TIER 1 ANALYSIS EXAM

August 2021

Instructions: There are nine problems, each of equal value. Justify all of your steps, either by direct reasoning or by reference to an appropriate theorem.

- **1.** Let \mathbb{N} be the set of positive integers. Define a distance function $d: \mathbb{N} \times \mathbb{N} \to [0, \infty)$ such that (\mathbb{N}, d) is a metric space that is not complete. Verify that your choice for d is indeed a metric, and that (\mathbb{N}, d) is not complete.
- **2.** Find all values of x and y minimizing the function f(x,y) = x/y + y/x on the set x, y > 0, $x^2 + 2y^2 = 3$.
- **3.** Let P be the solid parallelepiped in \mathbb{R}^3 with vertices $p_0 = (0,0,0)$, $p_1 = (1,2,3)$, $p_2 = (2,-1,5)$, $p_3 = (-1,7,4)$, $p_4 = (3,1,8)$, $p_5 = (0,9,7)$, $p_6 = (1,6,9)$, and $p_7 = (2,8,12)$. (Note: If the p_i are considered as vectors, then $p_4 = p_1 + p_2$, $p_5 = p_1 + p_3$, $p_6 = p_2 + p_3$, and $p_7 = p_1 + p_2 + p_3$.) Evaluate

$$\int \int \int_{P} (-x + 3y + z) dx dy dz.$$

4. Let E be the square-based pyramid in \mathbb{R}^3 with top vertex (1,2,5) and base $\{(x,y,0): 0 \leq x \leq 3, 0 \leq y \leq 3\}$, and let S_1, S_2, S_3, S_4 be the four triangular sides of E. Define the vector field $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$\mathbf{F}(x, y, z) = (3x - y + 4z, x + 5y - 2z, x^2 + y^2 - z).$$

Find

$$\sum_{j=1}^{4} \int \int_{S_j} \mathbf{F} \cdot \mathbf{n} \ dA,$$

where **n** is chosen to be the unit normal vector to S_j with a positive component in the z direction, and dA indicates that the integral is with respect to surface area on S_j .

5. The improper integral $\int_0^\infty g(x)\,dx$ of a continuous function g is defined as $\lim_{R\to\infty}\int_0^R g(x)\,dx$ when this limit exists. Let f be continuous on \mathbb{R}^2 , and suppose that $\int_0^\infty f(x,y)\,dy$ exists for every $x\in[0,1]$. Assume there is a positive constant C such that

$$\left| \int_z^\infty f(x,y) \, dy \right| \le \frac{C}{\log(2+z)}, \text{ for } z > 0 \text{ and } 0 \le x \le 1.$$

Show that $\int_0^1 \left[\int_0^\infty f(x,y) \, dy \right] dx = \int_0^\infty \left[\int_0^1 f(x,y) \, dx \right] dy$.

6. Assume $a_1 \in (0,1)$ and

$$a_{n+1} = a_n^3 - a_n^2 + 1$$
, for $n = 1, 2, 3, \dots$

- (a) Prove that $\{a_n\}_{n=1}^{\infty}$ converges and find its limit. (b) For $b_n = a_1 a_2 \cdots a_n$, prove that $\{b_n\}_{n=1}^{\infty}$ converges and find its limit.
- 7. Let $\{f_n\}_{n=1}^{\infty}$ be a uniformly bounded sequence of continous functions defined on $[0,1]\times[0,1]$, and let $F_n(x,y)=\int_y^1\left[\int_x^1s^{-1/2}t^{-1/3}f_n(s,t)ds\right]dt$.
- (a) Show that, for each n, $F_n(x,y)$ is well-defined (possibly as an iterated improper integral) for $(x,y) \in [0,1] \times [0,1]$. (Recall that the improper integral $\int_0^1 g(u) \ du$ of a continuous function g on (0,1] is defined as $\lim_{\varepsilon \to 0^+} \int_{\varepsilon}^1 g(u) \ du$ when this limit exists.)
- (b) Show that the sequence $\{F_n\}_{n=1}^{\infty}$ has a subsequence $\{F_{n_j}\}_{j=1}^{\infty}$ that converges uniformly on $[0,1] \times [0,1]$ to a continuous limit F.
 - **8.** We let $\log x$ be the natural logarithm (in base e). Is the series

$$\sum_{n>100} \frac{1}{(\log n)^{\log\log n}}$$

convergent or divergent? Justify your answer.

- **9.** Suppose $F: \mathbb{R}^3 \to \mathbb{R}$ is continuous, and for each $(x,y) \in \mathbb{R}^2$, $z \mapsto$ F(x, y, z) is a strictly increasing function of z. Suppose that $F(x_0, y_0, z_0) = 0$.
- (a) Prove that there exists an open neighborhood U of (x_0, y_0) in \mathbb{R}^2 such that there is a unique function $g:U\to\mathbb{R}$ with F(x,y,g(x,y))=0 for all $(x,y) \in U$.
 - (b) Show that g is continuous on U.