Tier 1 Analysis Exam
 January 2021

Work all nine problems. They all count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. You have 4 hours.

Notation: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denote the partial derivative in the i-th coordinate direction by $D_{i} f$. The partial derivative of $D_{i} f$ in the j-th coordinate direction is likewise denoted by $D_{i j} f:=D_{j} D_{i} f$. The expression $:=$ is used to indicate a definition.

1. Let $B(K)$ denote the set of bounded functions $f: K \rightarrow \mathbb{R}$, where $K \subset \mathbb{R}$ is compact.
(a) For $f, g \in B(K)$, define

$$
d(f, g):=\sup _{x \in K}|f(x)-g(x)|
$$

Show that $d: B(K) \times B(K) \rightarrow \mathbb{R}$ defines a metric on $B(K)$.
(b) Show that the set $C(K)$ of continuous functions $f: K \rightarrow \mathbb{R}$ is a closed subset of $B(K)$ in the topology given by this metric.
2. Let $a_{n, m} \in[0,1]$ for all positive integers n and m. Suppose that for each n, we have $\lim _{m \rightarrow \infty} a_{n, m}=n / 2^{n}$. For each of the following inequalities, prove that it must hold or prove (with a counterexample) that it need not hold:
(a) $\liminf _{m \rightarrow \infty} \sum_{n=1}^{\infty} \frac{a_{n, m}}{n} \geq 1$;
(b) $\limsup _{m \rightarrow \infty} \sum_{n=1}^{\infty} \frac{a_{n, m}}{n} \leq 1$.
3. Let $a_{k} \geq 0$ for all nonnegative integers k. Suppose that $\sum_{k=0}^{\infty} a_{k}<\infty$. Define $f(x):=\sum_{k=0}^{\infty} a_{k} x^{k}$ for $x \in[0,1]$. Do not assume that $b:=\sum_{k=0}^{\infty} k a_{k}$ is finite.
(a) Show that (the left-hand derivative) $f^{\prime}(1)=b$.
(b) Show that $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=b$.
4. Let $a_{k} \geq 0$ for all nonnegative integers k. Suppose that $\sum_{k=0}^{\infty} a_{k}=1, \sum_{k=0}^{\infty} k a_{k}=1$, and $c:=\sum_{k=0}^{\infty} k(k-1) a_{k}$ is finite. Define $f(x):=\sum_{k=0}^{\infty} a_{k} x^{k}$ for $x \in[0,1]$. You may assume without proof that $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=1$ and $\lim _{x \rightarrow 1^{-}} f^{\prime \prime}(x)=c$. (These both follow from problem 3(b).) Define

$$
g(x):=\frac{1}{1-f(x)}-\frac{1}{1-x}
$$

for $x \in[0,1)$. Show that $\lim _{x \rightarrow 1^{-}} g(x)=c / 2$.
5. Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose that $D_{1} f$ exists at $(0,0)$. Suppose also that $D_{2} f$ exists in a neighborhood of $(0,0)$ and is continuous at $(0,0)$. Prove that f is differentiable at $(0,0)$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be twice continuously differentiable in a neighborhood of $(0,0)$, with $D_{2} f(0,0)=0$ and $D_{22} f(0,0)>0$.
(a) Prove that there are $\epsilon, \delta>0$ such that for each $x \in(-\epsilon, \epsilon)$, the formula

$$
g(x):=\min \{f(x, y):|y| \leq \delta\}
$$

defines a differentiable function $g:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$.
(b) Find a formula for $g^{\prime}(0)$ in terms of f and prove it.
7. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y):=x^{4}+y^{4}-4 x y$.
(a) Identify and classify all critical points of f on \mathbb{R}^{2}.
(b) Determine the minimum and maximum values of f on the curve $x^{4}+y^{4}=32$.
8. Let $\mathbb{Q} \subset \mathbb{R}$ denote the rationals. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y):= \begin{cases}x & \text { if }(x, y) \in \mathbb{Q} \times \mathbb{Q} \\ y & \text { otherwise }\end{cases}
$$

is not Riemann integrable on the unit square $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
9. Let $S:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right.$ with $y \geq 0$ and $\left.z \geq 0\right\}$ be the surface consisting of a quarter of the unit sphere in \mathbb{R}^{3}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely differentiable. Define the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $\mathbf{F}(x, y, z):=\left(f(z)+x^{2} y, x y^{2}+1, x y z\right)$. Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \hat{n} d S$, where \hat{n} is the unit normal vector field of S pointing away from the origin.

