Tier 1 Analysis Exam January 2021

Work all nine problems. They all count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. You have 4 hours.

Notation: For a function $f: \mathbb{R}^n \to \mathbb{R}$, denote the partial derivative in the *i*-th coordinate direction by $D_i f$. The partial derivative of $D_i f$ in the *j*-th coordinate direction is likewise denoted by $D_{ij}f := D_j D_i f$. The expression := is used to indicate a definition.

- 1. Let B(K) denote the set of bounded functions $f: K \to \mathbb{R}$, where $K \subset \mathbb{R}$ is compact.
 - (a) For $f, g \in B(K)$, define

$$d(f,g) := \sup_{x \in K} |f(x) - g(x)|.$$

Show that $d: B(K) \times B(K) \to \mathbb{R}$ defines a metric on B(K).

- (b) Show that the set C(K) of continuous functions $f: K \to \mathbb{R}$ is a closed subset of B(K) in the topology given by this metric.
- 2. Let $a_{n,m} \in [0, 1]$ for all positive integers n and m. Suppose that for each n, we have $\lim_{m\to\infty} a_{n,m} = n/2^n$. For each of the following inequalities, prove that it must hold or prove (with a counterexample) that it need not hold:

(a)
$$\liminf_{m \to \infty} \sum_{n=1}^{\infty} \frac{a_{n,m}}{n} \ge 1;$$

(b)
$$\limsup_{m \to \infty} \sum_{n=1}^{\infty} \frac{a_{n,m}}{n} \le 1.$$

- 3. Let $a_k \ge 0$ for all nonnegative integers k. Suppose that $\sum_{k=0}^{\infty} a_k < \infty$. Define $f(x) := \sum_{k=0}^{\infty} a_k x^k$ for $x \in [0, 1]$. Do not assume that $b := \sum_{k=0}^{\infty} k a_k$ is finite.
 - (a) Show that (the left-hand derivative) f'(1) = b.
 - (b) Show that $\lim_{x\to 1^-} f'(x) = b$.
- 4. Let $a_k \ge 0$ for all nonnegative integers k. Suppose that $\sum_{k=0}^{\infty} a_k = 1$, $\sum_{k=0}^{\infty} k a_k = 1$, and $c := \sum_{k=0}^{\infty} k(k-1) a_k$ is finite. Define $f(x) := \sum_{k=0}^{\infty} a_k x^k$ for $x \in [0, 1]$. You may assume without proof that $\lim_{x\to 1^-} f'(x) = 1$ and $\lim_{x\to 1^-} f''(x) = c$. (These both follow from problem 3(b).) Define

$$g(x) := \frac{1}{1 - f(x)} - \frac{1}{1 - x}$$

for $x \in [0, 1)$. Show that $\lim_{x \to 1^{-}} g(x) = c/2$.

- 5. Consider a function $f \colon \mathbb{R}^2 \to \mathbb{R}$. Suppose that $D_1 f$ exists at (0,0). Suppose also that $D_2 f$ exists in a neighborhood of (0,0) and is continuous at (0,0). Prove that f is differentiable at (0,0).
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be twice continuously differentiable in a neighborhood of (0,0), with $D_2 f(0,0) = 0$ and $D_{22} f(0,0) > 0$.
 - (a) Prove that there are $\epsilon, \delta > 0$ such that for each $x \in (-\epsilon, \epsilon)$, the formula

$$g(x) := \min\{f(x, y) : |y| \le \delta\}$$

defines a differentiable function $g: (-\epsilon, \epsilon) \to \mathbb{R}$.

- (b) Find a formula for g'(0) in terms of f and prove it.
- 7. Consider the function $f \colon \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) := x^4 + y^4 4xy$.
 - (a) Identify and classify all critical points of f on \mathbb{R}^2 .
 - (b) Determine the minimum and maximum values of f on the curve $x^4 + y^4 = 32$.
- 8. Let $\mathbb{Q} \subset \mathbb{R}$ denote the rationals. Show that the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) := \begin{cases} x & \text{if } (x,y) \in \mathbb{Q} \times \mathbb{Q}, \\ y & \text{otherwise} \end{cases}$$

is not Riemann integrable on the unit square $[0,1] \times [0,1] \subset \mathbb{R}^2$.

9. Let $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 \text{ with } y \ge 0 \text{ and } z \ge 0\}$ be the surface consisting of a quarter of the unit sphere in \mathbb{R}^3 . Let $f : \mathbb{R} \to \mathbb{R}$ be infinitely differentiable. Define the vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ by $\mathbf{F}(x, y, z) := (f(z) + x^2y, xy^2 + 1, xyz)$. Evaluate the surface integral $\int_S \mathbf{F} \cdot \hat{n} \, dS$, where \hat{n} is the unit normal vector field of S pointing away from the origin.