TIER I ANALYSIS EXAM, JANUARY 2019

Solve all nine problems. They all count equally. Show all computations.

1. Let $f: \mathbb{R} \rightarrow[0,1]$ be continuous. Let $x_{1} \in(0,1)$. Define x_{n} via the recurrence

$$
x_{n+1}=\frac{3}{4} x_{n}^{2}+\frac{1}{4} \int_{0}^{\left|x_{n}\right|} f, \quad n \geq 1
$$

Prove that x_{n} is convergent and find its limit.
2. Suppose (X, d) is a compact metric space with an open cover $\left\{U_{a}\right\}$. Show that for some $\epsilon>0$, every ball of radius ϵ is fully contained in at least one of the U_{a} 's.
3. Find

$$
\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} \frac{1}{n^{1+\frac{1}{\log N}}}
$$

Here \log is the natural logarithm (in base e)
4. (a) Give an example of an everywhere differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose derivative $f^{\prime}(x)$ is not continuous.
(b) Show that when $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are functions, and for every $\epsilon>0$, there exists a $\delta=\delta(\epsilon)>0$ such that $|h|<\delta$ guarantees

$$
\left|\frac{f(x+h)-f(x)}{h}-g(x)\right|<\epsilon
$$

for all $x \in \mathbb{R}$, then f^{\prime} exists and is continuous at every $x \in \mathbb{R}$.
5. (a) Give an example of a continuous function on $(0,1]$ that attains neither a max nor a \min on $(0,1]$.
(b) Show that a uniformly continuous function on $(0,1]$ must attain either a max or a \min on $(0,1]$.
6. Assume $f:(0,1)^{2} \rightarrow \mathbb{R}$ is continuous and has partial derivative $\frac{\partial f}{\partial x}$ at each point (x, y) satisfying

$$
\left|\frac{\partial f}{\partial x}(x, y)\right| \geq 1
$$

Consider the set

$$
S_{\delta}=\left\{(x, y) \in(0,1)^{2}:|f(x, y)| \leq \delta\right\} .
$$

Prove that the area of S_{δ} is less than or equal to 4δ for each $\delta>0$.
7. Prove that there are real-valued continuously differentiable functions $u(x, y)$ and $v(x, y)$ defined on a neighborhood of the point $(1,2) \in \mathbb{R}^{2}$ that satisfy the following system of equations,

$$
\begin{aligned}
& x u^{2}+y v^{2}+x y=4 \\
& x v^{2}+y u^{2}-x y=1 .
\end{aligned}
$$

8. Consider the upper hemi-ellipsoid surface $\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right.$ and $\left.z \geq 0\right\}$ for positive constants $a, b, c \in \mathbb{R}$ and define the vector field $\vec{F}=\left(\partial_{y} f,-\partial_{x} f, 2\right)$ on Σ for some smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Evaluate the surface integral $\int_{\Sigma} \vec{F} \cdot \vec{n} d S$, where \vec{n} is the upper/outward pointing unit normal field of Σ.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous and suppose that for some $R>0,|f(x, y)|<e^{-\sqrt{x^{2}+y^{2}}}$ whenever $\sqrt{x^{2}+y^{2}} \geq R$.
(a) Show that the integral

$$
g(s, t)=\iint_{\mathbb{R}^{2}} f(x, y)\left((x-s)^{2}+(y-t)^{2}\right) d x d y
$$

converges for all $(s, t) \in \mathbb{R}^{2}$
(b) Show that g is continuous on \mathbb{R}^{2}.

