Tier 1 Exam-Analysis

January 2024

You may answer as many questions as you like and all questions count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. Write the problem number on each page. At the end, assemble your solutions with the problems in increasing order. You have 4 hours.

1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of real numbers such that the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge absolutely. Show that the series $\sum_{n=1}^{\infty} \sqrt{\left|\sin \left(a_{n} b_{n}\right)\right|}$ converges.
2. A decreasing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive numbers is given such that $\lim _{n \rightarrow \infty} a_{n}=0$ and the series $\sum_{n=1}^{\infty} a_{n}$ diverges. Define

$$
b_{n}= \begin{cases}-a_{n} & \text { if } n \text { is a multiple of } 3 \\ a_{n} & \text { if } n \text { is not a multiple of } 3 .\end{cases}
$$

Either show that the series $\sum_{n=1}^{\infty} b_{n}$ necessarily diverges or provide an example where it converges.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \neq x$ for every $x \in \mathbb{R}$, and let $a_{0} \in \mathbb{R}$. Define inductively $a_{n}=f\left(a_{n-1}\right)$ for $n \geq 1$. Show that the sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is monotone and unbounded.
4. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of positive numbers, and define

$$
A_{n}=\sum_{k=1}^{n} a_{k}, \quad B_{n}=\sum_{k=1}^{n} b_{k}, \quad n=1,2, \ldots
$$

Suppose that the sequence $\left(a_{n} / b_{n}\right)_{n=1}^{\infty}$ is nondecreasing and bounded.
(a) Prove that the sequence $\left(A_{n} / B_{n}\right)_{n=1}^{\infty}$ is also nondecreasing and bounded.
(b) Show that,

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}} \leq \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

5. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 10\right\}$, and let $f: D \rightarrow[-1,1]$ be a continuous function such that $|f(x, y)|<1$ whenever $x^{2}+y^{2}<10$. Show that the following limit exists and find its value:

$$
\lim _{n \rightarrow \infty} \iint_{D} f(x, y)^{n} d x d y
$$

6. Let $Q \subset \mathbb{R}^{2}$ be the square $[-2,2]^{2}$, and denote by γ its boundary, oriented counterclockwise. Show that the line integral

$$
\int_{\gamma} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

is equal to 2π.
7. Show that the formula

$$
f(x)=\sum_{n=0}^{\infty} \frac{\cos \left(3^{n} x\right)}{3^{n}}
$$

defines a continuous function on \mathbb{R} such that f has a maximum at $x=0$ but $f^{\prime}(0)$ does not exist.
8. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $g(x+1)=g(x)$ for every $x \in \mathbb{R}$. Show that the function

$$
f(x)=\int_{0}^{\infty} e^{-t} g(t x) d t, \quad x \in \mathbb{R}
$$

is uniformly continuous.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuously differentiable function whose Jacobian determinant is different from zero at every point. Suppose that the preimage $f^{-1}(B)$ is bounded whenever $B \subset \mathbb{R}^{2}$ is bounded. Show that f must be one-to-one and onto.

