## TIER 1 ANALYSIS EXAM

August 2021
Instructions: There are nine problems, each of equal value. Justify all of your steps, either by direct reasoning or by reference to an appropriate theorem.

1. Let $\mathbb{N}$ be the set of positive integers. Define a distance function $d$ : $\mathbb{N} \times \mathbb{N} \rightarrow[0, \infty)$ such that $(\mathbb{N}, d)$ is a metric space that is not complete. Verify that your choice for $d$ is indeed a metric, and that $(\mathbb{N}, d)$ is not complete.
2. Find all values of $x$ and $y$ minimizing the function $f(x, y)=x / y+y / x$ on the set $x, y>0, x^{2}+2 y^{2}=3$.
3. Let $P$ be the solid parallelepiped in $\mathbb{R}^{3}$ with vertices $p_{0}=(0,0,0), p_{1}=$ $(1,2,3), p_{2}=(2,-1,5), p_{3}=(-1,7,4), p_{4}=(3,1,8), p_{5}=(0,9,7), p_{6}=$ $(1,6,9)$, and $p_{7}=(2,8,12)$. (Note: If the $p_{i}$ are considered as vectors, then $p_{4}=p_{1}+p_{2}, p_{5}=p_{1}+p_{3}, p_{6}=p_{2}+p_{3}$, and $p_{7}=p_{1}+p_{2}+p_{3}$.) Evaluate

$$
\iiint_{P}(-x+3 y+z) d x d y d z
$$

4. Let $E$ be the square-based pyramid in $\mathbb{R}^{3}$ with top vertex $(1,2,5)$ and base $\{(x, y, 0): 0 \leq x \leq 3,0 \leq y \leq 3\}$, and let $S_{1}, S_{2}, S_{3}, S_{4}$ be the four triangular sides of $E$. Define the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\mathbf{F}(x, y, z)=\left(3 x-y+4 z, x+5 y-2 z, x^{2}+y^{2}-z\right)
$$

Find

$$
\sum_{j=1}^{4} \iint_{S_{j}} \mathbf{F} \cdot \mathbf{n} d A
$$

where $\mathbf{n}$ is chosen to be the unit normal vector to $S_{j}$ with a positive component in the $z$ direction, and $d A$ indicates that the integral is with respect to surface area on $S_{j}$.
5. The improper integral $\int_{0}^{\infty} g(x) d x$ of a continuous function $g$ is defined as $\lim _{R \rightarrow \infty} \int_{0}^{R} g(x) d x$ when this limit exists. Let $f$ be continuous on $\mathbb{R}^{2}$, and suppose that $\int_{0}^{\infty} f(x, y) d y$ exists for every $x \in[0,1]$. Assume there is a positive constant $C$ such that

$$
\left|\int_{z}^{\infty} f(x, y) d y\right| \leq \frac{C}{\log (2+z)}, \text { for } z>0 \text { and } 0 \leq x \leq 1
$$

Show that $\int_{0}^{1}\left[\int_{0}^{\infty} f(x, y) d y\right] d x=\int_{0}^{\infty}\left[\int_{0}^{1} f(x, y) d x\right] d y$.
6. Assume $a_{1} \in(0,1)$ and

$$
a_{n+1}=a_{n}^{3}-a_{n}^{2}+1, \text { for } n=1,2,3, \ldots
$$

(a) Prove that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges and find its limit.
(b) For $b_{n}=a_{1} a_{2} \cdots a_{n}$, prove that $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges and find its limit.
7. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a uniformly bounded sequence of continous functions defined on $[0,1] \times[0,1]$, and let $F_{n}(x, y)=\int_{y}^{1}\left[\int_{x}^{1} s^{-1 / 2} t^{-1 / 3} f_{n}(s, t) d s\right] d t$.
(a) Show that, for each $n, F_{n}(x, y)$ is well-defined (possibly as an iterated improper integral) for $(x, y) \in[0,1] \times[0,1]$. (Recall that the improper integral $\int_{0}^{1} g(u) d u$ of a continuous function $g$ on $(0,1]$ is defined as $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} g(u) d u$ when this limit exists.)
(b) Show that the sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ has a subsequence $\left\{F_{n_{j}}\right\}_{j=1}^{\infty}$ that converges uniformly on $[0,1] \times[0,1]$ to a continuous limit $F$.
8. We let $\log x$ be the natural logarithm (in base $e$ ). Is the series

$$
\sum_{n \geq 100} \frac{1}{(\log n)^{\log \log n}}
$$

convergent or divergent? Justify your answer.
9. Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous, and for each $(x, y) \in \mathbb{R}^{2}, z \mapsto$ $F(x, y, z)$ is a strictly increasing function of $z$. Suppose that $F\left(x_{0}, y_{0}, z_{0}\right)=0$.
(a) Prove that there exists an open neighborhood $U$ of $\left(x_{0}, y_{0}\right)$ in $\mathbb{R}^{2}$ such that there is a unique function $g: U \rightarrow \mathbb{R}$ with $F(x, y, g(x, y))=0$ for all $(x, y) \in U$.
(b) Show that $g$ is continous on $U$.

