TIER I ANALYSIS EXAMINATION
August 2018

Instructions: There are ten problems, each of equal value. Show your work, justifying all steps by direct calculation or by reference to an appropriate theorem.

Notation: For \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \), \(|x| = \sqrt{x_1^2 + \cdots + x_n^2} \), and \(d(x, y) = |x - y| \).

1. Suppose \((a_n)_{n=1}^{\infty} \) is a sequence of positive real numbers and \(\sum_{n=1}^{\infty} a_n = \infty \). Prove that there exists a sequence of positive real numbers \((b_n)_{n=1}^{\infty} \) such that \(\lim_{n \to \infty} b_n = 0 \) and \(\sum_{n=1}^{\infty} a_n b_n = \infty \).

2. Show that \(\sum_{n=1}^{\infty} \frac{\sin(x^n)}{n!} \) converges uniformly for \(x \in \mathbb{R} \) to a \(C^1 \) function \(f : \mathbb{R} \to \mathbb{R} \), and compute an expression for the derivative. Justify this computation.

3. Let \(f : (0, \infty) \to \mathbb{R} \) be differentiable. Show that the intersection of all tangent planes to the surface \(z = x f(x/y) \) \((x, y \in (0, \infty)) \) is nonempty.

4. For \(x \in \mathbb{R} \), let \(\lfloor x \rfloor \) denote the largest integer that is less than or equal to \(x \). Prove that
 \[
 \sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}
 \]
 converges. Suggestion: The inequality
 \[
 \frac{1}{\ell + 1} < \int_{\ell}^{\ell+1} \frac{1}{x} \, dx < \frac{1}{\ell}
 \]
 might be helpful. You do not need to justify this inequality.

5. Let \(B \) be the closed unit ball in \(\mathbb{R}^2 \) with respect to the usual metric, \(d \) (defined above). Let \(\rho \) be the metric on \(B \) defined by
 \[
 \rho(x, y) = \begin{cases}
 |x - y| & \text{if } x \text{ and } y \text{ are on the same line through the origin,} \\
 |x| + |y| & \text{otherwise,}
 \end{cases}
 \]
 for \(x, y \in B \). (Note that \(\rho(x, y) \) is the minimum distance travelled in the usual metric in going from \(x \) to \(y \) along lines through the origin.) Suppose \(f : B \to \mathbb{R} \) is a function that is uniformly continuous on \(B \) with respect to the metric \(\rho \) on \(B \) and the usual metric on \(\mathbb{R} \). Prove that \(f \) is bounded.

6. Let
 \[
 f(x) := \begin{cases}
 \sin x + 2x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
 \end{cases}
 \]
 Prove or disprove: there exists \(\epsilon > 0 \) such that \(f \) is invertible when restricted to \((-\epsilon, \epsilon) \).
7. Define a sequence of functions \(f_n : [0, 2\pi] \subset \mathbb{R} \to \mathbb{R} \) by
\[
f_n(x) = e^{\sin(nx)},
\]
and define \(F_n(x) = \int_0^x f_n(y) \, dy \). Show that there exists a subsequence \((F_{n_k})_{k=1}^{\infty}\) of \((F_n)_{n=1}^{\infty}\) that converges uniformly on \(x \in [0, 2\pi] \) to a continuous limit \(F_* \).

8. Let a closed curve, \(\gamma \), be parameterized by a function \(f : [0, 1] \to \mathbb{R}^2 \) with a continuous derivative and \(f(0) = f(1) \). Suppose that
\[
\hat{\gamma}(y) = \int_0^y (y^3 \sin^2 x \, dx - x^5 \cos^2 y \, dy) = 0.
\]
Show that there exists a pair \(\{x, y\} \neq \{0, 1\} \) with \(x \neq y \) and \(f(x) = f(y) \). Give an example of a curve satisfying (1) such that the only pairs \(\{x, y\} \) with \(x \neq y \) and \(f(x) = f(y) \) are subsets of \(\{0, 1/2, 1\} \).

9. Fix \(a > 0 \). Let \(S \) be the half-ellipsoid defined by \(S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z/a)^2 = 1 \text{ and } z \geq 0\} \). Let \(v \) be the vector field given by \(v(x, y, z) = (x, y, z + 1) \), and let \(n \) be the outward unit normal field to the ellipsoid \(\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z/a)^2 = 1\} \).
 (a) From the fact that the volume of \(D := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1 \text{ and } z \geq 0\} \) is \(2\pi/3 \), which you may assume without proof, use the change-of-variables formula in \(\mathbb{R}^3 \) to find the volume of \(E := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z/a)^2 \leq 1 \text{ and } z \geq 0\} \).
 (b) Evaluate
\[
\int_S v \cdot n \, dA,
\]
where \(dA \) denotes the surface area element.

10. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be \(C^2 \), let \(I \) denote the \(n \times n \) identity matrix, let
\[
D^2 f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \end{pmatrix}_{1 \leq i, j \leq n},
\]
and assume that there exists a positive real number \(a \) such that \(D^2 f(x) - aI \) is positive definite for all \(x \in \mathbb{R}^n \), or equivalently, assume that there exists a positive real number \(a \) such that \(D_u[D_u f](x) \geq a \) for all unit vectors \(u \in \mathbb{R}^n \) and points \(x \in \mathbb{R}^n \), where \(D_u \) denotes the directional derivative in the direction \(u \). (You do not have to prove the equivalence of these two versions of the assumption.)
 (a) Let \(\nabla f \) denote the gradient of \(f \). Show that there exists a point \(x \in \mathbb{R}^n \) such that \(\nabla f(x) = 0 \).
 (b) Show that the map \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \) is onto.
 (c) Show that the map \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \) is globally invertible, and the inverse is \(C^1 \).