequence of positive

numbers such that
∑∞

n=1 an = ∞. For each n ≥ 1, define the positive

number cn = min{an, 1/n}. Then
∑∞

n=1 cn = ∞.

3. Suppose g : [0,∞) → [0, 1] is a continuous, monotonically in-
creasing function such that g(0) = 0 and limx→∞ g(x) = 1.

Suppose that for each n = 1, 2, 3, . . . , fn : [0,∞) → [0, 1] is a mono-
tonically increasing (but not necessarily continuous) function. Suppose
that for all x ∈ [0,∞), limn→∞ fn(x) = g(x). Prove that fn → g uni-
formly on [0,∞) as n → ∞.

1
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4. Let x ∈ R
3 and let f(x) ∈ C1(R3). Further let n = x/∥x∥ for

x ̸= 0. Show that the surface integral

I ≡

∫

∥x∥=1

f(x) dSx

can be expressed in the form of a volume integral

I =

∫

∥x∥<1

(

2

∥x∥
f(x) + n ·∇f(x)

)

dx .

Hint: Write the integrand in I as n · (nf).

5. Let x0 ∈ R and consider the sequence defined by

xn+1 = cos(xn) (n = 0, 1, . . .)

Prove that {xn} converges for arbitrary x0.

6. Let α > 0 and consider the integral

J
α

=

∫ ∞

0

e−x

1 + αx
dx .

Show that there is a constant c such that

α1/2J
α
≤ c .

7. Consider the infinite series
∞

∑

n=1

Xn(x)Tn(t)

where (x, t) varies over a rectangle Ω = [a, b] × [0, τ ] in R
2. Assume

that

(i) The series
∑∞

n=1 Xn(x) converges uniformly with respect to x ∈
[a, b];

(ii) There exists a positive constant c such that |Tn(t)| ≤ c for every
positive integer n and every t ∈ [0, τ ];

(iii) For every t such that t ∈ [0, τ ], T1(t) ≤ T2(t) ≤ T3(t) ≤ . . .

Prove that
∑∞

n=1 Xn(x)Tn(t) converges uniformly with respect to both
variables together on Ω.

Hint: Let SN =
∑N

n=1 Xn(x)Tn(t), sN =
∑N

n=1 Xn(x). For m > n
find an expression for Sm − Sn involving (sk − sn) for an appropriate
range of values of k.
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8. Let v(x) ∈ C∞(R) and assume that for each γ in a neighborhood
of the origin there exists a function u(x, v, γ) which is C∞ in x such
that

γ
∂

∂x
(u + v) = sin(u − v) .

Assuming that

u = u0 + γu1 + γ2u2 + γ3u3 + . . .

where u0(0) = v(0) and for all n the un’s are functions of v but are
independent of γ, find u0, u1, u2 and u3.

9. All partial derivatives ∂m+nf/∂xm∂yn of a function f : R
2 → R

exist everywhere. Does it imply that f is continuous? Prove or give a
counterexample.

10. Decide whether the two equations

sin(x + z) + ln(yz2) = 0 , ex+z + yz = 0 ,

implicitly define (x, y) near (1, 1) as a function of z near −1.



Tier I exam in analysis - January 2005

Solve all problems. Justify your answers in detail. The exam’s duration is 3 hours

1. Define

S = {(x, y, z) 2 R3, x2 + 2y2 + 3z2 = 1}, f(x, y, z) = x + y + z.

a. Prove that S is a compact set.

b. Find the maximum and minimum of f on S.

2. Let g : [0, 1] £ [0, 1] ! R be a continuous function, and define functions fn :
[0, 1] ! R by

fn(x) =
Z 1

0
g(x, y)yn dy x 2 [0, 1], n = 1, 2, . . .

Show that the sequence (fn)1n=1 has a subsequence which converges uniformly on
[0, 1].

3. Consider the subset H = {(a, b, c, d, e)} of R5 such that the polynomial

ax4 + bx3 + cx2 + dx + e

has at least one real root.

a. Prove that (1, 2,°4, 3,°2) is an interior point of H

b. Find a point in H that is not an interior point. Justify your claim.

4. Consider a twice differentiable function f : R ! R, a number a 2 R, and h > 0.
Show that there exists a point c 2 R such that

f(a) ° 2f(a + h) + f(a + 2h) = h2f 00(c).

5. Prove or give a counterexample: If f(x) is differentiable for every x 2 R, and if
f

0

(0) = 1, then there exists δ > 0 such that f(x) is increasing on (°δ, δ).

1



6. Let f(x) be a bounded function on (0, 2). Suppose that for every x, y 2 (0, 2), x 6=
y, there exists z 2 (0, 2) such that

f(x) ° f(y) = f(z)(x ° y).

a. Show that f need not be a differentiable function.

b. Suppose that such a z can always be found between x and y. Show that f is
twice differentiable.

7. Consider the torus

T = {x = (a + r sin u) cos v, y = (a + r sin u) sin v, z = r cos u,

0 ∑ r ∑ b, 0 ∑ u ∑ 2π, 0 ∑ v ∑ 2π},

where a > b. Find the volume and surface area of T .

8. Let Ω be a bounded subset of Rn, and f : Ω ! Rn a uniformly continuous function.
Show that f must be bounded.

2



Outline of Solutions:

1. a. It suffices to show that S is closed and bounded. Closeness follows since
S = {h°1(1)}, for a continuous function h. Boundedness follows since clearly S is
contained in the cube [°1, 1]3.

b. Both maximum and minimum are obtained at internal points on S, and can
therefore be found by the Lagrange method. The Lagrange equations imply at
once that λ 6= 0, and 1

2λ
= x = 2y = 3z. Solving from S we find that the maximal

value is
q

11/6, and the minimal value is its negative.

2. fn(0) = 0, and the functions fn are equicontinuous because

|fn(x) ° fn(x0)| ∑ sup
y

|g(x, y) ° g(x0, y)|,

and this quantity tends to zero as |x ° x0| ! 0 by the continuity of g. This
Arzela-Ascoli applies.

3. Write the polynomial x4 + 2x3 ° 4x2 + 3x ° 2. Obviously x = 1 is a root, so the
triplet is indeed in H.

Define the function F (a, b, c, d, e, f, x) = ax4 + bx3 + cx2 + ed + f . Clearly
F (1, 2,°4, 3,°2, 1) = 0, while Fx = 5 6== 0 at that point. Therefore there
exists an open neighborhood U of (1, 2,°4, 3,°2) and a C1 function g such that
for all points (a, b, c, d, e) in U we have F (a, b, c, d, e, g(a, b, c, d, e)) = 0.

Clearly (0, 0, 1, 0, 0) is in H. But the the points (0, 0, 1, 0, µ2) are not in the set
for µ 6= 0 (Since x2 + µ2 has no real root).

4. Apply the mean-value theorem to the function F (x) = f(x + h) ° f(x) to get

f(a) ° 2f(a + h) + f(a + 2h) = F (a + h) ° F (a) = hF 0(d) = h(f 0(d + h) ° f 0(d))

for some d, then apply MVT again to the right-hand side.

5. Counterexmaple - f(x) = x + 2x2 sin(1/x).

6. a. Let f = x for 0 ∑ x ∑ 1, and f = 1 for 1 ∑ x ∑ 2.

Since f is bounded, limy!x f(y) = f(x). Furthermore, limx!y
f(y)°f(x)

x°y
= f(y).

Therefore f is differentiable. Also, the last identity implies f
0

= f , thus f(x) =
cex.

7. The Jacobian is given by J = r(a + sin u), and hence V = 2π2ab2. Observing that
the boundary is given by r = b, a simple computation gives ||N || = ||Tu £ Tv|| =
b(a + b sin u). Therefore S = 4π2ab. Of course, it is also possible to solve with the
slice method.

8. Choose δ > 0 such that |f(x)° f(y)| < 1 whenever |x° y| < δ. Assume that f is
not bounded, and choose xk 2 Ω such that |f(xk+1)| > |f(xk)|+1 for all k. Observe
that |f(xj) ° f(xk)| > 1 whenever j 6= k. However, by Bolzano-Weierstrass, we
must have |xj ° xk| < δ for some j 6= k, which gives a contradiction.

3



Tier I Analysis Exam 

August, 2005 

Justify your answers. All problems carry equal weight. 

1. Let p > 0. Evaluate 

2. For x > 0, define 

. 1P+3P+ ... +(2n-l)P 
hm n,P+l . 

n->oo 

if x is irrational 

if X = E. 
q 

where p, q have no common factor and q 2: 1. 

(a) Where is¢ continuous? 

(b) Where is ¢ differentiable? 

3. Let a,b be real with lbl > max{l, lal}- For x ER, define 

f(x) = f cos~:nx). 

n=l 

(a) Show that / is uniformly continuous on all of R. 

(b) Let 

, = {(x, y): y = f(x), 0 :s; x :s; 1 } 

be the graph of f over the unit interval. Show that , has finite length. 

4. Let M2 denote the set of 2-by-2 matrices with real entries, and for A E M2, 

define S(A) = A2
. Does the mapping S: M2 -----t M2 have a local inverse near 

the identity matrix? 

5. Fix a > 0. Let xr, ... , Xn be non-negative numbers with 

Show that 

""""" 1 2 L_;XiXj :s;-n(n- l)a. 
. . 2 
t<J 

Please turn over. 



6. Let p be real. Suppose f: Rn - {O} - R is continuously differentiable, and 

satisfies 

J(>..x) = >..P J(x), for all x -f:- 0 and for all >.. > 0. 

Let V /(x) denote the gradient off at x and· the Euclidean inner product. 

Prove that 

x · Vf(x) = pf(x), x -f:- 0. 

7. A family :F of continuous real-valued functions of a real variable is called 

equicontinuous at x if for every c > 0, there is a o > 0 such that for every 

/ E :F, 

Ix - YI < o ⇒ IJ(x) - J(y)I < c. 

:F is called equicontinuous on the set E if it is equicontinuous at each point x 

of E. (Note: the constant o may depend on both E and x.) 

Now suppose F is a family of continuous real-valued functions defined on an 

open interval I ~ R, and let xo E I. 

( a) Suppose F is equicontinuous at every point of I\ { Xo}. Must :F also be 

equicontinuous at xo? 

(b) Suppose :F is equicontinuous at x 0 . Must :F also be equicontinuous at 

every point in some neighborhood J of xo? 

8. Let Ube an open subset of Rn and f : U - Rn be differentiable. Suppose 

there exists C > 0 such that 

lf(x) - f(y)I ~ Clx - YI 

for all x, y E U. Let df(x) denote the Jacobian derivative off at x (that is, 

the linear mapping given by the n by n matrix of partial derivatives). Show 

that detdf(x) -f:- 0 for all x EU. 

9. Let m > 0 be a real number, let r = (x2 +y2 + z2
)

112
, and consider the vector 

field on R 3 given by F =rm· (x,y,z) = (x2 +y2 + z2rf2(x,y,z). 

(a) Compute the divergen_ce div(F). 

(b) Using part (a) and the Divergence Theorem, calculate 

where B3 = {(x, y, z) : r ::;: 1} is the closed unit ball centered at the 

origin and dV = dx dy dz is the Euclidean volume. 
End of exam. 

' J 



Analysis Tier I Exam January 2006 

All questions are worth 10 points. In question 7, each part is worth 5 points. 

1. Show that the function given by 

f(x) = {ox
2 

sin(l/x) X =I= 0 
x=O 

is differentiable for all x E JR , but not continuously differentiable at 

X =0. 

2. Let Un} be the sequence of functions given by 

Prove that Un} converges to 0 pointwise but not uniformly on the 

interval [0, 1] as n -t oo. 

3. Let n be a positive integer and define f on [0,oo) by J(x) = y'x. Give 

a direct E, 8 proof that f is continuous on [0, oo). 

4. Associating any 2 x 2 real matrix (ai1) with a point (a11, a 12 , a 21 , a22) 

JR4
, prove that the set of all invertible, real matrices is not a connected 

set in JR4
. 

5. Define a sequence {rn} by ro = 1, and rn+l = (2/3)rn + 1 for n 2: 0. 

Let the sequence { cn} be defined by c0 = 1 / 4, and 

rn+l,Jc;i 
Cn+l = 

3 

for n 2: 0. Prove that 

lim Cn exists 
n-oo 

and determine what the limit is. 

Hint: First argue that { r n} converges. 

6. Do there exist continuous functions f(x, y) and g(x, y) in a neighbor

hood of (0, 1) such that f(0, 1) = 1 and g(0, 1) = -1 and such that 

[f(x,y)]
3 + xg(x,y) -y = 0, 

[g(x,y)]
3 
+yf(x,y)- x = 0? 

Justify your answer. 



7. Let E > 0 and a positive integer n be given. Let F C Z x Z be defined 

by F = {(i,j) : 1 ~ i < j ~ n} and let Ebe any subset of F. Then 

define a real-valued function GE,, on ]Rn by 

n 

GE,,(x 1 , ..• ,xn)=(n+E)Lsin
2
xj- L (xi-xj)2. 

j=l (i,j)EE 

a. Taken= 3 and E = F. Show that CF,, has a local minimum at the 

origin. 

b. For arbitrary positive integer n and E any subset of F, show that 

GE,, has a local minimum at the origin. 

8. Let D C JR2 be an arbitrary bounded open set with C1 boundary whose 

perimeter P is finite. Let f : JR2 -+ JR be a given C 1 function satisfying 

the condition 

lf(x, y)I ~ 1 for all (x, y) E D. 

Establish the inequality 

9. Suppose K > 0, and F : JR2 
-+ JR2 is a differentiable mapping with 

l8Fd8xJI < K at every point, for every 1 ~ i,j ~ 2. Show that there 

exists C > 0 such that F satisfies the Lipschitz condition 

IIF(p) - F(q) II :S C IIP - qJI for all p, q E lR2 
. 

Here IIP - qll denotes the usual Euclidean distance between p and q in 
JR2. 

10. A family J" of functions is said to be uniformly equicontinuous if for 

every E > 0 there is a 5 > 0 such that for every g E J", 

Note: 5 does not depend on g or x 1 or x2 . Now suppose that f 
JR x [O, 1] -+ JR is a bounded continuous function. For each y E [O, 1], 

define gy : JR -+ JR by gy ( x) = f ( x, y). Suppose that for each y we know 

that 

lim gy(x) = 0 = lim gy(x). 
x~oo x-------+-oo 

Must any such family J" := {gy : 0 '.S y '.S 1} be uniformly equicontinu

ous? If so, prove it. If not, provide a counter-example. 



Tier 1 Analysis Exam 
August 2006 

1. Let f : A C Rn -> Rm be a function. 

( 1) Prove that if f is uniformly continuous, and if {pk} is a Cauchy sequence in A, 

then {f(p.)} is a Cauchy sequence in Rm_ 

(2) Give an example of continuous f and a Cauchy sequence {P•} in some A (you 
may taken= m = 1) for which {!(pk)} is not a Cauchy sequence. 

2. Let f: (a, b) CR___, R be a continuous function. Assume f is differentiable everywhere 

in (a, b), except possibly at a point c. Show that, if lim f'(x) exists and is equal to £, ,-, 
then f is differentiable at c and f' ( c) = L. 

3. Let g: R2
-, R be a C1 function with g(½, i) = 3, ~(½, j) = -1, and~(½, j) = -4, 

where (r,s) are the coordinates for the R 2
. Define f: R 3

--, R by 

X y 
f(x,y,z) =g(-,-), 

z z 

for z i 0. Show that the level surface 1- 1(3) has a tangent plane at the point (1,2,3) 
and find a linear equation for it. 

4. For which positive integers k does the series 

f sin(mr/k) 

n 
n=l 

converge? Justify your answer with a proof. 

5. Let f : R --, R be a continuous function. Let x E JR and define the sequence { Xn} 

inductively by setting Xo = x and Xn+l = f(xn)- Suppose that {xn} is bounded. Prove 
that there exists y E JR such that f(y) = y. 

6. Decide whether or not the function f: [0, 1[ x [0, l[ __, R defined by 

{
" q' 

f(x, y) = ~' 

0, 

if x \t IQ and y = E E IQ 
q 

if y \t IQ and X = E E IQ 
q 

if (x, y) E IQ X IQ or (x, y) ER\ IQ X R \ IQ 

is Riemann integrable on [0, 1[ x [0, l[. Prove your decision from the definition without 

invoking any theorems about integrable functions. (Here all fractions E are assumed 
q 

to be reduced.) 



7. Let f : Rn -, R be a C2 function (i.e. f has continuous second order partial deriva
tives). Suppose p0 E Jr is a critical point off. If 

show that p0 is isolated, i.e. there is a neighborhood of p0 in which p0 is the only 
critical point of f. 

= = 
8. Prove that E 1+:'x' converges pointwise but not uniformly on R. Let f (x) = E 1+;'"'. 

n=l n=l 

Is it true that the Riemann integral Io' f(x)dx = f: Io' 1+;2" 2 dx? Justify. 
n=l 

9. Let {an} be a sequence. Show that 

1. an l ( ) 1msup - '.S im sup an - an-! . 
n----->co n n-= 

10. Let Q C R3 be any solid rectangular box with one vertex at the origin. Show that 

Here ii. is the unit outer normal on {}Q and dS is the area element. (You should notice 
that this integral is not an improper integral.) 



Tier I Analysis Exam 
January 2007 

Notations: ]Rn denotes the n-dimensional Euclidean space with the standard scalar 
n 

(inner) product (x, y) = I: XkYk and the Euclidean norm lxl = ~-
k=i 

1. Use E: -c5 notation to state the condition that a function f : IR -+ IR is not continuous 

onR 

. 1 ( A) . 2. For A > 0 consider the sequence Xn+i = - Xn + - (n = 1, 2, . . . ) with xi > 0. 
2 Xn 

Show that { xn} converges and find its limit. 

3. Let D = [O , 1] x [O , 1] C IR2 and 

X = {f E C(D): lf(x) - f(y)I ~ Ix - YI \/ x,y ED, lf(O)I < 1} 
where C(D) denotes the space of continuous functions f from D to IR (both with 

standard, Euclidean topologies), with sup-norm IIJII := sup IJ(x)j. Show that X 
XE!1 

is a sequentially compact subset of C(D), i.e., every sequence {fn}, fn EX, has a 
convergent subsequence f ni converging to f 00 in X in the sup-norm topology. 

00 

4. Let I: an be a convergent series with nonnegative terms, and S be its sum. For 
n=O 

00 

f(x) = I: anxn show that lim f(x) = S. 
n=O x-t+i-

5. Let f : IR-+ IR be a differentiable function, and lim f'(x) = -oo, lim f'(x) = 
x ➔ -oo x-t +oo 

+oo. Show that for any A E IR there exists a E IR such that f'(a) = A. 
Warning: f'( x ) may not be continuous. 

1 



6. Consider the function 
3 ,,2 

K(t , x) = xC 2e- Tt 

defined for all x E IR and t > 0. Clearly, K(t , 0) = 0 for t > 0. Show that 

K(t, x) ➔ 0 as t ➔ o+ for any fixed x . Can you define K at (0, 0) to make it 

continuous there? 

7. Calculate 

f { cos ( x + 2Y ) dx dy, 
JD - X + y 

where Dis the triangular region in IR2 having vertices (0 , 0) , (-2, 4) , (-3, 3) . 

8. A soap film bubble blown from a circular hoop describes an undetermined region 

DC {(x, y , z) E IR3 
: y ::; 0} having three-dimensional volume equal to 10. Let S 

denote that portion of 8D comprised of the soap film (it does not include the unit 

disk D in the x, z-plane). Suppose a force field F = (z2
, 3y + 5, x3

) is applied. 

Find J s F · n dA, where n is the outward pointing normal on 8D, and dA is the 

surface element . 

/,'.,' 
/ 

X 

z 

,· , 

' ', 

' ' . 
' . 

)-• - ~ - - - - - , - - - - - - - - - - ·• - - -

2 

n 

y 



9. Let f : IR-+ IR be continuous and J(x) = 0 if !xi 2:: 1. 

a) Show that the improper integral 
00 

g(y) = J f(x) dx 
Jlx-yl 

-oo 

converges for ally E IR, and g(y) is continuous. 

b) Show that, if additionally f is continuously differentiable, then so is g and 
00 

g'(y) = j J'(x) dx 
Jlx-yl 

- 00 

10. Let f : Rn -+ Rn be a continuously differentiable map and dfa : Rn -+ Rn be its 

differential at a E Rn. Suppose that df a is positive at any a E Rn, in the sense 

that (dfa(x),x) > 0 for all a E Rn, and x E Rn - {O}. 

Prove that f is injective 

Hint: For a E Rn - {O} consider g : IR-+ Rn defined by g(t) = J(ta) . Find g'(t) 
and show that f(a) i= J(O). 

3 



TIER 1 ANALYSIS EXAM

AUGUST 2007

(1) Define f : R
2 ! R by setting

f(x, y) =
x3 + y3

x2 + y2

for (x, y) 6= (0, 0) and f(0, 0) = 0. Show that is differentiable
at all points (x, y) 2 R

2 except (0, 0). Show that f is not
differentiable at (0, 0).

(2) Given λ 2 R, define hλ : R
2 ! R by

hλ(x, y) = �x4 + x2 + y2 + λ · sin(x · y).

For which values of λ does hλ have a local minimum at (0, 0)?
Justify your answer.

(3) Let γ ⇢ R
2 be the simple closed curve described in polar coor-

dinates by r = cos(2θ) where θ 2 [�π/4, π/4]. Suppose that γ

is positively oriented. Compute the line integral
Z

γ

3y dx + x dy.

Provide the details of your computation.

(4) Let X be a metric space such that d(x, y)  1 for every x, y 2 X,
and let f : X ! R be a uniformly continuous function. Does
it follow that f must be bounded? Justify your answer with
either a proof or a counterexample.

(5) Let
f(x, y) = (x + e2y � 1, sin(x2 + y)),

and let
h(x, y) = (1 + x)5 � e4y.

Show that there exists a continuously differentiable function
g(x, y) defined in a neighborhood of (0, 0) such that g(0, 0) = 0
and g � f = h. Compute ∂g

∂y
(0, 0).
1



2 TIER 1 ANALYSIS EXAM AUGUST 2007

(6) Let c1, c2, . . . be an infinite sequence of distinct points in the
interval [0, 1]. Define f : [0, 1] ! R by setting f(x) = 1/n if
x = cn and f(x) = 0 if x /2 {cn}. State the definition of a
Riemann integrable function, and directly use this definition to
show that

Z 1

0

f(x) dx

exists.

(7) Show that the formula

g(x) =
∞

X

n=1

1

n2
e

R

x

0
t sin( n

t
) dt

defines a function g : R ! R. Prove that g is continuously
differentiable.

(8) Consider an unbounded sequence 0 < a1 < a2 < · · · , and set

s = lim sup
n→∞

log n

log an

.

Show that the series
∞

X

n=1

a−t
n

converges for t > s and diverges for t < s.

(9) Define a sequence {an} by setting a1 = 1/2 and an+1 =
p

1 � an

for n � 2. Does the sequence an converge? If so, what is the
limit? Justify your answer with a proof.



Tier 1 Analysis Exam 

January 2008 

1. Give an example of a function f : [0, ex::) -+ IR that satisfies the three conditions: 

(i) f(x) 2 0 for all x 2 0, 

(ii) for every M > 0, supx>M f(x) = oo, 

(iii) ft f(:r:) d1; < oo, 

or else prove that no such function exists. 

2. Determine whether the series 

t, ln (nsin ~) 

is convergent (conditionally or absolutely) or divergent. 

3. Let S be a closed, nonempty subset of !Rn that is convex in the sense that if q1 and 

q2 are any two points in 8, then >.q1 + (1 - >.)q2 E S for all >. E (0, 1). Given any 

p E !Rn \ 8, let 

m = inf {IIP - CJII} 
qES 

where II· II denotes the usual Euclidean norm. Prove that there exists exactly one point 

q E S that achieves this infimum. 

4. Define f : IR2 
-+ IR by 

2 

f(x, y) = .ry 
x2 + y2 

for (x,y) i (0,0), and f(0,0) = 0. Notice that f is C1 on IR2 
\ {(0,0)}. 

( i) Show that f is continuous at ( 0, 0). 

(ii) Show that all the directional derivatives of f at (0, 0) exist by calculating the 

directional derivative of f at (0, 0) in the direction V, for any given unit vector 

V = ( cos fJ, sin fJ). (Recall that the directional derivative of f at a point p in direc

tion Vis by definition, filt=
0

f(p+tV).) 

(iii) Show that .f is not differentiable at (0, 0). 

5. Let .f = (.f 1, h) : IR2 
-+ IR2 be continuously differentiable, and assume that the 2 x 2 

matrix Df(x) = (~(x)) is invertible for all x E IR2
. Assume moreover that, for any 



compact set KC IR2
, 1-1 (K) is compact. Prove that f is onto. 

6. Let f be a continuous function on [0, oo) such that 0:::; J(:1:) :::; Cx- 1
-p for all x > 0, 

and for some constants C, p > 0. Let fk(x) = kf(kx). 

( i) Show that limk_,c:o f k ( x) = 0 for any x > 0 and that the convergence is uniform on 

[r, ex::) for any T > 0. 

(ii) Show that .h does not converge to zero uniformly on (0, oo), unless f is identi

cally 0. 

7. Let J and fk be defined as in the previous problem. 

(i) Show that the limit limk_,c:o f
0

1 
Jk(x) dx exists. 

(ii) Denote by a the limit in (i). Show that limk_,c:o f
0

1 
fk(x)g(x) dx = ag(0) for any 

Riemann integrable function g on [0, l] that is continuous at 0. 

(Note: The result of the previous problem is not necessarily needed for solving this 

problem.) 

8. Let f: [0, l] -+ IR be a differentiable function such that lf'(:c)I:::; 1\1 for all :r: E (0, 1). 

Show that, for any positive integer n 

1
1 1 n k - l 

J(.1:) d:c - - L J(-) 
o n k=l n 

9. Consider the quartic equation with real coefficients 

M 
<-. 
- n 

Show that there exists 5 > 0 such that if lai - 11 < 5, i = 0, 1, 2, 3, then the equation 

above has a real solution which depends smoothly on the a;'s. 

10. Compute the line integral 

1 
.1:dy-yd.T 

C x2 + y2 ' 

where C is a simple closed C1 curve around the origin of the xy-plane, and oriented 

counterclockwise. 



TIER I ANALYSIS EXAM

August 2008

Do all 10 problems; they all count equally.

Problem 1. Suppose that I1, . . . , In are disjoint closed subinter-
vals of R. If f is uniformly continuous on each of the intervals, prove
that f is uniformly continuous on

Sn
j=1 Ij.

Does this still hold if the intervals are open?

Problem 2. Suppose that f is a continuous function from [0, 1]

into R and that
R 1

0
f(x) dx = 0.

Prove that there is at least one point, x0, in [0, 1], where f(x0) = 0.
Does this still hold if f is Riemann integrable but not continuous?

Problem 3. Suppose that f is a continuous function from [a, b]
into R which has the property that, for any point x 2 [a, b], there is
another point x0 2 [a, b] such that |f(x0)| ∑ |f(x)|/2.

Prove that there exists a point x0 2 [a, b] where f vanishes, that is,
f(x0) = 0.

Problem 4. Define f : R
2 ! R

2 and g : R
2 ! R

2 by

f(x, y) = (sin(y) ° x, ex ° y) , g(x, y) = (xy, x2 + y2) .

Compute (g ± f)0(0, 0).

Problem 5. Prove that there exists a positive number θ0 such
that the following holds: For each θ 2 [0, θ0], there exist real numbers
x and y (with xy > °1) such that

2x + y + exy = cos(θ3) , and log(1 + xy) + sin(x + y2) =
p

θ .

(Hint : First evaluate the left side of each of these two equations for
x = y = 0.)

Problem 6. If
P

1

n=0 an and
P

1

n=0 bn are absolutely convergent
series of real numbers it is well-known that their Cauchy product series
P

1

n=0 cn also converges, where

cn = a0bn + a1bn°1 + · · · + a0bn , n = 0, 1, . . . .

Show that this assertion is no longer true if
P

1

n=0 an and
P

1

n=0 bn

are merely conditionally convergent.



Problem 7. (a.) Let C be the line segment joining the points
(x1, y1) and (x2, y2) in R

2.
Prove that

R

C
x dy ° y dx = x1y2 ° x2y1.

(b.) Suppose further that (x1, y1), . . . , (xn, yn) are vertices of a poly-
gon in R

2, in counterclockwise order.
Prove that the area of the polygon is equal to

1

2
[(x1y2 ° x2y1) + (x2y3 ° x3y2) + · · · + (xny1 ° x1yn)] .

Problem 8. Prove that there exist a positive integer n and real
numbers a0, a1, . . . , an such that

Ø

Ø

Ø

≥

n
X

k=0

ak

xk

¥

° exp
≥sin(ex)

p
x

¥Ø

Ø

Ø
∑ 10°6 for all x 2 [1,1) .

Problem 9. Prove that the series
P

1

n=1 n°x can be differentiated
term by term on its interval of convergence.

Problem 10. Suppose that, for each positive integer n,

fn : [0, 1] ! R

is a continuous function that satisfies fn(0) = 0 and has a continuous
derivative f 0

n on (0, 1) such that |f 0

n(x)| ∑ 9000 for all x 2 (0, 1).
Prove that there exists a subsequence fn1

, fn2
, fn3

, . . . such that the
following holds:

For every Riemann integrable function g : [0, 1] ! R, there exists a
real number L (which may depend on the function g) such that

lim
k!1

Z 1

0

g(x) fnk
(x) dx = L .

(Note. You may take for granted and freely use standard basic facts
about Riemann integrals, including, e.g. the fact that a Riemann in-
tegrable function is bounded, and that linear combinations, products,
and absolute values of Riemann integrable functions are Riemann in-
tegrable.)



Tier I Analysis Exam

January 2009

Try to work all questions. They all are worth the same amount.

1. Assume f and g are uniformly continuous functions from R
1 ! R

1. If both f and g

are also bounded, show that fg is also uniformly continuous. Then give an example to

show that in general, if f and g are both uniformly continuous but not both bounded,

then the product is not necessarily uniformly continuous. (Verify clearly that your

counter-example is not uniformly continuous.)

2. Suppose f : R ! R and g : R ! R are C2 functions, h : R
2 ! R is a C1 function and

assume

f(0) = g(0) = 0, f 0(0) = g0(0) = h(0, 0) = 1.

Show that the function H : R
2 ! R given by

H(x, y) :=

Z f(x)

0

Z g(y)

0

h(s, t) ds dt +
1

2
x2 + by2

has a local minimum at the origin provided that b > 1
2

while it has a saddle at the origin

if b < 1
2
.

3. Let H = {(x, y, z) | z > 0 and x2 + y2 + z2 = R2}, i.e. the upper hemisphere of the

sphere of radius R centered at 0 in R
3. Let F : R

3 ! R
3 be the vector field

F (x, y, z) =
n

x2(y2 � z3), xzy4 + e�x2

y4 + y, x2y(y2x3 + 3)z + e�x2�y2

o

Find

Z

H

F · n̂ dS where n̂ is the outward (upward) pointing unit surface normal and dS

is the area element.

4. Let D be the square with vertices (2,2), (3,3), (2,4), (1,3). Calculate the improper

integral
Z Z

D

ln(y2 � x2)dxdy .



5. Suppose f : R
2 ! R

1 is a C4 function with the property that at some point (x0, y0) 2 R
2

all of the first and second order partial derivatives of f vanish. Suppose also that at

least one partial derivative of third order does not vanish at (x0, y0). Prove that f can

have neither a local maximum nor a local minimum at this critical point.

6. Prove that the series
1

X

n=1

nx

1 + n2 log2(n)x2
converges uniformly on [ε,1) for any ε > 0.

7. Suppose that f : R
3 ! R is of class C1, that f(0, 0, 0) = 0, and

f2(0, 0, 0) 6= 0, f3(0, 0, 0) 6= 0, and f2(0, 0, 0) + f3(0, 0, 0) 6= �1

where fk = ∂f
∂xk

. Show that the system

f(x1, f(x1, x2, x3), x3) = 0

f(x1, x2, f(x1, x2, x3)) = 0

defines C1 functions x2 = ϕ(x1), and x3 = ψ(x1) for x1 in a neighborhood of 0 satisfying

f(x1, f(x1, ϕ(x1), ψ(x1)), ψ(x1)) = 0

f(x1, ϕ(x1), f(x1, ϕ(x1), ψ(x1))) = 0.

8. For each b 2 [1, e], consider the sequence of real numbers governed by the recurrence

relation

an+1 =
⇣

b
p

b
⌘an

for n = 0, 1, 2 . . . with a0 =
b
p

b i.e. {
b
p

b,
b
p

b
b
p

b
,

b
p

b
b
p

b
b√

b

,
b
p

b
b
p

b
b√

b

b√
b

, . . . }.

Show that this sequence converges and find the limit.



9. For each positive integer n, define xn : [�1, 1] ! R by

xn(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�1 if � 1  t  �1/n

nt if � 1/n < t < 1/n

1 if 1/n  t  1

(a) Show that {xn} is a Cauchy sequence in the metric space (C([�1, 1]), d), where

C([�1, 1]) denotes the set of continuous functions defined on [�1, 1] and d denotes the

metric given by

d(x, y) =

Z 1

�1

|x(t) � y(t)| dt .

(b) Show that (C([�1, 1]), d) is not complete.



Tier 1 Analysis Exam

August, 2009

Show all work, and justify all answers.

This exam has 9 problems.

R will denote the real numbers, and || · || will denote the usual Euclidean norm.

1. Define the statement: “f : R2 → R is differentiable at (0, 0),” and show that the

function f(x, y) = x|y|
1
2 is differentiable at (0, 0).

2. Show that the series

2 sin
1

3x
+ 4 sin

1

9x
+ · · ·+ 2n sin

1

3nx
+ · · ·

converges absolutely for x ̸= 0 but does not converge uniformly on any interval (0, ǫ) with
ǫ > 0.

3. Let V (n, r) be the volume of the ball {x ∈ Rn : ||x|| ≤ r}.

(a) Show that V (n, r) = cnrn for some constant cn depending only on n.

(b) Find limn→∞ cn.

4. Suppose that x ̸= 0. Show that

lim
n→∞

1 + cos(x/n) + cos(2x/n) + · · · + cos((n − 1)x/n)

n
=

sin(x)

x

5. Let X = {x = (x1, x2, x3, x4) ∈ R4 : x2
1 +x2

2 +x2
3 −x2

4 = 2, and x1 +x2 +x3 +x4 = 2}.
For which points p ∈ X is it possible to find a product of open intervals V = I1×I2×I3×I4

containing p such that X∩V is the graph of a function expressing some of the variables x1,
x2, x3, x4 in terms of the others? If there are any points in X where this is not possible,
explain why not.

1



6. Let a and b be two points of R2. Let σn : [0, 1] → R2 be a sequence of continuously
differentiable constant speed curves with ||σ′

n(t)|| = Ln for all t ∈ [0, 1] and σn(0) = a
and σn(1) = b for all n. Suppose that limn→∞ Ln = ||b − a||. Show that σn converges
uniformly to σ, where σ(t) = a + t(b − a) for t ∈ [0, 1].

7. Let f : R → R be a function; and let its n-th derivative, denoted f (n), exist for all n.
Suppose that the sequence f (n), n = 1, 2, 3, . . . converges uniformly on compact subsets to
a function g. Show that there is a constant c such that g(x) = c ex.

8. Let M = {(x, y, z) ∈ R3 : y = 9−x2, y ≥ 0, and 0 ≤ z ≤ 1}. Orient M so that the unit

normal n⃗ is in the positive y-direction along the line x = 0, y = 3. Let F⃗ be the vector
field on R3 given by F⃗ = (2x3yz, y + 3x2y2z,−6x2yz2).

(a) What is div F⃗?

(b) Use the Divergence Theorem to express the flux of F⃗ across M (that is,
∫

M
F⃗ · n⃗ dS,

where dS is the surface area element) in terms of some other (easier) integrals.

(c) Calculate
∫

M
F⃗ · n⃗ dS by evaluating the integrals in part (b).

9. Let (X, d) be a compact metric space. Suppose that h : X → Y ⊂ X is a map which
preserves d, or in other words, d(h(x1), h(x2)) = d(x1, x2) for all x1, x2 ∈ X . Show that
Y = X .

2



Department of Mathematics–Tier 1 Analysis Examination

January 7, 2010

Notation: In problems 2, 3, and 9 the notation rf denotes the n�tuple of first-order partial derivatives of
a function f mapping an open set in Rn into R.

1. Let E be a closed and bounded set in Rn and let f : E ! R. Suppose that for each x 2 E there are
positive numbers r and M depending on x such that f(y) � �M for all y 2 E satisfying |y � x| < r.
Prove that there is a positive number M such that f(y) � �M for all y 2 E.

2. Let V be a convex open set in R2and let f : V ! R be continuously differentiable in V . Show that if
there is a positive number M such that |rf(x)|  M for all x 2 V , then there is a a positive number L
such that

|f(x) � f(y)|  L|x � y|

for all x, y 2 V .

Is this result still true if V is instead assumed to be open and connected? Prove or disprove with a
counterexample.

3. Let f be a C2 mapping of a neighborhood of a point x0 2 Rn into R. Assume that x0 is a critical point
of f and that the second derivative matrix f 00(x0) is positive definite. Prove that there is a neighborhood
V of x0 such that zero is an interior point of the set {rf(y) : y 2 V }.

4. Suppose that F and G are differentiable maps of a neighborhood V of a point x0 2 Rn into R and that
F (x0) = G(x0). Next let f : V ! R and suppose that F (x)  f(x)  G(x) for all x 2 V . Prove that f
is differentiable at x = x0.

5. Let {gk}
1

k=1 be a sequence of continuous real-valued functions on [0, 1]. Assume that there is a number
M such that |gk(x)|  M for every k and every x 2 [0, 1] and also that there is a continuous real-valued
function g on [0, 1] such that

Z 1

0

gk(x)p(x)dx !
Z 1

0

g(x)p(x)dx as k ! 1

for every polynomial p. Prove that |g(x)|  M for every x 2 [0, 1] and that
Z 1

0

gk(x)f(x)dx !
Z 1

0

g(x)f(x)dx

for every continuous f .

6. Let {ak} be a sequence of positive numbers converging to a positive number a. Prove that (a1a2 · · · ak)1/k

also converges to a.

7. Compute rigorously lim
n!1

"

1

n +
p

n

n
X

k=1

sin

✓

k

n

◆

#

.

8. Let {ak}
1

k=1 be a sequence of numbers satisfying |ak|  k2/2k for all k and let f : [0, 1] ⇥ R ! R be
continuous. Prove that the following limit exists:

lim
n!1

Z 1

0

f
�

x,

n
X

k=1

akxk
�

dx .

9. Let g : R2 ! (0,1) be C2 and define Σ ⇢ R3 by Σ = {(x1, x2, g(x1, x2)) : x2
1 +x2

2  1}. Assume that Σ

is contained in the ball B of radius R centered at the origin in R3 and that each ray through the origin
intersects Σ at most once. Let E be the set of points x 2 ∂B such that the ray joining the origin to x
intersects Σ exactly once. Derive an equation relating the area of E, R, and the integral

Z

Σ

rΓ(x) · N(x)dS

where Γ(x) = 1/|x|, N(x) is a unit normal vector on Σ, and dS represents surface area.



Tier I Analysis Exam
August, 2010

• Be sure to fully justify all answers.

• Scoring: Each one of the 10 problems is worth 10 points.

• Please write on only one side of each sheet of paper. Begin each problem

on a new sheet, and be sure to write a problem number on each sheet of

paper.

• Please be sure that you assemble your test with the problems presented in correct
order.

(1) Let A and B be bounded sets of positive real numbers and let AB = {ab | a ∈ A, b ∈ B}.
Prove that supAB = (sup A)(sup B).

(2) A function f : R → R is called proper if f−1(C) is compact for every compact set C.
Prove or give a counterexample: if f and g are continuous and proper, then the product
fg is proper.

(3) (a) Prove or give a counterexample: If f : R → R is a differentiable function and
f(x) > x2 for all x, then given any M ∈ R there is an x0 such that |f ′(x0)| > M .

(b) Prove or give a counterexample: If f : R
2 → R

2 is a differentiable function and
||f(x, y)|| > ||(x, y)||2 for all (x, y), then given any M ∈ R there is an (x0, y0) ∈ R

2

such that |det(Df(x0, y0))| > M .

(4) Suppose that {fn} is a sequence of continuous functions defined on the interval [0, 1]
converging uniformly to a function f0. Let {xn} be a sequence of points converging to
a point x0 with the property that for each n, fn(xn) ≥ fn(x) for all x ∈ [0, 1]. Prove
that f0(x0) ≥ f0(x) for all x ∈ [0, 1].

(5) Let f be continuous at x = 0, and assume

lim
x→0

f(2x) − f(x)

x
= L.

Prove that f ′(0) exists and f ′(0) = L.

(6) Let R = {(x, y) | 0 ≤ x, 5|y| ≤ 3|x|, x2 − y2 ≤ 1}, a compact region in R
2. For

some region S ⊂ R
2, the function F : S → R given by F (r, θ) = (r cosh θ, r sinh θ)

is one-to-one and onto. Determine S and use this change of variable to compute the
integral

∫∫

R

dx dy

1 + x2 − y2
.

(Recall that cosh θ = eθ+e−θ

2 and sinh θ = eθ
−e−θ

2 .)



(7) Let d(x) = minn∈Z |x − n|, where Z is the set of all integers.

(a) Prove that f(x) =
∑

∞

n=0
d(10nx)

10n is a continuous function on R.

(b) Compute explicitly the value of
∫ 1
0 f(x)dx.

(8) Suppose f and ϕ are continuous real valued functions on R. Suppose ϕ(x) = 0 whenever
|x| > 5, and suppose that

∫

R
ϕ(x)dx = 1. Show that

lim
h→0

1

h

∫

R

f(x − y)ϕ
( y

h

)

dy = f(x)

for all x ∈ R.

(9) Let f(x, y, z) and g(x, y, z) be continuously differentiable functions defined on R
3. Sup-

pose that f(0, 0, 0) = g(0, 0, 0) = 0. Also, assume that the gradients ∇f(0, 0, 0) and
∇g(0, 0, 0) are linearly independent. Show that for some ǫ > 0 there is a differentiable
curve γ : (−ǫ, ǫ) → R

3 with nonvanishing derivative such that γ(0) = (0, 0, 0) and
f(γ(t)) = g(γ(t)) = 0 for all t ∈ (−ǫ, ǫ).

(10) Let S = {(x, y, z) ∈ R
3 | x2 + y2 ≤ 1 and z = ex2+2y2

}. So, S is that part of the

surface described by z = ex2+2y2

that lies inside the cylinder x2 + y2 = 1. Let the path
C = ∂S. Choose (specify) an orientation for C and compute

∫

C

(−y3 + xz)dx + (yz + x3)dy + z2dz .



•
•

|x| =
q

x2
1 + x2

2 + · · · + x2
n

x = (x1, x2, . . . , xn) ∈ R
n f :

[0, 1] → R
n

�

�

�

�

1

0

f(t) dt

�

�

�

�

≤
1

0

|f(t)| dt.

An =



an bn

cn dn

�

, n ≥ 1,

(an)1n=1, (bn)1n=1, (cn)1n=1,

(dn)1n=1 A =



a b
c d

�

An = A −
1

3!
A3 + · · · +

(−1)n

(2n + 1)!
A2n+1, n ≥ 1.

(An)1n=1 sin(A)
f : R → R

n x, y ∈ R |x| + |y| > n2

|x − y| < 1/n2 |f(x) − f(y)| < 1/n f

c(t) = (3 cos t − cos(3t), 3 sin t − sin(3t)), t ∈ [0, 2π].

{(x, y, z) :
√

x+
√

y+
√

z ≤ 1, x, y, z ≥ 0}.
f : [0, 1] → [0, 1]

a ∈ [0, 1] f(a) = a
f 0(a) < −1 (xn)1n=0

x0 = 0 xn+1 = f(xn) n ≥ 0 (xn)1n=0

f(x)

x0 =
√

2 xf(x) = f(x).
fn : [0, 1] → [0, 1] gn :

[0, 1] → R

gn(x) =
1

0

fn(t)

(t − x)1/3
dt, x ∈ [0, 1].

(gn)n2N



(an)1n=1 |
Pn

k=1 ak| ≤
√

n n ≥ 1

1
X

k=1

ak

k

In = [an, bn], n = 1, 2, . . .
S

n In = [0, 1]



Tier 1 Analysis Exam: August 2011

Do all nine problems. They all count equally. Show all computations.

1. Let (X, d) be a compact metric space. Let f : X ! X be continuous. Fix a point
x0 2 X, and assume that d(f(x), x0) ∏ 1 whenever x 2 X is such that d(x, x0) = 1. Prove
that U \ f(U) is an open set in X, where U = {x 2 X : d(x, x0) < 1}.

2. Let f1 : [a, b] ! R be a Riemann integrable function. Define the sequence of functions
fn : [a, b] ! R by

fn+1(x) =

Z x

a

fn(t)dt,

for each n ∏ 1 and each x 2 [a, b]. Prove that the sequence of functions

gn(x) =
n

X

m=1

fm(x)

converges uniformly on [a, b].

3. Let f : R
2 ! R be differentiable everywhere. Assume f(°

p
2,°

p
2) = 0, and also that

Ø

Ø

Ø

Ø

∂f

∂x
(x, y)

Ø

Ø

Ø

Ø

∑ | sin(x2 + y2)|

Ø

Ø

Ø

Ø

∂f

∂y
(x, y)

Ø

Ø

Ø

Ø

∑ | cos(x2 + y2)|

for each (x, y) 2 R
2 \ {(0, 0)}. Prove that

|f(
p

2,
p

2)| ∑ 4.

4. Let q1, q2, . . . be an indexing of the rational numbers in the interval (0, 1). Define the
function f(x) : (0, 1) °! (0, 1), by

f(x) =
X

j:qj<x

2−j.

(Here the sum is over all positive integers j such that qj < x.)

a. Show that f is discontinuous at every rational number in (0, 1).

b. Show that f is continuous at every irrational number in (0, 1).

1



5. Show that the map Φ : R
2 ! R

2 given by

Φ(θ, φ) = (sin φ · cos θ, sin φ · sin θ),

is invertible in a neighborhood of (θ0,φ0) = (π
6
, π

4
) and find the partial derivatives of the

inverse at the point (
√

6
4

,
√

2
4

).

6. Let A be a domain in R2 whose boundary γ is a smooth, positively oriented curve.

a. Find a particular pair of functions P : R
2 ! R and Q : R

2 ! R so that
R

γ
Pdx + Qdy

equals the area of the domain A.

b. Let |A| be the area of A. Find a function R : R
2 ! R so that

1

|A|

Z

γ

Rdx + Rdy,

equals the average value of the square of the distance from the origin to a point of A.

7. Let C be a smooth simple closed curve that lies in the plane x + y + z = 1. Show that
the line integral

Z

C

zdx ° 2xdy + 3ydz

depends only on the orientation of C and on the area of the region enclosed by C but not
on the shape of C or its location in the plane.

8. For each x = (x, y, z) 2 R
3 define |x| =

p

x2 + y2 + z2. Consider

F (x) =
x

|x|λ
, x 6= 0,λ > 0 .

(i) Is there a value of λ for which F is divergence free?
(ii) Let E : R

3 ! R
3 be defined by

E(y) = q
y

|y|3

where q is a positive real number. Let S(x, a) denote the sphere of radius a > 0 centered at
x. Assume |x| 6= a. Compute

Z

S(x,a)

E · n dA

where dA is the surface area element and n is the unit outward normal on S(x, a).

9. Let x1 2 R. Define the sequence (xn)n≥2 by

xn+1 = xn +

p

|xn|

n2
,

for each n ∏ 1. Show that xn is convergent.

2



(x, y) 2 R
2,

f(x, y) =

(

[(2x2 ° y)(y ° x2)]1/4, x2 ∑ y ∑ 2x2;

0,

f (0, 0), f
(0, 0).

an)1n=1
P

1

n=1 an < 1. limn!1 nan = 0.

(x, y) 2 R
2, f(x, y) = 5x2 +xy3 °3x2y.

f,

Z

1

0

sin(x2) dx.

(fn)1n=1 gn)1n=1 R R

Fn =
Pn

k=1 fk

gn ! 0

g1(x) ∏ g2(x) ∏ g3(x) ∏ · · · , x 2 R.

P

1

n=1 fngn

q
X

p

fngn =

q°1
X

p

Fn(gn ° gn+1) + Fqgq ° Fp°1gp.



X = {(x1, x2, x3, x4) 2 R
4 : x4

1+x4
2+x4

3+x4
4 = 64 x1+x2+x3+x4 = 8}.

p 2 X
V = I1 £ I2 £ I3 £ I4 p X \ V

x1, x2, x3, x4

X

F : R
2 \ {(0, 0)} ! R

2

F(x, y) =

µ

°y

x2 + y2
,

x

x2 + y2

∂

j = 1, 2 C1 ∞j : [0, 1] ! R
2,

∞j(0) = p ∞j(1) = q p, q 2 R
2 \ {(0, 0)}.

∞j(t) 6= (0, 0) ∞0

j(t) 6= 0 t 2 [0, 1],
∞1((0, 1)) \ ∞2((0, 1)) = ;.

Z

Γ1

F · T1 ds =

Z

Γ2

F · T2 ds + 2ºk, k = 0, 1 ° 1,

Γj := ∞j([0, 1]) Tj ∞j s

¡ : R
2 ! R C1 g : R

2 \ {(0, 0)} ! R

g(x, y) := ln
°
p

x2 + y2
¢

.

lim
≤!0

Z

@B≤

(¡rg · n ° gr¡ · n) ds = 2º¡(0, 0),

B≤ (0, 0) ≤ n

@B≤.

Æ 2 (0, 1]. f : [0, 1] ! R Æ

NÆ(f) := sup

Ω

|f(x) ° f(y)|

|x ° y|Æ
: x, y 2 [0, 1], x 6= y

æ

< 1.

(fn)1n=1 [0, 1] R

n = 1, 2, . . . NÆ(fn) ∑ 1 |fn(x)| ∑ 1
x 2 [0, 1]. (fn)1n=1

NÆ(fn) ∑ 1
NÆ(fn) < 1



f : R
n ! R

x0 x1 2 R
n f(x0) = 0 f(x1) = 3,

C1 C2 f(x) ∏ C1|x|°C2

x 2 R
n.

S := {x 2 R
n : f(x) < 2} K := {x 2 R

n : f(x) ∑ 1}.
K @S S)

(K, @S) := inf
p2K,q2@S

|p ° q|.

(K, @S) > 0.
f (K, @S) = 0.



August 2012 Tier 1 Analysis Exam

• Be sure to fully justify all answers.
• Scoring: Each one of the 10 problems is worth 10 points.
• Please write on only one side of each sheet of paper. Begin each problem on a

new sheet, and be sure to write the problem number on each sheet of paper.
• Please be sure that you assemble your test with the problems presented in the

correct order.

1. Let

fn(x) =

n∑
k=1

(xk − x2k).

(a) Show that fn converges pointwise to a function f on [0, 1].

(b) Show that fn does not converge uniformly to f on [0, 1].

2. Define f : R
2 → R by f(x, y) =

y3 − sin3 x

x2 + y2
if (x, y) ̸= (0, 0) and f(0, 0) = 0.

(a) Compute the directional derivative of f at (0, 0) for an arbitrary direction
(u, v).

(b) Determine whether f is differentiable at (0, 0) and prove your answer.

3. Let E be a nonempty subset of a metric space and let f : E → R be uniformly
continuous on E. Prove that f has a unique continuous extension to the closure
of E. That is, there exists a unique continuous function g : E → R such that
g(x) = f(x) for x ∈ E.

4. Let Br denote the ball Br = {x ∈ R
2 : |x| < r} and let f : B1 → R be a

continuously differentiable function which is zero in the complement of a compact
subset of B1. Show that

lim
ε→0+

∫
B1\Bε

x1fx1
+ x2fx2

|x|2
dx1 dx2

exists and equals Cf(0) for a constant C which you are to determine.

5. Let E be a nonempty subset of a metric space and assume that for every ε > 0
E is contained in the union of finitely many balls of radius ε. Prove that every
sequence in E has a subsequence which is Cauchy.

1



2

6. For which exponents r > 0 is the limit

lim
n→∞

n2∑
k=1

nr−1

nr + kr

finite? Prove your answer.

7. Let V be a neighborhood of the origin in R
2, and f : V → R be continuously

differentiable. Assume that f(0, 0) = 0 and f(x, y) ≥ −3x + 4y for (x, y) ∈ V .
Prove that there is a neighborhood U of the origin in R

2 and a positive number ε

such that, if (x1, y1), (x2, y2) ∈ U and f(x1, y1) = f(x2, y2) = 0, then

|y2 − y1| ≥ ε|x2 − x1|.

8.
(a) Find necessary and sufficient conditions on functions h, k : R

2 → R
2 such

that, given any smooth F : R
3 → R

3 of the form F = (F1(y, z), F2(x, z), 0) and
whose divergence is zero, there is a smooth G : R

3 → R
3 of the form G = (G1, G2, 0)

such that ∇× G = F in R
3 and G = (h, k, 0) on z = 0. (∇× G is the curl of the

vector field G.)
(b) Let F be as in (a) and evaluate the surface integral∫∫

S

F · N dA

where S is the hemisphere

{(x, y, z) : x2 + y2 + z2 = 1, 0 ≤ z ≤ 1},

N is the unit normal on S in the positive z-direction, and dA is the surface area
element.

9. Let f = (f1, . . . , fn) map an open set U in R
n into R

n be C1 and suppose that,
for some x ∈ U the matrix f ′(x) is negative definite (an n×n matrix A is negative
definite if ξ · Aξ < 0 for all nonzero ξ ∈ R

n). Show that there is a positive number
ε and a neighborhood V of x such that, if y1, . . . , yn are any n points in V and if A
is the n × n matrix whose i-th row is ∇f i(yi), then ξ · Aξ ≤ −ε|ξ|2 for all ξ ∈ R

n.

10. Let f be a C1 mapping of an open set U ⊂ R
n into R

n and suppose that
f(x̄) = 0 for some x ∈ U and that f ′(x̄) is negative definite. Show that there is a
neighborhood W of x̄ and a positive number δ such that, if a sequence {xk}

∞

k=0 is
generated from the recursion

xk+1 = xk + δf(xk)

with x0 ∈ W , then each xk is in W and xk → x as k → ∞. You may use here the
result stated in problem 9 without having solved problem 9.



ANALYSIS TIER 1 EXAM

January 2013

Be sure to fully justify all answers. Each of the 10 problems is worth 10 points. Please write

on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to

write the problem number on each sheet of paper. Please be sure that you assemble your test

with the problems presented in the correct order. You have 4 hours.

1. Let X be a bounded closed subset of R4. Let f : X → X be a homeomorphism. Write

fn for the nth iterate of f if n > 0, for the −nth iterate of f−1 if n < 0, and for the identity

map if n = 0. Thus, fn+1(x) = f
(

fn(x)
)

for all n ∈ Z. Write A(x) :=
{

fn(x) : n ∈ Z
}

for

x ∈ X . Suppose that A(x) is dense in X for all x ∈ X . Show that for each given x ∈ X

and all ǫ > 0, there exists n > 0 such that for all y ∈ X , there exists k ∈ [0, n] such that

∥fk(y)− x∥ < ǫ.

2. Let f : R → R be a function that is differentiable at 0 with f ′(0) ̸= 0. Evaluate

lim
h→0

f(h2 + h3)− f(h)

f(h)− f(h2 − h3)
.

3. Determine all real x for which the following series converges:

∞
∑

k=1

kk

k!
xk .

You may use the fact that

lim
k→∞

k!√
2πk(k/e)k

= 1 .

4. (a) Prove that for all a ∈ R,
∣

∣

∣

∣

∣

∞
∑

n=1

a

n2 + a2

∣

∣

∣

∣

∣

<
π

2
.

(b) Determine the least upper bound of the set of numbers

{
∣

∣

∣

∣

∣

∞
∑

n=1

a

n2 + a2

∣

∣

∣

∣

∣

: a ∈ R

}

.

1



5. Let f(x) be continuous in the interval I := (0, 1). Define

D+f(x0) := lim inf
h→0+

f(x0 + h)− f(x0)

h
.

Put

S := {x ∈ I : D+f(x) < 0} .

Suppose that the set f(I \ S) does not contain any non-empty open interval. (Note: this is

f(I \ S), not I \ S.) Prove that f(x) is non-increasing on I.

6. Let f : (0, 1) → R be a function satisfying

∀x, y, θ ∈ (0, 1) f
(

θx+ (1− θ)y
)

≤ θf(x) + (1− θ)f(y) .

Prove that f is continuous on (0, 1).

7. Let f0 : R → R be the periodic function with period 1 defined on one period by

f0(x) :=

⎧

⎪

⎨

⎪

⎩

x for 0 ≤ x <
1

2
,

1− x for
1

2
≤ x ≤ 1.

Let

fk(x) :=
1

10k
f0(10

kx) for k ∈ N

and let sk := f0 + f1 + · · ·+ fk.

(a) Prove that the sequence {sk} converges uniformly on R to a continuous function s : R →
R.

(b) Evaluate
∫ 1

0
s(x) dx.

8. Let f : [a, b] → R be a differentiable function.

(a) Prove that if f ′ is Riemann integrable over [a, b], then

∫ b

a

f ′(x) dx = f(b)− f(a) .

(b) Give an example of f such that f ′ is not Riemann integrable.

2



9. Let A := {(x,y) ∈ R3 × R3 : x · x = 1, y · x = 0}, where “·” is the standard dot

product in R3 (note that A can be naturally identified with the set of all tangent vectors

to the unit sphere in R3). Show that, as a subset of R6, the set A is locally the graph of a

C∞ map R4 → R2 everywhere, i.e., at every point p = (a1, a2, a3, a4, a5, a6) ∈ A, there exist

1 ≤ j1 < j2 ≤ 6 and C∞ functions f, g defined in a neighborhood of (ai1 , ai2 , ai3, ai4) ∈ R4,

where {i1, i2, i3, i4} = {1, . . . , 6} \ {j1, j2}, with

f(ai1 , ai2 , ai3, ai4) = aj1 ,

g(ai1, ai2 , ai3, ai4) = aj2 ,

and such that in a neighborhood of p, the set A is the graph

(

xj1 , xj2

)

=
(

f(xi1 , xi2 , xi3 , xi4), g(xi1, xi2 , xi3 , xi4)
)

.

10. Let F be the vector field in R3 \ {0} defined by

F(x, y, z) :=
xzj− xyk

(y2 + z2)
√

x2 + y2 + z2
.

(a) Show that the curl of F is given by

∇× F (x, y, z) =
xi + yj+ zk

(x2 + y2 + z2)3/2
.

(b) Compute the line integral
∫

C
F · ds, where C is the unit circle centered at the point

(1, 1, 1) that lies on the plane x + y + z = 3 and has the orientation from the point
(

1− 1√
6
, 1− 1√

6
, 1 + 2√

6

)

to
(

1− 1√
6
, 1 + 2√

6
, 1− 1√

6

)

to
(

1 + 2√
6
, 1− 1√

6
, 1− 1√

6

)

and back

to
(

1− 1√
6
, 1− 1√

6
, 1 + 2√

6

)

.

3



• R

• Rn

• |x| x 2 Rn n = 1

n,N A ⇢ Rn

B(a, r) = {x 2 Rn : |x� a|  r}, a 2 Rn, r � 0.

a1, a2, . . . , aN 2 Rn r1, . . . , rN 2 [0,+1)

A ⇢
N[

k=1

B(ak, rk)

PN

k=1 r
2
k

{
PN

k=1 r
2
k : A (B(ak, rk))

N
k=1}

(cos(π
p
n2 + n))∞n=1

x 2 R

∞X

n=1

(�1)n

x+ n

(�1, 1)
fn : [0, 1] ! R fn(x) = (1 � xn)2

n

x 2 [0, 1] n 2 N limn→∞ fn(x)
x 2 [0, 1] [0, 1]

f : [0, 1] ! R ε > 0
g, h : [0, 1] ! R g(x) 

f(x)  h(x) x 2 [0, 1]
ˆ 1

0

(h(x)� g(x)) dx < ε.

f : R ! R

f(x+ t) � f(x) t2

x t f

f : R2 ! R2

f x = (x1, x2) 2 R2 |f(x)|  1
|x| = 1 |f(x)|  1 |x|  1



ˆ

∞

−∞

ˆ

∞

−∞

e−|x−y|2

1 + |x+ y|2
dx dy.

r 6= 1 Cr = {(x, y) 2 R2 : (x� 1)2 + y2 = r}

ˆ

Cr

x dy � y dx

x2 + y2
,

Cr (1, 0)



Tier 1 Analysis Exam
January 6, 2014

Each problem below is worth 10 points. Answer each one on a new

sheet of paper, writing the problem number on every sheet. Use only

one side of each sheet, and fully justify all answers. Put your answers

in the correct order when you turn them in. You have 4 hours.

0.1. Suppose a metric space (X, d) has this property: Given any ε >
0 , there is a non-empty finite subset Xε ⇢ X such that for every

x 2 X, we have

inf{d(x, p) : p 2 Xε}  ε

a) Show that in this case, every sequence in X has a Cauchy
subsequence.

b) Give an example showing that (a) fails if we don’t require the
Xε’s to be finite.

0.2. For p, q 2 R3 , let |p| and p⇥q respectively denote the euclidean
norm of p, and the cross-product of p and q . Define d : R3 ⇥R3 !
[0,1) by

d(p, q) =

(

|p|+ |q|, p⇥ q 6= 0

|p � q|, p⇥ q = 0

a) Show that d is a metric on R3 .

b) Show that the closed unit d-ball centered at (0, 0, 0) is not
d-compact.

c) Show that the closed unit d-ball centered at (1, 1, 1) is d-
compact.

0.3. Assume f,ω : R ! R are functions, with ω(0) = 0. Assume too
that for some α > 1, we have

(1) f(b)  f(a) + ω(|b� a|)α for all a, b 2 R

a) Show that when ω is differentiable at x = 0, our assumptions
make f infinitely differentiable at every point.

b) Give an example showing that when α > 1 but ω is merely
continuous, our assumptions do not force differentiability of f
at all points.
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0.4. Show that every sequence in R has a weakly monotonic (i.e.
non-increasing, or non-decreasing) subsequence.

0.5. Show that the series converges, but not absolutely:

∞
X

n=1

✓

exp

✓

(�1)n

n

◆

� 1

◆

0.6. Consider this integral:
Z

∞

0

sin(xp) dx

a) Does it converge when p = 1 ?

b) Does it converge when p < 0 ?

c) Does it converge when p > 1 ?

0.7. Suppose f : [0,1) ! [0,1) is a continuous bijection and consider
the series

∞
X

n=1

nf(x2)

1 + n3f(x2)2

a) Show that the series converges pointwise for all x 2 R .

b) Show that it converges uniformly on [ε,1) when ε > 0 .

c) Show that it does not converge uniformly on R.

0.8. Let S denote the upper hemisphere of radius r > 0 centered at
0 2 R3, i.e.,

S = {(x, y, z) | x2 + y2 + z2 = r2 and z � 0}

and suppose F : R3 ! R3 is the vector field given by

F (x, y, z) =

0

@

x y2 tanh(x2 + z)

x+ y4 sin(z) e−x2

x2(x3 + 3) y e−x2
−y2−z2

1

A .
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Compute
Z

S

curl(F ) · n dS

where n is the upward pointing unit surface normal, and dS is the area
element on S.

0.9. Consider this system of equations in the variables u, v, s, t :

(uv)4 + (u+ s)3 + t = 0

sin(uv) + ev + t2 � 1 = 0.

Prove that near the origin 0 2 R4, its solutions form the graph of a
continuously differentiable function G : R2 ! R2. Clearly indicate
the dependent and independent variables.

0.10. Let

f(x, y) =

(

yx6+y3+x3y
x6+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

a) Show that all directional derivatives of f exist at (0, 0), and
depend linearly on the vector we differentiate along.

b) Show that nevertheless, f is not differentiable at (0, 0).



Tier I Analysis Exam, August 2014

Try to work all questions. Providing justification for your answers is crucial.

1. Suppose f : R → R is differentiable with f(0) = f(1) = 0 and

{x : f ′(x) = 0} ⊂ {x : f(x) = 0} .

Show that f(x) = 0 for all x ∈ [0, 1].

2. Let (an) be a bounded sequence for n = 1, 2, . . . such that

an ≥ (1/2)(an−1 + an+1) for n ≥ 2 .

Show that (an) converges.

3. Suppose K ⊂ Rn is a compact set and f : K → R is continuous. Let ε > 0 be given.

Prove that there exists a positive number M such that for all x and y in K one has the

inequality:

|f(x)− f(y)| ≤ M ∥x− y∥+ ε.

Here ∥·∥ denotes the Euclidean norm in Rn. Then give a counter-example to show that

the inequality is not in general true if one takes ε = 0.

4. Let f : Rn → Rn be a smooth function and let g : Rn → R be defined by

g(x1, . . . , xn) = x5
1 + . . .+ x5

n.

Suppose g ◦ f ≡ 0. Show that detDf ≡ 0.

5. The point (1,−1, 2) lies on both the surface described by the equation

x2(y2 + z2) = 5

and on the surface described by

(x− z)2 + y2 = 2.

Show that in a neighborhood of this point, the intersection of these two surfaces can be

described as a smooth curve in the form z = f(x), y = g(x). What is the direction of

the tangent to this curve at (1,−1, 2)?



6. For what smooth functions f : R3 → R is there a smooth vector field W : R3 → R3 such

that curlW = V , where

V (x, y, z) = (y, x, f(x, y, z))?

For f in this class, find such a W. Is it unique?

7. For each positive integer n let fn : [0, 1] → R be a continuous function, differentiable on

(0, 1], such that

|f ′

n(x)| ≤
1 + |ln x|√

x
for 0 < x ≤ 1.

and such that

−10 ≤
∫ 1

0

fn(x) dx ≤ 10.

Prove that {fn} has a uniformly convergent subsequence on [0, 1].

8. Define for n ≥ 2 and p > 0

Hn(p) =
n

∑

k=1

(log k)p and an(p) =
1

Hn(p)
.

For which p does
∑

n an(p) converge?

9. Given any continuous, piecewise smooth curve γ : [0, 1] → R2, consider the following

notion of its ‘length’ L̃ defined through the line integral:

L̃(γ) :=

∫

γ

|x| ds =

∫ 1

0

|x(t)|
√

x′(t)2 + y′(t)2 dt

where a point in R2 is written as (x, y) and γ(t) = (x(t), y(t)).

(a) Suppose we define a notion of distance d̃ between two points p1 and p2 in R2 via

d̃(p1, p2) := inf{L̃(γ) : γ(0) = p1, γ(1) = p2}.

Working through the definition of metric, determine which properties of a metric hold

for d̃, and which, if any, do not.

(b) Determine the value of d̃
(

(1, 1), (−1,−2)
)

and determine a curve achieving this

infimum.



Tier 1 Analysis Exam
January 5, 2015

You have 4 hours to work these 10 problems. Each is worth 10 points.

- Start each answer on on a clean sheet of paper

- Use only one side of each sheet

- Circle the prob. number in the upper-right corner of each sheet

- Fully justify all answers.

- Put your answers in the correct order before submitting them.

0.1. An open set U ⇢ Rn contains the closed origin-centered unit
ball B = B(0, 1) . If a C1 mapping f : U ! Rn with rank n obeys
kf(x)� xk < 1/2 for all x 2 U , show that

a) kfk2 must attain a minimum in the interior of B .

b) f(p) = 0 for some p 2 B.

0.2. Suppose f, g : R ! R, are functions that obey

f(x+ h) = f(x) + g(x)h+ a(x, h)

for all x, h 2 R, with |a(x, h)|  Ch3 for some constant C.

Show that f is affine (i.e., f(x) = mx+ b for some m, b 2 R ).

0.3. Suppose f is differentiable on an open interval containing [�1, 1].
Do not assume continuity of f 0.

a) Supposing f 0(�1)f 0(1) < 0 show that f 0(x) = 0 for some x 2
(�1, 1) .

b) Supposing that f 0(�1) < L < f 0(1) for some L 2 R, show
that f 0(x) = L for some x 2 (�1, 1) .

0.4. Suppose (X, d) is a complete metric space. Show that if every
continuous function on a subset U ⇢ X attains a minimum, then U
is closed.

0.5. Define the distance from a point p in a metric space (X, d) to a
subset Y ⇢ X by

d(p, Y ) := inf{d(x, y) : y 2 Y }

For any ε > 0 , define

Yε = {x 2 X : d(x, Y )  ε}
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Finally, given any two bounded sets A,B ⇢ X , define

dS(A,B) = inf{ε > 0: A ⇢ Bε and B ⇢ Aε}

(a) Show that dS yields a metric on the set of closed bounded subsets
of X.

(b) Show that dS fails to do so on the set of bounded subsets of X.

0.6. Determine whether the series converges or not.
1
X

j=1

⇣

e(�1)j sin(1/j) � 1
⌘

0.7. Let Br denote the ball |x|  r in R3, and write dSr for the
area element on its boundary ∂Br.

The electric field associated with a uniform charge distribution on ∂BR

may be expressed as

E(x) = C

Z

∂BR

rx|x� y|�1 dSy,

a) Show that for any r < R, the electric flux
R

∂Br
E(x) · ν dSx

through ∂Br equals zero.

b) Show that E(x) ⌘ 0 for |x| < R (“a conducting spherical shell
shields its interior from outside electrical effects”).

0.8. Let Q be a bounded closed rectangle in Rn, and suppose we have
functions f, g : Q ! R that, for some K > 0, satisfy

|f(x)� f(y)|  K |g(x)� g(y)|

and all x, y 2 Q . Prove that if g is Riemann integrable, then so is f .
Deduce further that integrability of f implies that of |f |.

0.9. Suppose f : U ! R is a differentiable function defined on an
open set U � [0, 1]2 . Assuming f(0, 0) = 3 and f(1, 1) = 1, prove
that for |rf | �

p
2 somewhere in U .

0.10. Consider this quadratic system in R4 :

a2 + b2 � c2 � d2 = 0

ac+ bd = 0

Show the system can be solved for (a, c) in terms of (b, d) (or vice-
versa) near any solution (a0, b0, c0, d0) 6= (0, 0, 0, 0). (You need not find
explicit solutions here.)



Analysis Tier I Exam

August 2015

• Be sure to fully justify all answers.

• Scoring: Each problem is worth 10 points.

• Please write on only one side of each sheet of paper. Begin

each problem on a new sheet, and be sure to write a problem

number on each sheet of paper.

• Please be sure that you assemble your test with the problems presented
in correct order.

1. Let f(x) be a continuous function on (0, 1] and

lim inf
x!0+

f(x) = α, lim sup
x!0+

f(x) = β.

Prove that for any ξ 2 [α,β], there exist {xn 2 (0, 1] | n = 1, 2, · · · }
such that

lim
n!1

f(xn) = ξ.

2. Let f(x) be a function which is defined and is continuously differ-
entiable on an open interval containing the closed interval [a,b], and
let

f�1(0) = {x 2 [a, b] | f(x) = 0}.

Assume that f�1(0) 6= ;, and for any x 2 f�1(0), f 0(x) 6= 0. Prove

the following assertions:

(a) f�1(0) is a finite set;

(b) Let p be the number of points in f�1(0) such that f 0(x) > 0, and
q be the number of points in f�1(0) such that f 0(x) < 0. Then

|p� q|  1.

3. Let
P1

n=1 an be a convergent positive term series (an � 0 for all n).

Show that
P1

n=1

p
an
n converges. Is the converse true?

1



4. Let f : R ! R be differentiable with f 0 uniformly continuous. Suppose
lim
x!1

f(x) = L for some L. Does lim
x!1

f 0(x) exist?

5. Let E ⇢ R be a set with the property that any countable family of
closed sets that cover E contains a finite subcollection which covers
E. Show that E must consist of finitely many points.

6. Suppose that a function f(x) is defined as the sum of a series:

f(x) = 1�
1

(2!)2
(2015x)2 +

1

(4!)2
(2015x)4 �

1

(6!)2
(2015x)6 + . . .

=
1X
k=0

(�1)k
1

((2k)!)2
(2015x)2k.

Evaluate Z 1

0
e�xf(x) dx.

7. Find the volume of the solid S in R3, which is the intersection of two
cylinders C1 = {(x, y, z) 2 R3; y2 + z2  1} and C2 = {(x, y, z) 2

R3; x2 + z2  1}.

8. Let f : Rn ! Rm be continuous. Suppose that f has the property
that for any compact set K ⇢ Rm, the set f�1(K) ⇢ Rn is bounded.
Prove that f(Rn) is a closed subset of Rm, or give a counterexample
to this claim.

9. Let F : R2 ! R have continuous second-order partial derivatives.
Find all points where the condition in the implicit function theorem
is satisfied so that F (x� y, y� z) = 0 defines an implicit function z =
z(x, y), and derive explicit formulas, in terms of partial derivatives of
F , for

∂z

∂x
,

∂z

∂y
,

∂2z

∂x∂y
.

10. Suppose that a monotone sequence of continuous functions {fn}
1
n=1

converges pointwise to a continuous function F on some closed interval
[a, b]. Prove that the convergence is uniform.

Note: In this problem by a monotone sequence of functions we mean a
sequence fn such that either fn(x)  fn+1(x) for all n and all x 2 [a, b],
or fn(x) � fn+1(x) for all n and all x 2 [a, b].

2



TIER I ANALYSIS EXAM, JANUARY 2016

Solve all nine problems. They all count equally. Show all computations.

1. Let a > 0 and let xn be a sequence of real numbers. Assume the sequence

yn =
x1 + x2 + . . .+ xn

na

is bounded. Show that for each b > a, the series

∞
∑

n=1

xn

nb

is convergent.

2. (a) Show that for each integer n ≥ 1 there exists exactly one x > 0 such that

1
√
nx+ 1

+
1

√
nx+ 2

+ . . .+
1

√
nx+ n

=
√
n.

(b) Call xn the solution from (a). Find

lim
n→∞

xn.

3. Let (X, d) be a compact metric space and let ρ be another metric on X such that

ρ(x, x′) ≤ d(x, x′), for all x, x′ ∈ X.

Show that for all ǫ > 0 there exists δ > 0 such that

ρ(x, x′) < δ =⇒ d(x, x′) < ǫ.

4. Prove that for each x ∈ R there is a choice of signs sn ∈ {−1, 1} such that the series

∞
∑

n=1

sn√
n

converges to x.
5. Assume the function f : R2 → R satisfies the property

f(x+ t, y + s) ≥ f(x, y)− s2 − t2,

for each (x, y) ∈ R2 and each (s, t) ∈ R2. Prove that f must be constant.

6. Assume f : [0, 1] → R is continuous and f(0) = 2016. Find

lim
n→∞

∫ 1

0

f(xn)dx.



7. Let f : R3 → R and g : R2 → R be two differentiable functions with f(x, y, z) = g(xy, yz)
and suppose that g(u, v) satisfies

g(2, 6) = 2,
∂g

∂u
(2, 6) = −1, and

∂g

∂v
(2, 6) = 3.

Show that the set S = {(x, y, z) ∈ R3 : f(x, y, z) = 2} admits a tangent plane at the point
(1, 2, 3), and find an equation for it.

8. Let C be the collection of all positively oriented (i.e. counter-clockwise) simple closed
curves C in the plane. Find

sup{

∫

C

(y3 − y)dx− 2x3dy : C ∈ C}.

Is the supremum attained?

9. Let
H = {(x, y, z) | z > 0 and x2 + y2 + z2 = R2}

be the upper hemisphere of the sphere of radius R centered at the origin in R3. Let F :
R3 → R3 be the vector field

F (x, y, z) =
(

x2 sin
(

y2 − z3
)

, xy4z + y, e−x2
−y2 + yz

)

Find

∫

H

F · n̂ dS where n̂ is the outward pointing unit surface normal and dS is the area

element.



TIER 1 ANALYSIS EXAM, AUGUST 2016

Directions: Be sure to use separate pieces of paper for different solutions. This exam
consists of nine questions and each counts equally. Credit may be given for partial
solutions.

(1) Let f : [0, 1] ! R be an nondecreasing function, and let D be the set of x 2 [0, 1]
such that f is not continuous at x. Is the set D necessarily compact? Fully
justify your answer.

(2) Show that there exist a real number " > 0 and a differentiable function f :
(�", ") ! R such that

ex
2+f(x) = 1� sin(x+ f(x)).

(3) Prove that the function f defined by

f(x) :=
∞
X

n=0

cos (n2x)

2nx

is continuous on the interval (0,1).

(4) Using only the definitions of continuity and (sequential) compactness, prove
that if K ⇢ R is (sequentially) compact and f : K ! R is continuous, then f
is uniformly continuous, that is, for all ✏ > 0, there exists � > 0 such that if
|x� y| < � then |f(x)� f(y)| < ✏.

(5) Show that if {xn}
∞

n=1 is a sequence of real numbers such that
limn→∞(xn+1�xn) = 0, then the set of limit of points of {xn} is connected, that
is, either empty, a single point, or an interval.

(6) Let a and b be positive numbers, and let Γ be the closed curve in R3 that
is the intersection of the surface {(x, y, z) : z = b · x · y} and the cylinder
{(x, y, z) : x2 + y2 = a2}. Let r be a parametrization of Γ so that the curve
is oriented counter-clockwise when looking down upon it from high up on the
z-axis. Compute

Z

Γ

F · dr.

where F is the vector valued function defined by F (x, y, z) = (y, z, x).

1



2 TIER 1 ANALYSIS EXAM, AUGUST 2016

(7) Let Ω = {(x, y) 2 R2 : y > 0}, and define f : Ω ! R by

f(x, y) =
2 +

p

(1 + x)2 + y2 +
p

(1� x)2 + y2
p
y

.

Show that f has achieves its minimum value on Ω at a unique point (x0, y0) 2 Ω
and find (x0, y0).

(8) Suppose that (an)
∞

n=1 is a bounded sequence of positive numbers. Show that

lim
n→∞

a1 + a2 + · · ·+ an
n

= 0

if and only if

lim
n→∞

a21 + a22 + · · ·+ a2n
n

= 0.

(9) Define d : Rn ⇥ Rn ! R by

d(x, y) =
kx� yk

kxk2 + kyk2 + 1

where kxk2 = x2
1 + · · ·+ x2

n. Let A ⇢ Rn be such that there exists ✏ > 0 so that
if a, b 2 A with a 6= b, then d(a, b) � ✏. Show that A is finite.



Tier 1 Analysis Exam
January 2017

Do all nine problems. They all count equally. Show your work and justify your answers.

1. Define a subset X of Rn to have property C if every sequence with exactly one ac-
cumulation point in X converges in X. (Recall that x is an accumulation point of a
sequence (xn) if every neighborhood of x contains infinitely many xn.)

(a) Give an example of a subset X ⇢ Rn, for some n � 1, that does not have property
C, together with an example of a non-converging sequence in X with exactly one
accumulation point.

(b) Show that any subset X of Rn satisfying property C is compact.

2. Prove that the sequence

a1 = 1, a2 =
p
7, a3 =

q

7
p
7, a4 =

r

7

q

7
p
7, a5 =

s

7

r

7

q

7
p
7, . . .

converges, then find its limit.

3. Given any metric space (X, d) show that d
1+d

is also a metric on X, and show that

(X, d
1+d

) shares the same family of metric balls as (X, d).

4. Suppose that a function f(x) is defined as the sum of series

f(x) =
X

n�3

⇣ 1

n� 1
� 1

n+ 1

⌘

sin(nx).

(a) Explain why f(x) is continuous.

(b) Evaluate
Z

π

0

f(x) dx.

5. Let h : R ! R be a continuously differentiable function with h(0) = 0, and consider
the following system of equations:

ex + h(y) = u2,

ey � h(x) = v2.

Show that there exists a neighborhood V ⇢ R2 of (1, 1) such that for each (u, v) 2 V
there is a solution (x, y) 2 R2 to this system.

6. Let n be a positive integer. Let f : Rn ! R be a continuous function. Assume that
f(~x) ! 0 whenever k~xk ! 1. Show that f is uniformly continuous on Rn.



7. Let fn(x) and f(x) be continuous functions on [0, 1] such that limn!1 fn(x) = f(x)
for all x 2 [0, 1]. Answer each of the following questions. If your answer is “yes”, then
provide an explanation. If your answer is “no”, then give a counterexample.

(a) Can we conclude that

lim
n!1

Z 1

0

fn(x)dx =

Z 1

0

f(x)dx?

(b) If in addition we assume |fn(x)|  2017 for all n and for all x 2 [0, 1], can we
conclude that

lim
n!1

Z 1

0

fn(x)dx =

Z 1

0

f(x)dx?

8. Evaluate the flux integral

ZZ

∂V

�!
F ·�!n dS, where the field

�!
F is

�!
F (x, y, z) = (xexy � 2xz + 2xy cos2 z)�!ı + (y2 sin2 z � yexy + y)�!| + (x2 + y2 + z2)

�!
k ,

and V is the (bounded) solid in R3 bounded by the xy-plane and the surface z =
9 � x2 � y2, @V is the boundary surface of V , and �!n is the outward pointing unit
normal vector on @V .

9. A continuously differentiable function f from [0, 1] to [0, 1] has the properties

(a) f(0) = f(1) = 0;

(b) f 0(x) is a non-increasing function of x.

Prove that the arclength of the graph of f does not exceed 3.



Tier I Analysis Exam
August, 2017

• Be sure to fully justify all answers.

• Scoring: Each problem is worth 10 points.

• Please write on only one side of each sheet of paper. Begin

each problem on a new sheet, and be sure to write a problem

number on each sheet of paper.

• Please be sure that you assemble your test with the problems presented
in correct order.

(1) Let X be the set of all functions f : N ! {0, 1}, taking only two values
0 and 1. Define the metric d on X by

d(f, g) =

8

<

:

0 if f = g,

1

2m
if m = min{n | f(n) 6= g(n)}.

(a) Prove that (X, d) is compact.
(b) Prove that no point in (X, d) is isolated.

(2) Let C[0, 1] be the space of all real continuous functions defined on the
interval [0, 1]. Define the distance on C[0, 1] by

d(f, g) = max
x2[0,1]

|f(x)� g(x)|.

Prove that the following set S ⇢ C[0, 1] is not compact:

S = {f 2 C[0, 1] | d(f, 0) = 1},

where 0 2 C[0, 1] stands for the constant function with value 0.

(3) Let F (x, y) =
P

1

n=1 sin(ny) · e
�n(x+y). Prove that there are a δ > 0

and a unique differentiable function y = ϕ(x) defined on (1� δ, 1 + δ),
such that

ϕ(1) = 0, F (x,ϕ(x)) = 0 8x 2 (1� δ, 1 + δ).

(4) Prove or find a counterexample: if f : Rn ! R is continuously
differentiable with f(0) = 0, then there exist continuous functions
g1, ..., gn : Rn ! R with

f(x) = x1g1(x1, ..., xn) + · · ·+ xngn(x1, ..., xn).



2

(5) Let {fn} be a sequence of real-valued, concave functions defined on an
open interval interval (�a, a) (�fn is convex). Let g : (�a, a) ! R.
Suppose fn and g are differentiable at 0,

lim inf fn(t) � g(t) for all t, and lim fn(0) = g(0).

Show that lim f 0

n(0) = g0(0).

(6) Let f(x, y) = x2y
x4+y2

for (x, y) 6= (0, 0).

(a) Can f be defined at (0, 0) so that fx(0, 0) and fy(0, 0) exist? Jus-

tify your answer.
(b) Can f be defined at (0, 0) so that f is differentiable at (0, 0)?

Justify your answer.

(7) Let f : [�1, 1] ! R with f, f 0, f 00, f 000 being continuous. Show that
1
X

n=2

⇢

n



f

✓

1

n

◆

� f

✓

�
1

n

◆�

� 2f 0(0)

�

converges absolutely.

(8) Let {fn} be a uniformly bounded sequence of continuous real-valued
functions on a closed interval [a, b], and let gn(x) =

R x

a
fn(t) dt for

each x 2 [a, b]. Show that the sequence of functions {gn} contains a
uniformly convergent subsequence on [a, b].

(9) Compute
R

D
xdxdy, where D ⇢ R2 is the region bounded by the

curves x = �y2, x = 2y � y2, and x = 2� 2y � y2. Show your work.

(10) Let

x0 > 0, xn+1 =
1

2

✓

xn +
4

xn

◆

, n = 0, 1, 2, 3, . . . .

Show that x = limn!1 xn exists, and find x.



Tier I Analysis January 2018

Problem 1. Let (X, dX) and (Y, dY ) be metric spaces. Let f : X ! Y be
surjective such that

1

2
dX(x, y)  dY (f(x), f(y))  2dX(x, y)

for all x, y 2 X. Show that if (X, dX) is complete, then also (Y, dY ) is
complete.

Problem 2. Show that

lim
n!1

 

2
p
n�

n
X

k=1

1p
k

!

exists.

Problem 3. Assume that bitter is a property of subsets of [0, 1] such that
the union of two bitter sets is bitter. Subsets of [0, 1] that are not bitter are
called sweet. Thus every subset of [0, 1] is either bitter or sweet. A sweet

spot of a set A ⇢ [0, 1] is a point x0 2 [0, 1] such that for every open set
U ⇢ R that contains x0, the set A \ U is sweet. Show that if A ⇢ [0, 1] is
sweet, then A has a sweet spot.

Problem 4. Let f and g be periodic functions defined on R, not necessarily
with the same period. Suppose that

lim
x!1

f(x)� g(x) = 0 .

Show that f(x) = g(x) for all x.

Problem 5. Let 0 < xn < 1 be an infinite sequence of real numbers such
that for all 0 < r < 1

X

xn<r

log
r

xn
 1 .

Show that 1
X

n=1

(1� xn) < 1 .

Problem 6. Suppose that the series
P1

n=1 an converges conditionally. Show
that the series 1

X

n=3

n(log n)(log log n)2an

diverges.

Problem 7. Find the absolute minimum of the function f(x, y, z) = xy +
yz + zx on the set g(x, y, z) = x2 + y2 + z2 = 12.

Problem 8. Let f : R2 ! R2 be a C1 map such that f�1(y) is a finite set
for all y 2 R2. Show that the determinant det df(x) of the Jacobi matrix of
f cannot vanish on an open subset of R2.

1



Problem 9. A regular surface is given by a continuously differentiable map
f : R2 ! R3 so that the differential dfx : R2 ! R3 has rank 2 for all x 2 R2.
The tangent plane Tx is the 2-dimensional subspace dfx(R

2) ⇢ R3. Assume
that a vector field X in R3 is orthogonal to Tx for all x, i.e. X(f(x)) ·Y = 0
for all x 2 R2 and all Y 2 Tx. Show that X · (r⇥X) = 0 at all points f(x).

Problem 10. Let f(x, y) be a function defined on R2 such that

- For any fixed x, the function y 7! f(x, y) is a polynomial in y;
- For any fixed y, the function x 7! f(x, y) is a polynomial in x.

Show that f is a polynomial, i.e.

f(x, y) =

N
X

i,j=0

aijx
iyj

with suitable ai,j 2 R, i, j = 0, . . . , N .



TIER I ANALYSIS EXAMINATION

August 2018

Instructions: There are ten problems, each of equal value. Show your work, justifying all
steps by direct calculation or by reference to an appropriate theorem.

Notation: For x = (x1, . . . , xn),y = (y1, . . . , yn) 2 Rn, |x| =
p

x2
1 + · · ·+ x2

n, and d(x,y) =
|x� y|.

1. Suppose (an)
1
n=1 is a sequence of positive real numbers and

P1
n=1 an = 1. Prove that there

exists a sequence of positive real numbers (bn)
1
n=1 such that limn!1 bn = 0 and

P1
n=1 anbn =

1.

2. Show that
P1

n=1 sin(x
n)/n! converges uniformly for x 2 R to a C1 function f : R ! R,

and compute an expression for the derivative. Justify this computation.

3. Let f : (0,1) ! R be differentiable. Show that the intersection of all tangent planes to
the surface z = xf(x/y) (x, y 2 (0,1)) is nonempty.

4. For x 2 R, let bxc denote the largest integer that is less than or equal to x. Prove that
1
X

n=1

(�1)b
p
nc

n

converges. Suggestion: The inequality

1

`+ 1
<

ˆ

`+1

`

1

x
dx <

1

`

might be helpful. You do not need to justify this inequality.

5. Let B be the closed unit ball in R2 with respect to the usual metric, d (defined above).
Let ⇢ be the metric on B defined by

⇢(x, y) =

(

|x� y| if x and y are on the same line through the origin,

|x|+ |y| otherwise,

for x,y 2 B. (Note that ⇢(x, y) is the minimum distance travelled in the usual metric in
going from x to y along lines through the origin.) Suppose f : B ! R is a function that is
uniformly continuous on B with respect to the metric ⇢ on B and the usual metric on R.
Prove that f is bounded.

6. Let

f(x) :=

(

sin x+ 2x2 sin 1
x

if x 6= 0,

0 if x = 0.

Prove or disprove: there exists ✏ > 0 such that f is invertible when restricted to (�✏, ✏).

1



2

7. Define a sequence of functions fn : [0, 2π] ⇢ R ! R by

fn(x) = esin(nx),

and define Fn(x) =
´ x

0
fn(y) dy. Show that there exists a subsequence (Fnk

)1k=1 of (Fn)
1
n=1

that converges uniformly on x 2 [0, 2π] to a continuous limit F∗.

8. Let a closed curve, γ, be parameterized by a function f : [0, 1] ! R2 with a continuous
derivative and f(0) = f(1). Suppose that

(1)

ˆ

γ

(y3 sin2 x dx� x5 cos2 y dy) = 0.

Show that there exists a pair {x, y} 6= {0, 1} with x 6= y and f(x) = f(y). Give an example
of a curve satisfying (1) such that the only pairs {x, y} with x 6= y and f(x) = f(y) are
subsets of {0, 1/2, 1}.

9. Fix a > 0. Let S be the half-ellipsoid defined by S :=
�

(x, y, z) 2 R3 : x2 + y2 + (z/a)2 =

1 and z � 0
 

. Let v be the vector field given by v(x, y, z) = (x, y, z + 1), and let n be the

outward unit normal field to the ellipsoid
�

(x, y, z) 2 R3 : x2 + y2 + (z/a)2 = 1
 

.

(a) From the fact that the volume of D :=
�

(x, y, z) 2 R3 : x2 + y2 + z2  1 and z � 0
is 2π/3, which you may assume without proof, use the change-of-variables formula in R3 to

find the volume of E :=
�

(x, y, z) 2 R3 : x2 + y2 + (z/a)2  1 and z � 0
 

.

(b) Evaluate
ˆˆ

S

v · n dA,

where dA denotes the surface area element.

10. Let f : Rn ! R be C2, let I denote the n⇥ n identity matrix, let

D2f(x) =

✓

∂2f(x)

∂xi ∂xj

◆

1≤i,j≤n

,

and assume that there exists a positive real number a such that D2f(x) � aI is positive
definite for all x 2 Rn, or equivalently, assume that there exists a positive real number a
such that Du[Duf ](x) � a for all unit vectors u 2 Rn and points x 2 Rn, where Du denotes

the directional derivative in the direction u. (You do not have to prove the equivalence of
these two versions of the assumption.)

(a) Let rf denote the gradient of f. Show that there exists a point x 2 Rn such that
rf(x) = 0.

(b) Show that the map rf : Rn ! Rn is onto.
(c) Show that the map rf : Rn ! Rn is globally invertible, and the inverse is C1.



TIER I ANALYSIS EXAM, JANUARY 2019

Solve all nine problems. They all count equally. Show all computations.

1. Let f : R → [0, 1] be continuous. Let x1 ∈ (0, 1). Define xn via the recurrence

xn+1 =
3

4
x2

n +
1

4

∫ |xn|

0

f, n ≥ 1.

Prove that xn is convergent and find its limit.

2. Suppose (X, d) is a compact metric space with an open cover {Ua}. Show that for some
ǫ > 0, every ball of radius ǫ is fully contained in at least one of the Ua’s.

3. Find

lim
N!∞

∞
∑

n=N

1

n1+
1

logN

.

Here log is the natural logarithm (in base e)

4. (a) Give an example of an everywhere differentiable function f : R → R whose derivative
f ′(x) is not continuous.

(b) Show that when f, g : R → R are functions, and for every ǫ > 0 , there exists a
δ = δ(ǫ) > 0 such that |h| < δ guarantees

∣

∣

∣

∣

f(x+ h)− f(x)

h
− g(x)

∣

∣

∣

∣

< ǫ

for all x ∈ R, then f ′ exists and is continuous at every x ∈ R.

5. (a) Give an example of a continuous function on (0, 1] that attains neither a max nor a
min on (0, 1].

(b) Show that a uniformly continuous function on (0, 1] must attain either a max or a
min on (0, 1].

6. Assume f : (0, 1)2 → R is continuous and has partial derivative ∂f

∂x
at each point (x, y)

satisfying

|∂f
∂x

(x, y)| ≥ 1.

Consider the set
Sδ = {(x, y) ∈ (0, 1)2 : |f(x, y)| ≤ δ}.

Prove that the area of Sδ is less than or equal to 4δ for each δ > 0.

7. Prove that there are real-valued continuously differentiable functions u(x, y) and v(x, y)
defined on a neighborhood of the point (1, 2) ∈ R

2 that satisfy the following system of
equations,

xu2 + yv2 + xy = 4

xv2 + yu2 − xy = 1.



8. Consider the upper hemi-ellipsoid surface Σ =
{

(x, y, z) ∈ R
3 : x2

a2
+ y2

b2
+ z2

c2
= 1 and z ≥ 0

}

for positive constants a, b, c ∈ R and define the vector field
⇀
F= (∂yf,−∂xf, 2) on Σ for some

smooth function f : R3 → R. Evaluate the surface integral

∫

Σ

⇀
F · ⇀n dS, where ⇀n is the

upper/outward pointing unit normal field of Σ.

9. Let f : R2 → R be continuous and suppose that for some R > 0, |f(x, y)| < e−
√

x2+y2

whenever
√

x2 + y2 ≥ R.
(a) Show that the integral

g(s, t) =

∫ ∫

R2

f(x, y)
(

(x− s)2 + (y − t)2
)

dxdy

converges for all (s, t) ∈ R
2

(b) Show that g is continuous on R
2.



Tier I ANALYSIS EXAM

August 2019

Try to solve all 9 problems. They each count the same amount. Justify your answers.

1. Consider the function f : R2 → R given by

f(x, y) =











xy2

x2+y4
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Show that the function f has a directional derivative in the direction of any unit

vector v ∈ R
2 at the origin.

(b) Show that the function f is not continuous at the origin.

2. (a) Prove that if the infinite series

(∗)
∞
∑

n=1

|an+1 − an| converges for some sequence {an} ⊂ R,

then necessarily the sequence {an} converges as well.

(b) Give an example of a sequence {an} such that (∗) holds while the series

∞
∑

n=1

an diverges.

3. Let f : [0, 1] → R be Riemann integrable and continuous at 0. Show that

lim
n!∞

∫ 1

0

f(xn)dx = f(0) .

4. Let

F = cos(y2 + z2)i+ sin(z2 + x2)j+ ex
2+y2k

be a vector field on R
3. Calculate

∫

S

F · dS, where the surface S is defined by

x2 + y2 = ez cos z, 0 ≤ z ≤ π/2, and oriented upward.



5. For positive integers n and m suppose f : Rn → R
m is continuous and suppose K ⊂ R

n

is compact. Give a proof that f(K) is compact, that is, give a proof of the fact that the

image of a compact set in R
n under a continuous map is compact.

6. Suppose that f : (0,∞) → (0,∞) is a differentiable and positive function. Show that

for any constant a > 1, it must hold that

lim inf
x!∞

f ′(x)
(

f(x)
)a ≤ 0.

Hint: You might consider an argument that proceeds by contradiction.

7. Prove that the following series

∞
∑

n=1

3n2 + x4 cos(nx)

n4 + x2

converges to a continuous function f : R → R.

8. Consider the two functions

F (x, y, z) := xe2y + yez − zex

and

G(x, y, z) := ln(1 + x+ 2y + 3z) + sin(2x− y + z).

(a) Argue that in a neighborhood of (0, 0, 0), the set

{(x, y, z) : F (x, y, z) = 0} ∩ {(x, y, z) : G(x, y, z) = 0}

can be represented as a continuously differentiable curve parametrized by x.

(b) Find a vector that is tangent to this curve at the origin.

9. Let {fn} be a monotone sequence of continuous functions on [a, b], that is, f1(x) ≤
f2(x) ≤ f3(x) ≤ · · · for all x ∈ [a, b]. Suppose {fn} converges pointwise to a function f

which is also continuous on [a, b], as n → ∞. Show that the convergence is uniform on

[a, b].



TIER 1 ANALYSIS EXAM, JANUARY 2020

Write the solution to each of the following problems on a separate, clearly iden-
tified page. Each problem is graded on a scale of zero to ten.

Problem 1. Let {an}n∈N be a sequence of nonnegative real numbers such that
limn→∞ an = 0. Show that there exist infinitely many n ∈ N with the following
property:

am ≤ an for every m ≥ n.

Problem 2. Let {an}n∈N be a sequence of nonnegative real numbers such that
limn→∞ an = 0 and

|an − an+1| ≤
1

n2
for every n ∈ N.

Prove that the alternating series
∑∞

n=1(−1)n−1an converges.

Problem 3. Denote by X the collection of all sequences x = {xn}n∈N with the
property that xn ∈ [0, 1] for every n ∈ N. Define a metric on X by

d(x, y) = sup
n∈N

|xn − yn|, x = {xn}n∈N, y = {yn}n∈N ∈ X.

Let f : X → R be a uniformly continuous function. Show that f is bounded.
(NOTE: Take for granted the fact that d is in fact a metric. The conclusion is not
correct if f is just continuous.)

Problem 4. Define a sequence {an}n∈N as follows:

a1 = 1, a2 =
√
2, a3 =

√

2
√
3, . . . , an =

√

2

√

3

√

· · ·
√
n, n ≥ 3.

Show that the sequence converges in R.

Problem 5. Let f : R2 → R be a differentiable function such that f(0, 0) = 0.
Show that the improper integral

∫∫

x2+y2≤1

f(x, y)

(x2 + y2)4/3
dxdy

converges, that is,

lim
ε↓0

∫∫

ε≤x2+y2≤1

f(x, y)

(x2 + y2)4/3
dxdy

exists.

Problem 6. Let f : R → (0,+∞) be a differentiable function such that f ′(x) >
f(x) for every x ∈ R.

(1) Show that there exists a constant k > 0 such that

(0.1) lim
x→∞

f(x)e−kx = +∞.

(2) Find the least upper bound of the numbers k for which (0.1) can be proved.
1
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Problem 7. Let f : R → R be a differentiable function such that f ′ is uniformly
continuous and limx→+∞ f(x) = 2020. Does the limit limx→+∞ f ′(x) necessarily
exist? (NOTE: Prove if true, provide an example if false.)

Problem 8. Let f : R → R be a continuous function such that f(x + 1) = f(x)
for every x ∈ R. Define functions fn : R → R, n ∈ N, as follows:

f1(x) = f(x), fn(x) =
1

2
(fn−1(x− 2−n) + fn−1(x+ 2−n)), x ∈ R, n ≥ 2.

Show that the sequence {fn}n∈N converges uniformly on R.

Problem 9. Let f : R2 → R2 be a continuously differentiable function. Suppose
that the Jacobian determinant detDf(0, 0) is equal to zero. Show that for every
ε > 0 there exist M, δ > 0 with the following property:

If Br is the closed disk of radius r < δ centered at (0, 0), then f(Br) is
contained in a rectangle with sides Mr and εr.



Analysis Tier I exam

August 2020

Instructions:

1. Be sure to fully justify all answers.

2. Please write on only one side of each sheet of paper. Begin each problem on a new
sheet, and be sure to write a problem number on each sheet of paper.

3. Please assemble your test with the problems in the proper order.

4. Each problem is worth 11 points.

Problem 1. Let x0 > 0 be a fixed real number and consider the sequence

xn+1 =
1

2

(

xn +
4

xn

)

, if n = 0, 1, 2, 3, . . . ,

(a) Show that xn+1 ≥ 2 , if n ≥ 0.
(b) Show that xn+1 ≤ xn , if n ≥ 1.
(c) Show that x = limn!∞ xn exists.
(d) Find x.

Problem 2. Find the value of
∫∫

E F · n dS where F(x, y, z) = (yz2, sinx, x2), E is the

upper half of the ellipsoid {x2 + y2 + 4z2 = 1, 0 ≤ z}, and n is the outward pointing unit
normal vector on the ellipsoid.

Problem 3. Find the value of

∫∫

D

1

4x+ y
exp

(

2x+ y

4x+ y

)

dxdy

where D is the quadrilateral with vertices (1,−2), (1/2,−1), (1,−3), (2,−6).

Problem 4. Find the absolute minimum of the function f : R4 → R given by

f(x, y, z, w) = x2y + y2z + z2w + w2x

on the set

S = {(x, y, z, w) ∈ R
4 : xyzw = 1 and x > 0, y > 0, z > 0, w > 0} .

Problem 5. Set a0 := 0 and define for k ≥ 1

ak =

√

1 +
1

2
+ . . .+

1

k
.



2

Assume furthermore that bk is sequence of positive real numbers such that
∑∞

k=1 b
2
k < ∞,

and that f : R2 → R is a continuous, positive valued function so that

f(x) ≤ bk when ak−1 ≤ |x| ≤ ak

for k = 1, 2, 3, . . .. Show that the improper integral
∫

R2 f(x) dx exists.

Problem 6. Let f be a continuous function on [0, 1] and twice differentiable on (0, 1) such

that f(0) = f(1) = 0 and |f ′′

(x)| < 2 for all x ∈ (0, 1).

(a) Show that f(x) ≥ x2 − x for all x ∈ [0, 1].

(b) Show that
∣

∣

∣

∣

∫ 1

0
f(x) dx

∣

∣

∣

∣

≤ 1

6
.

Problem 7. Let f : R2 → R
2 be a differentiable map (but not necessarily continuously dif-

ferentiable) with component functions f1 and f2, that is f(x1, x2) = (f1(x1, x2), f2(x1, x2))
for all (x1, x2) ∈ R

2. Suppose that for all (x1, x2) ∈ R
2, one has

∣

∣

∣

∣

∂f1
∂x1

(x1, x2)− 2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f1
∂x2

(x1, x2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f2
∂x1

(x1, x2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f2
∂x2

(x1, x2)− 2

∣

∣

∣

∣

≤ 1

2

Prove that f is one-to-one1 on R
2.

Problem 8. Let I be the interval [0, 1], and let f : I → R be a continuous function such
that

∫

I
f(x)xn dx = 0 for all n = 3, 4, 5 . . . .

Show that f(x) = 0 for all x ∈ I.

Problem 9. Let fn : [0, 1] → [0, 1] be a sequence of functions that converge uniformly to a
limit function f : [0, 1] → [0, 1]. Assume that each fn maps compact sets to compact sets.
Is it true that f also maps compact sets to compact sets? Note that we do not assume that
the fn are continuous. Either give a proof, or provide a detailed counterexample.

1i.e., injective



Tier 1 Analysis Exam
January 2021

Work all nine problems. They all count equally. Show computations and justify your answers;
a correct answer without a correct proof earns little credit. Write a solution of each problem
on a separate page. You have 4 hours.

Notation: For a function f : Rn → R, denote the partial derivative in the i-th coordinate
direction by Dif . The partial derivative of Dif in the j-th coordinate direction is likewise
denoted by Dijf := DjDif . The expression := is used to indicate a definition.

1. Let B(K) denote the set of bounded functions f : K → R, where K ⊂ R is compact.

(a) For f, g ∈ B(K), define

d(f, g) := sup
x∈K

|f(x) − g(x)|.

Show that d : B(K) × B(K) → R defines a metric on B(K).

(b) Show that the set C(K) of continuous functions f : K → R is a closed subset of
B(K) in the topology given by this metric.

2. Let an,m ∈ [0, 1] for all positive integers n and m. Suppose that for each n, we have
limm→∞ an,m = n/2n. For each of the following inequalities, prove that it must hold or
prove (with a counterexample) that it need not hold:

(a) lim inf
m→∞

∞
∑

n=1

an,m

n
≥ 1;

(b) lim sup
m→∞

∞
∑

n=1

an,m

n
≤ 1.

3. Let ak ≥ 0 for all nonnegative integers k. Suppose that
∑

∞

k=0
ak < ∞. Define

f(x) :=
∑

∞

k=0
akxk for x ∈ [0, 1]. Do not assume that b :=

∑

∞

k=0
k ak is finite.

(a) Show that (the left-hand derivative) f ′(1) = b.

(b) Show that limx→1− f ′(x) = b.

4. Let ak ≥ 0 for all nonnegative integers k. Suppose that
∑

∞

k=0
ak = 1,

∑

∞

k=0
k ak = 1,

and c :=
∑

∞

k=0
k(k − 1) ak is finite. Define f(x) :=

∑

∞

k=0
akxk for x ∈ [0, 1]. You may

assume without proof that limx→1− f ′(x) = 1 and limx→1− f ′′(x) = c. (These both
follow from problem 3(b).) Define

g(x) :=
1

1 − f(x)
−

1

1 − x

for x ∈ [0, 1). Show that limx→1− g(x) = c/2.

1



5. Consider a function f : R2 → R. Suppose that D1f exists at (0, 0). Suppose also that
D2f exists in a neighborhood of (0, 0) and is continuous at (0, 0). Prove that f is
differentiable at (0, 0).

6. Let f : R2 → R be twice continuously differentiable in a neighborhood of (0, 0), with
D2f(0, 0) = 0 and D22f(0, 0) > 0.

(a) Prove that there are ǫ, δ > 0 such that for each x ∈ (−ǫ, ǫ), the formula

g(x) := min{f(x, y) : |y| ≤ δ}

defines a differentiable function g : (−ǫ, ǫ) → R.

(b) Find a formula for g′(0) in terms of f and prove it.

7. Consider the function f : R2 → R given by f(x, y) := x4 + y4 − 4xy.

(a) Identify and classify all critical points of f on R2.

(b) Determine the minimum and maximum values of f on the curve x4 + y4 = 32.

8. Let Q ⊂ R denote the rationals. Show that the function f : R2 → R defined by

f(x, y) :=







x if (x, y) ∈ Q × Q,

y otherwise

is not Riemann integrable on the unit square [0, 1] × [0, 1] ⊂ R2.

9. Let S := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1 with y ≥ 0 and z ≥ 0} be the surface con-
sisting of a quarter of the unit sphere in R3. Let f : R → R be infinitely differentiable.
Define the vector field F : R3 → R3 by F(x, y, z) := (f(z) + x2y, xy2 + 1, xyz). Evalu-

ate the surface integral
∫

S
F · n̂ dS, where n̂ is the unit normal vector field of S pointing

away from the origin.

2
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❆✉❣✉st ✷✵✷✶

■♥str✉❝t✐♦♥s✿ ❚❤❡r❡ ❛r❡ ♥✐♥❡ ♣r♦❜❧❡♠s✱ ❡❛❝❤ ♦❢ ❡q✉❛❧ ✈❛❧✉❡✳ ❏✉st✐❢② ❛❧❧ ♦❢ ②♦✉r
st❡♣s✱ ❡✐t❤❡r ❜② ❞✐r❡❝t r❡❛s♦♥✐♥❣ ♦r ❜② r❡❢❡r❡♥❝❡ t♦ ❛♥ ❛♣♣r♦♣r✐❛t❡ t❤❡♦r❡♠✳

✶✳ ▲❡t N ❜❡ t❤❡ s❡t ♦❢ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs✳ ❉❡✜♥❡ ❛ ❞✐st❛♥❝❡ ❢✉♥❝t✐♦♥ d :
N × N → [0,∞) s✉❝❤ t❤❛t (N, d) ✐s ❛ ♠❡tr✐❝ s♣❛❝❡ t❤❛t ✐s ♥♦t ❝♦♠♣❧❡t❡✳ ❱❡r✐❢②
t❤❛t ②♦✉r ❝❤♦✐❝❡ ❢♦r d ✐s ✐♥❞❡❡❞ ❛ ♠❡tr✐❝✱ ❛♥❞ t❤❛t (N, d) ✐s ♥♦t ❝♦♠♣❧❡t❡✳

✷✳ ❋✐♥❞ ❛❧❧ ✈❛❧✉❡s ♦❢ x ❛♥❞ y ♠✐♥✐♠✐③✐♥❣ t❤❡ ❢✉♥❝t✐♦♥ f(x, y) = x/y + y/x
♦♥ t❤❡ s❡t x, y > 0✱ x2 + 2y2 = 3✳

✸✳ ▲❡t P ❜❡ t❤❡ s♦❧✐❞ ♣❛r❛❧❧❡❧❡♣✐♣❡❞ ✐♥ R3 ✇✐t❤ ✈❡rt✐❝❡s p0 = (0, 0, 0), p1 =
(1, 2, 3), p2 = (2,−1, 5), p3 = (−1, 7, 4), p4 = (3, 1, 8), p5 = (0, 9, 7), p6 =
(1, 6, 9), ❛♥❞ p7 = (2, 8, 12). ✭◆♦t❡✿ ■❢ t❤❡ pi ❛r❡ ❝♦♥s✐❞❡r❡❞ ❛s ✈❡❝t♦rs✱ t❤❡♥
p4 = p1 + p2, p5 = p1 + p3, p6 = p2 + p3, ❛♥❞ p7 = p1 + p2 + p3.) ❊✈❛❧✉❛t❡

ˆ ˆ ˆ

P

(−x+ 3y + z) dx dy dz.

✹✳ ▲❡t E ❜❡ t❤❡ sq✉❛r❡✲❜❛s❡❞ ♣②r❛♠✐❞ ✐♥ R3 ✇✐t❤ t♦♣ ✈❡rt❡① (1, 2, 5) ❛♥❞ ❜❛s❡
{(x, y, 0) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3}, ❛♥❞ ❧❡t S1, S2, S3, S4 ❜❡ t❤❡ ❢♦✉r tr✐❛♥❣✉❧❛r
s✐❞❡s ♦❢ E. ❉❡✜♥❡ t❤❡ ✈❡❝t♦r ✜❡❧❞ F : R3 → R3 ❜②

F(x, y, z) = (3x− y + 4z, x+ 5y − 2z, x2 + y2 − z).

❋✐♥❞
4

∑

j=1

ˆ ˆ

Sj

F · n dA,

✇❤❡r❡ n ✐s ❝❤♦s❡♥ t♦ ❜❡ t❤❡ ✉♥✐t ♥♦r♠❛❧ ✈❡❝t♦r t♦ Sj ✇✐t❤ ❛ ♣♦s✐t✐✈❡ ❝♦♠♣♦♥❡♥t
✐♥ t❤❡ z ❞✐r❡❝t✐♦♥✱ ❛♥❞ dA ✐♥❞✐❝❛t❡s t❤❛t t❤❡ ✐♥t❡❣r❛❧ ✐s ✇✐t❤ r❡s♣❡❝t t♦ s✉r❢❛❝❡
❛r❡❛ ♦♥ Sj .

✺✳ ❚❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
´∞

0
g(x) dx ♦❢ ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ g ✐s ❞❡✜♥❡❞

❛s limR→∞

´ R

0
g(x) dx ✇❤❡♥ t❤✐s ❧✐♠✐t ❡①✐sts✳ ▲❡t f ❜❡ ❝♦♥t✐♥✉♦✉s ♦♥ R2, ❛♥❞

s✉♣♣♦s❡ t❤❛t
´∞

0
f(x, y) dy ❡①✐sts ❢♦r ❡✈❡r② x ∈ [0, 1]✳ ❆ss✉♠❡ t❤❡r❡ ✐s ❛ ♣♦s✐t✐✈❡

❝♦♥st❛♥t C s✉❝❤ t❤❛t
∣

∣

∣

∣

ˆ ∞

z

f(x, y) dy

∣

∣

∣

∣

≤ C

log(2 + z)
, ❢♦r z > 0 ❛♥❞ 0 ≤ x ≤ 1.

❙❤♦✇ t❤❛t
´ 1

0

[

´∞

0
f(x, y) dy

]

dx =
´∞

0

[

´ 1

0
f(x, y) dx

]

dy✳

✶



✻✳ ❆ss✉♠❡ a1 ∈ (0, 1) ❛♥❞

an+1 = a3n − a2n + 1, ❢♦r n = 1, 2, 3, . . . .

✭❛✮ Pr♦✈❡ t❤❛t {an}∞n=1 ❝♦♥✈❡r❣❡s ❛♥❞ ✜♥❞ ✐ts ❧✐♠✐t✳
✭❜✮ ❋♦r bn = a1a2 · · · an, ♣r♦✈❡ t❤❛t {bn}∞n=1 ❝♦♥✈❡r❣❡s ❛♥❞ ✜♥❞ ✐ts ❧✐♠✐t✳

✼✳ ▲❡t {fn}∞n=1 ❜❡ ❛ ✉♥✐❢♦r♠❧② ❜♦✉♥❞❡❞ s❡q✉❡♥❝❡ ♦❢ ❝♦♥t✐♥♦✉s ❢✉♥❝t✐♦♥s

❞❡✜♥❡❞ ♦♥ [0, 1]× [0, 1], ❛♥❞ ❧❡t Fn(x, y) =
´ 1

y

[

´ 1

x
s−1/2t−1/3fn(s, t)ds

]

dt.

✭❛✮ ❙❤♦✇ t❤❛t✱ ❢♦r ❡❛❝❤ n, Fn(x, y) ✐s ✇❡❧❧✲❞❡✜♥❡❞ ✭♣♦ss✐❜❧② ❛s ❛♥ ✐t❡r❛t❡❞
✐♠♣r♦♣❡r ✐♥t❡❣r❛❧✮ ❢♦r (x, y) ∈ [0, 1] × [0, 1]✳ ✭❘❡❝❛❧❧ t❤❛t t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
´ 1

0
g(u) du ♦❢ ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ g ♦♥ (0, 1] ✐s ❞❡✜♥❡❞ ❛s limε→0+

´ 1

ε
g(u) du

✇❤❡♥ t❤✐s ❧✐♠✐t ❡①✐sts✳✮
✭❜✮ ❙❤♦✇ t❤❛t t❤❡ s❡q✉❡♥❝❡ {Fn}∞n=1 ❤❛s ❛ s✉❜s❡q✉❡♥❝❡ {Fnj

}∞j=1 t❤❛t ❝♦♥✲
✈❡r❣❡s ✉♥✐❢♦r♠❧② ♦♥ [0, 1]× [0, 1] t♦ ❛ ❝♦♥t✐♥✉♦✉s ❧✐♠✐t F.

✽✳ ❲❡ ❧❡t log x ❜❡ t❤❡ ♥❛t✉r❛❧ ❧♦❣❛r✐t❤♠ ✭✐♥ ❜❛s❡ e✮✳ ■s t❤❡ s❡r✐❡s

∑

n≥100

1

(log n)log logn

❝♦♥✈❡r❣❡♥t ♦r ❞✐✈❡r❣❡♥t❄ ❏✉st✐❢② ②♦✉r ❛♥s✇❡r✳

✾✳ ❙✉♣♣♦s❡ F : R3 → R ✐s ❝♦♥t✐♥✉♦✉s✱ ❛♥❞ ❢♦r ❡❛❝❤ (x, y) ∈ R2, z 7→
F (x, y, z) ✐s ❛ str✐❝t❧② ✐♥❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ z. ❙✉♣♣♦s❡ t❤❛t F (x0, y0, z0) = 0.

✭❛✮ Pr♦✈❡ t❤❛t t❤❡r❡ ❡①✐sts ❛♥ ♦♣❡♥ ♥❡✐❣❤❜♦r❤♦♦❞ U ♦❢ (x0, y0) ✐♥ R2 s✉❝❤
t❤❛t t❤❡r❡ ✐s ❛ ✉♥✐q✉❡ ❢✉♥❝t✐♦♥ g : U → R ✇✐t❤ F (x, y, g(x, y)) = 0 ❢♦r ❛❧❧
(x, y) ∈ U.

✭❜✮ ❙❤♦✇ t❤❛t g ✐s ❝♦♥t✐♥♦✉s ♦♥ U.

✷



TIER 1 ANALYSIS EXAMINATION

JANUARY 4, 2022

The complete solution to each of the problems below is worth 10 points, so 90
is the maximum score. Please write your solutions on separate sheets, use only one
side of each sheet, and make sure each page is labeled with a problem number.

(1) Define continuous functions fn : [0, 1] → R by

fn(x) =
1 + xn

1 + 2−n
, x ∈ R, n ∈ N.

Show that the sequence (fn)n∈N is not equicontinuous on [0, 1].

(2) Let (an)n∈N be a sequence of real numbers such that

∞
∑

n=1

|an − an+1| < +∞.

Show that (an)n∈N is a convergent sequence.

(3) Let f : R → [0,+∞) be a differentiable function such that both f and −f ′

are nonincreasing on R. Prove that

lim
x→+∞

f ′(x) = 0.

(4) Let G ⊂ R5 be the set of vectors A = (a0, a1, a2, a3, a4) with the property
that the quintic polynomial

PA(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + x5

has five distinct real roots. Prove that G is an open set.

(5) Does the improper integral
∫ ∞

0

cos(x2/3) dx

converge? Justify your answer.

(6) Let t0 be an arbitrary real number. Define a sequence (tn)n∈N by setting
tn = sin(cos(tn−1)) for n ≥ 1. Prove that this sequence converges and that
the limit does not depend of t0.

(7) Suppose that (an)n∈N is an unbounded, increasing sequence of positive
numbers. Show that the series

∞
∑

n=1

an+1 − an

an

diverges.

1



TIER 1 ANALYSIS EXAMINATION JANUARY 4, 2022 2

(8) Suppose that f : R2 → R is a continuous, compactly supported function.
Define a new function g : R2 → R by

g(x) =

∫

R2

f(y)

|x− y|
dy, x ∈ R2.

Prove that the improper integral does in fact converge and that the function
g is continuous. (Here x = (x1, x2), y = (y1, y2), |x| =

√

x2
1 + x2

2, and dy =
dy1dy2. Convergence of the improper integral means that the Riemann
integral

∫

ε<|x−y|<1/ε

f(y)

|x− y|
dy

has a limit as ε ↓ 0.)

(9) Let F1(x, y, z) = 6yz, F2(x, y, z) = 2xz, F3(x, y, z) = 4xy, and let α, γ :
[−π, π] → R3 be defined by

α(t) = (cos(t), sin(t), 0),

γ(t) = (cos(t), sin(t), 4 + (sin(t))(cos(t3))).

(a) Apply Stokes’ Theorem on the surface
S = {(cos(t), sin(t), z) : −π ≤ t ≤ π, 0 ≤ z ≤ 4 + (sin(t))(cos(t3))}
to express

∫

γ

(F1dx+ F2dy + F3dz)

in terms of
∫

α

(F1dx+ F2dy + F3dz).

(b) Use (a) to evaluate the first integral.



Tier 1 August 2022

(i) Be sure to fully justify all answers.

(ii) Please write on only one side of each sheet of paper. Begin each problem on
a new sheet, and be sure to write a problem number on each sheet of paper.

(iii) Please assemble your test with the problems in the proper order.

(iv) Each problem is worth 11 points.

1. For the sequence {xn} defined by 0 < x1 < 1 and

xn+1 = 1−
√
1− xn , n = 1, 2, 3, . . .

(a) Prove that the sequence {xn} decreases monotonically to zero as n→ ∞.
(b) Show that xn+1

xn

→ 1

2
as n→ ∞.

2. Suppose that {fn} is a sequence of increasing, real-valued functions on [a, b].
Just using the definitions, show that if {fn} converges pointwise to a continuous
function f on [a, b], then {fn} converges uniformly to f on [a, b].

3. Find the value of
∫∫

E
F · n dS where F(x, y, z) = (x, zex, y2), E is the upper

hemisphere {x2 + y2 + z2 = 1, z ≥ 0}, and n is the outward pointing unit normal
vector on the sphere. [Recall that the volume of a 3D unit ball is 4

3
π.]

4.
(a) SupposeG : R3 → R2 with component functions g1(x1, x2, x3) and g2(x1, x2, x3)

satisfies G(x0, y0, z0) = (0, 0) for some point (x0, y0, z0) ∈ R3. Carefully state under
what conditions on G there exist continuously differentiable functions φ : I → R

and ψ : I → R defined on some open interval I ∋ x0 such that the set of points
satisfying {(x1, x2, x3) : G(x1, x2, x3) = (0, 0)} in a neighborhood of (x0, y0, z0) can
be expressed as {

(

x1, φ(x1), ψ(x1)
)

: x1 ∈ I}.

(b) Suppose that f : R2 → R is continuously differentiable, that f(1, 1) = 1, and

∂f

∂x1
(1, 1) 6= 0,

∂f

∂x2
(1, 1) 6= 0,

(

∂f

∂x2
(1, 1)

)2

6= 1 .

Show that the system

f(x3, f(x1, x2)) = 1

f(f(x1, x3), x2) = 1

defines functions x2 = ϕ(x1), and x3 = ψ(x1) for x1 in a neighborhood of 1 satis-
fying the system

f(ψ(x1), f(x1, ϕ(x1))) = 1

f(f(x1, ψ(x1)), ϕ(x1)) = 1 .

1



2

5. Suppose f : [a, b] → R is Riemann-integrable, and moreover f(x) ≥ µ for all
x ∈ [a, b] for some constant µ > 0. Show that 1/f is also Riemann-integrable.

6. Consider the function f : R2 → R defined by

f(x, y) =

{

x3

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(a) Show that f is continuous at the origin.
(b) Show that f has a directional derivative in any direction at the origin.
(c) Decide whether or not f is differentiable at the origin. If it is differentiable,

calculate its derivative.

7. Let fn : R2 → R, n = 1, 2, 3 . . . be a sequence of continuously differentiable
functions that converge pointwise to a continuously differentiable function f . In
addition, suppose that for each n ∈ N, the point (0, 0) is a local minimum for fn.
Is it true that (0, 0) is a local minimum for f? If so, then prove it, and if not, then
provide a counterexample with explanation.

8. Carefully establish either the convergence or divergence of the improper integral
∫ ∞

3

lnx

xp ln(lnx)
dx where p is a positive constant.

Note: Your answer may depend on the value of p.

9. Define a function F : R → R by the formula

F (x) =

∞
∑

n=1

n−x.

(a) Prove that for any δ > 0 this series converges uniformly on the interval
[1 + δ,∞). Explain why this implies F is continuous on the interval 1 < x < ∞. Is
F continuous for 1 ≤ x < ∞?

(b) Now prove that F is continuously differentiable on the interval 1 < x < ∞
with

F ′(x) = −
∞
∑

n=1

lnn

nx
on this interval.

You may apply a theorem about the validity of term-wise differentiation of infinite
series but be sure to verify its hypotheses.
(Hint: Recall that for any positive real number a and any real number b, one can
define ab by the formula ab = eb ln a.)



Analysis Tier I Exam

January 2023

• Be sure to fully justify all answers.

• Scoring: Each problem is worth 11 points.

• Please write on only one side of each sheet of paper. Begin

each problem on a new sheet, and be sure to write a problem

number on each sheet of paper.

• Please be sure that you assemble your test with the problems presented
in correct order.

1. Let {fn} be a sequence of nonnegative, continuous, real-valued func-
tions on [0, 1] with the property that fn(x) ≤ fn+1(x) for all x ∈ [0, 1],
and n ∈ N. Assume that {fn} converges uniformly on [0, 1] to a func-
tion f . Show that

lim
n!∞

∫ 1

0

(

n
∑

k=1

(fk(x))
n
)1/n

dx =

∫ 1

0
f(x)dx.

2. Consider the infinite series

∑

a,b≥0

1

paqb
= 1 +

1

p
+

1

q
+

1

p2
+

1

p q
+

1

q2
+ · · ·

where p, q are distinct primes and the terms are reciprocals of positive
integers that are products of powers of p and powers of q. Thus in
the sum a, b range over all nonnegative integers. Prove that the series
converges and find the sum of the series.

3. Let {fn} be a sequence of continuous, real-valued functions on [0, 1]
with the property that for some function f on [0, 1],

lim
n!∞

fn(xn) = f(x)

for each sequence of points {xn} ⊂ [0, 1] with limn!∞ xn = x, and all
x ∈ [0, 1]. Prove or give a counterexample: {fn} converges uniformly
to f on [0, 1].

1



4. Does there exist a sequence {fn} of continuously differentiable func-
tions on R that converges uniformly to a limit function f that is not
differentiable at 0? Either give an example with full explanations or
show that such a sequence cannot exist.

5. Show that

lim
n!∞

(

√
1 +

√
2 + · · ·+√

n

n
− 2

3

√
n
)

= 0.

6. Let C be a simple closed curve that lies in the plane x + y + z = 1.
Show that the line integral

∫

C

zdx− 2xdy + 3ydz

only depends on the area of the region enclosed by C and not on the
shape of C or its position in the plane.

7. For a point x = (x1, x2, · · · , xn) in the unit cube [0, 1]n, let An(x) =∑
n

i=1
xi

n
be the average value of its coordinates.

(a) Show that for any δ ∈ (0, 1),

δ2
∫

Jδ

dx1 · · · dxn ≤ 1

12n

where Jδ = {x ∈ [0, 1]n : |An(x)− 1
2 | > δ}.

(b) Show that for any continuous function f on the interval [0, 1],

lim
n!∞

∫

[0,1]n
f(An(x)) dx1 · · · dxn = f(

1

2
).

You may use part (a).

8. Consider the function f : R3 → R defined by

f(x, y, z) = x2y + ex + z.

(a) Show that there exists a differentiable function φ defined in a
neighborhood U of (1,−1) in R2 such that φ(1,−1) = 0 and
f(φ(y, z), y, z) = 0 for all (y, z) ∈ U .

(b) Find the values of the gradient ∇φ(1,−1).

2



9. For n ≥ 2, let p : Rn → R be the polynomial p(x1, ..., xn) =
∑n

j=1 x
2j+1
j .

Suppose that f = (f1, f2, ..., fn) : R
n → Rn is a continuously differen-

tiable function with p(f(x1, ..., xn)) = 0 for all (x1, ..., xn) ∈ Rn. Show
det f ′(x1, ..., xn) = 0 for all (x1, ..., xn) ∈ Rn where

f
′ =



























∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· ·
· ·
· ·
· ·
· ·

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn
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Tier 1 Analysis Exam
August 2023

All ten problems count equally. Show computations and justify your answers; a correct answer
without a correct proof earns little credit. Write a solution of each problem on a separate page.
Write the problem number on each page. At the end, assemble your solutions with the problems in
increasing order. You have 4 hours.

Notation: For a function f : Rn → R, denote the partial derivative in the ith coordinate direction
by Dif . The partial derivative of Dif in the jth coordinate direction is likewise denoted by
Dijf := DjDif . The expression := is used to indicate a definition.

1. Fix a positive integer n. Let A ⊆ R
n be convex. Is the closure of A necessarily convex? Prove

that it is or give a counterexample with proof.

2. For fn(x) :=
∏n

j=1

(

1 + sin(x/j2)
)

, show that:

(a) for each x ∈ [0, 1], there exists a limit f(x) := limn→∞ fn(x);

(b) f is Riemann integrable on [0, 1] and limn→∞

∫ 1
0 fn(x) dx =

∫ 1
0 f(x) dx.

3. Compute the surface integral

I :=

∫∫

x+y+z=1
f(x, y, z) dS,

where

f(x, y, z) :=

{

1− x2 − y2 − z2 for x2 + y2 + z2 ≤ 1,

0 otherwise.

4. Does
∑

∞

n=1
(−1)⌊log10 n⌋

n
converge? Here, ⌊x⌋ denotes the greatest integer that is at most x.

5. For a positive integer n, let An be the arithmetic mean of the collection of 2n− 1 numbers√
2n− 1,

√

2(2n− 2),
√

3(2n− 3), . . . ,
√

(2n− 2)2,
√
2n− 1, that is, 1/(2n− 1) times their

sum. For large n, most of these numbers are of order n, so we would expect An also to have
order n. Evaluate limn→∞An/n.

6. Let (X, d) be a metric space such that inf
{

d(x, y)
∣

∣ x 6= y
}

= 0. Must X contain a Cauchy
sequence of pairwise distinct elements? Prove that it must or give a counterexample with
proof.

7. Let F (x, y, z) := 2x2 + y2 + z2 − 2xy − 2x+ z − 5.

(a) Use the implicit function theorem to prove that F (x, y, z) = 0 defines a compact two-
dimensional surface S embedded in R

3, in other words, a closed, bounded set S ⊂ R
3

that is locally describable near each point in S in the form of a graph of one of the
variables—not necessarily always the same one—as a function of the other two.

(b) Find the points (x, y, z) ∈ S with maximum and minimum values of z.

1



8. Let u = u(x, y) be twice continuously differentiable in a neighborhood of B1 :=
{

(x, y)
∣

∣

x2 + y2 ≤ 1
}

and satisfy

∂2u

∂x2
+

∂2u

∂y2
= ex

2+y2 .

Compute
∫∫

B1

(

x
∂u

∂x
+ y

∂u

∂y

)

dx dy.

Hint: Let S1 :=
{

(x, y)
∣

∣ x2 + y2 = 1
}

. Green’s first identity says that if w and v are twice
continuously differentiable in a neighborhood of B1, then

∫

S1

w
∂v

∂n
ds =

∫∫

B1

(

∂v

∂x

∂w

∂x
+

∂v

∂y

∂w

∂y

)

dx dy +

∫∫

B1

w

(

∂2v

∂x2
+

∂2v

∂y2

)

dx dy,

where the derivative with respect to n denotes the derivative with respect to the outer unit
normal.

9. Let u = u(x, y) be a twice continuously differentiable function defined on a neighborhood of
the origin in R

2. Also assume that ∂u
∂y

6= 0 in a neighborhood of the origin and u(0, 0) = 0.

(a) Prove that y is a twice continuously differentiable function of x and u, y = y(x, u),
defined in a neighborhood of (x, u) = (0, 0) such that y(0, 0) = 0.

(b) Show that under the condition that

(

∂u

∂y

)2 ∂2u

∂x2
− 2

∂u

∂x
· ∂u
∂y

· ∂2u

∂x∂y
+

(

∂u

∂x

)2 ∂2u

∂y2
= 0

in a neighborhood of the origin, we have ∂2y/∂x2 = 0 in a neighborhood of the origin.

Equivalently, we can rephrase this problem using the following notation. You may solve

the problem using either version of the statement. Let f be a C2 function defined on a
neighborhood of the origin in R

2. Also assume that D2f 6= 0 in a neighborhood of the origin
and f(0, 0) = 0.

(a) Prove the existence of a C2 function g in a neighborhood of the origin such that
f
(

x, g(x, u)
)

= u for (x, u) in a neighborhood of the origin and g(0, 0) = 0.

(b) Show that under the condition that

(D2f)
2D11f − 2(D1f)(D2f)(D12f) + (D1f)

2D22f = 0

in a neighborhood of the origin, we have D11g = 0 in a neighborhood of the origin.

10. Give an example of continuous functions f : R2 → R
2 and g : R2 → R such that f(0, 0) = (0, 0),

g(0, 0) = 0, and both f and g have directional derivatives at (0, 0) in all directions, but g ◦ f
does not. Note: to say that f has a directional derivative in a given direction means that each
of its component functions does.

2
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