1. Let \(\{f_n\} \) be a sequence of nonnegative, continuous, real-valued functions on \([0, 1]\) with the property that \(f_n(x) \leq f_{n+1}(x) \) for all \(x \in [0, 1] \), and \(n \in \mathbb{N} \). Assume that \(\{f_n\} \) converges uniformly on \([0, 1]\) to a function \(f \). Show that
\[
\lim_{n \to \infty} \int_0^1 \left(\sum_{k=1}^n (f_k(x))^n \right)^{1/n} dx = \int_0^1 f(x) dx.
\]

2. Consider the infinite series
\[
\sum_{a,b \geq 0} \frac{1}{p^a q^b} = 1 + \frac{1}{p + 1} + \frac{1}{q + 1} + \frac{1}{p^2} + \frac{1}{pq} + \frac{1}{q^2} + \cdots
\]
where \(p, q \) are distinct primes and the terms are reciprocals of positive integers that are products of powers of \(p \) and powers of \(q \). Thus in the sum \(a, b \) range over all nonnegative integers. Prove that the series converges and find the sum of the series.

3. Let \(\{f_n\} \) be a sequence of continuous, real-valued functions on \([0, 1]\) with the property that for some function \(f \) on \([0, 1]\),
\[
\lim_{n \to \infty} f_n(x_n) = f(x)
\]
for each sequence of points \(\{x_n\} \subset [0, 1] \) with \(\lim_{n \to \infty} x_n = x \), and all \(x \in [0, 1] \). Prove or give a counterexample: \(\{f_n\} \) converges uniformly to \(f \) on \([0, 1]\).
4. Does there exist a sequence \(\{ f_n \} \) of continuously differentiable functions on \(\mathbb{R} \) that converges uniformly to a limit function \(f \) that is not differentiable at 0? Either give an example with full explanations or show that such a sequence cannot exist.

5. Show that
\[
\lim_{n \to \infty} \left(\frac{\sqrt{1} + \sqrt{2} + \cdots + \sqrt{n}}{n} - \frac{2}{3} \sqrt{n} \right) = 0.
\]

6. Let \(C \) be a simple closed curve that lies in the plane \(x + y + z = 1 \). Show that the line integral
\[
\int_C z \, dx - 2xy \, dy + 3y \, dz
\]
only depends on the area of the region enclosed by \(C \) and not on the shape of \(C \) or its position in the plane.

7. For a point \(x = (x_1, x_2, \ldots, x_n) \) in the unit cube \([0,1]^n\), let \(A_n(x) = \frac{\sum_{i=1}^{n} x_i}{n} \) be the average value of its coordinates.
 (a) Show that for any \(\delta \in (0, 1) \),
 \[
 \delta^2 \int_{J_\delta} dx_1 \cdots dx_n \leq \frac{1}{12n}
 \]
 where \(J_\delta = \{ x \in [0,1]^n : |A_n(x) - \frac{1}{2}| > \delta \} \).
 (b) Show that for any continuous function \(f \) on the interval \([0,1]\),
 \[
 \lim_{n \to \infty} \int_{[0,1]^n} f(A_n(x)) \, dx_1 \cdots dx_n = f\left(\frac{1}{2}\right).
 \]
 You may use part (a).

8. Consider the function \(f : \mathbb{R}^3 \to \mathbb{R} \) defined by
\[
f(x, y, z) = x^2 y + e^x + z.
\]
 (a) Show that there exists a differentiable function \(\phi \) defined in a neighborhood \(U \) of \((1,-1)\) in \(\mathbb{R}^2 \) such that \(\phi(1,-1) = 0 \) and \(f(\phi(y,z),y,z) = 0 \) for all \((y,z) \in U\).
 (b) Find the values of the gradient \(\nabla \phi(1,-1) \).
9. For $n \geq 2$, let $p : \mathbb{R}^n \to \mathbb{R}$ be the polynomial $p(x_1, ..., x_n) = \sum_{j=1}^{n} x_j^{2j+1}$.

Suppose that $f = (f_1, f_2, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$ is a continuously differentiable function with $p(f(x_1, ..., x_n)) = 0$ for all $(x_1, ..., x_n) \in \mathbb{R}^n$. Show that $\det f'(x_1, ..., x_n) = 0$ for all $(x_1, ..., x_n) \in \mathbb{R}^n$ where

$$
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
$$