# Tier 1 Analysis Exam 

August 2023

All ten problems count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. Write the problem number on each page. At the end, assemble your solutions with the problems in increasing order. You have 4 hours.

Notation: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denote the partial derivative in the $i$ th coordinate direction by $D_{i} f$. The partial derivative of $D_{i} f$ in the $j$ th coordinate direction is likewise denoted by $D_{i j} f:=D_{j} D_{i} f$. The expression $:=$ is used to indicate a definition.

1. Fix a positive integer $n$. Let $A \subseteq \mathbb{R}^{n}$ be convex. Is the closure of $A$ necessarily convex? Prove that it is or give a counterexample with proof.
2. For $f_{n}(x):=\prod_{j=1}^{n}\left(1+\sin \left(x / j^{2}\right)\right)$, show that:
(a) for each $x \in[0,1]$, there exists a limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$;
(b) $f$ is Riemann integrable on $[0,1]$ and $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x$.
3. Compute the surface integral

$$
I:=\iint_{x+y+z=1} f(x, y, z) \mathrm{d} S,
$$

where

$$
f(x, y, z):= \begin{cases}1-x^{2}-y^{2}-z^{2} & \text { for } x^{2}+y^{2}+z^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

4. Does $\sum_{n=1}^{\infty} \frac{(-1)^{\left\lfloor\log _{10} n\right\rfloor}}{n}$ converge? Here, $\lfloor x\rfloor$ denotes the greatest integer that is at most $x$.
5. For a positive integer $n$, let $A_{n}$ be the arithmetic mean of the collection of $2 n-1$ numbers $\sqrt{2 n-1}, \sqrt{2(2 n-2)}, \sqrt{3(2 n-3)}, \ldots, \sqrt{(2 n-2) 2}, \sqrt{2 n-1}$, that is, $1 /(2 n-1)$ times their sum. For large $n$, most of these numbers are of order $n$, so we would expect $A_{n}$ also to have order $n$. Evaluate $\lim _{n \rightarrow \infty} A_{n} / n$.
6. Let $(X, d)$ be a metric space such that $\inf \{d(x, y) \mid x \neq y\}=0$. Must $X$ contain a Cauchy sequence of pairwise distinct elements? Prove that it must or give a counterexample with proof.
7. Let $F(x, y, z):=2 x^{2}+y^{2}+z^{2}-2 x y-2 x+z-5$.
(a) Use the implicit function theorem to prove that $F(x, y, z)=0$ defines a compact twodimensional surface $\mathcal{S}$ embedded in $\mathbb{R}^{3}$, in other words, a closed, bounded set $\mathcal{S} \subset \mathbb{R}^{3}$ that is locally describable near each point in $\mathcal{S}$ in the form of a graph of one of the variables - not necessarily always the same one - as a function of the other two.
(b) Find the points $(x, y, z) \in \mathcal{S}$ with maximum and minimum values of $z$.
8. Let $u=u(x, y)$ be twice continuously differentiable in a neighborhood of $B_{1}:=\{(x, y) \mid$ $\left.x^{2}+y^{2} \leq 1\right\}$ and satisfy

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{x^{2}+y^{2}}
$$

Compute

$$
\iint_{B_{1}}\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

Hint: Let $S_{1}:=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$. Green's first identity says that if $w$ and $v$ are twice continuously differentiable in a neighborhood of $B_{1}$, then

$$
\int_{S_{1}} w \frac{\partial v}{\partial n} \mathrm{~d} s=\iint_{B_{1}}\left(\frac{\partial v}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial w}{\partial y}\right) \mathrm{d} x \mathrm{~d} y+\iint_{B_{1}} w\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \mathrm{d} x \mathrm{~d} y
$$

where the derivative with respect to $n$ denotes the derivative with respect to the outer unit normal.
9. Let $u=u(x, y)$ be a twice continuously differentiable function defined on a neighborhood of the origin in $\mathbb{R}^{2}$. Also assume that $\frac{\partial u}{\partial y} \neq 0$ in a neighborhood of the origin and $u(0,0)=0$.
(a) Prove that $y$ is a twice continuously differentiable function of $x$ and $u, y=y(x, u)$, defined in a neighborhood of $(x, u)=(0,0)$ such that $y(0,0)=0$.
(b) Show that under the condition that

$$
\left(\frac{\partial u}{\partial y}\right)^{2} \frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} u}{\partial x \partial y}+\left(\frac{\partial u}{\partial x}\right)^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

in a neighborhood of the origin, we have $\partial^{2} y / \partial x^{2}=0$ in a neighborhood of the origin.
Equivalently, we can rephrase this problem using the following notation. You may solve the problem using either version of the statement. Let $f$ be a $C^{2}$ function defined on a neighborhood of the origin in $\mathbb{R}^{2}$. Also assume that $D_{2} f \neq 0$ in a neighborhood of the origin and $f(0,0)=0$.
(a) Prove the existence of a $C^{2}$ function $g$ in a neighborhood of the origin such that $f(x, g(x, u))=u$ for $(x, u)$ in a neighborhood of the origin and $g(0,0)=0$.
(b) Show that under the condition that

$$
\left(D_{2} f\right)^{2} D_{11} f-2\left(D_{1} f\right)\left(D_{2} f\right)\left(D_{12} f\right)+\left(D_{1} f\right)^{2} D_{22} f=0
$$ in a neighborhood of the origin, we have $D_{11} g=0$ in a neighborhood of the origin.

10. Give an example of continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(0,0)=(0,0)$, $g(0,0)=0$, and both $f$ and $g$ have directional derivatives at ( 0,0 ) in all directions, but $g \circ f$ does not. Note: to say that $f$ has a directional derivative in a given direction means that each of its component functions does.
