Tier I Analysis January 2018
Problem 1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Let $f: X \rightarrow Y$ be surjective such that

$$
\frac{1}{2} d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq 2 d_{X}(x, y)
$$

for all $x, y \in X$. Show that if $\left(X, d_{X}\right)$ is complete, then also $\left(Y, d_{Y}\right)$ is complete.

Problem 2. Show that

$$
\lim _{n \rightarrow \infty}\left(2 \sqrt{n}-\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right)
$$

exists.
Problem 3. Assume that bitter is a property of subsets of $[0,1]$ such that the union of two bitter sets is bitter. Subsets of $[0,1]$ that are not bitter are called sweet. Thus every subset of $[0,1]$ is either bitter or sweet. A sweet spot of a set $A \subset[0,1]$ is a point $x_{0} \in[0,1]$ such that for every open set $U \subset \mathbb{R}$ that contains x_{0}, the set $A \cap U$ is sweet. Show that if $A \subset[0,1]$ is sweet, then A has a sweet spot.

Problem 4. Let f and g be periodic functions defined on \mathbb{R}, not necessarily with the same period. Suppose that

$$
\lim _{x \rightarrow \infty} f(x)-g(x)=0 .
$$

Show that $f(x)=g(x)$ for all x.
Problem 5. Let $0<x_{n}<1$ be an infinite sequence of real numbers such that for all $0<r<1$

$$
\sum_{x_{n}<r} \log \frac{r}{x_{n}} \leq 1
$$

Show that

$$
\sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty .
$$

Problem 6. Suppose that the series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally. Show that the series

$$
\sum_{n=3}^{\infty} n(\log n)(\log \log n)^{2} a_{n}
$$

diverges.
Problem 7. Find the absolute minimum of the function $f(x, y, z)=x y+$ $y z+z x$ on the set $g(x, y, z)=x^{2}+y^{2}+z^{2}=12$.

Problem 8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1} map such that $f^{-1}(y)$ is a finite set for all $y \in \mathbb{R}^{2}$. Show that the determinant $\operatorname{det} d f(x)$ of the Jacobi matrix of f cannot vanish on an open subset of \mathbb{R}^{2}.

Problem 9. A regular surface is given by a continuously differentiable map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ so that the differential $d f_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has rank 2 for all $x \in \mathbb{R}^{2}$. The tangent plane T_{x} is the 2-dimensional subspace $d f_{x}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}$. Assume that a vector field X in \mathbb{R}^{3} is orthogonal to T_{x} for all x, i.e. $X(f(x)) \cdot Y=0$ for all $x \in \mathbb{R}^{2}$ and all $Y \in T_{x}$. Show that $X \cdot(\nabla \times X)=0$ at all points $f(x)$.
Problem 10. Let $f(x, y)$ be a function defined on \mathbb{R}^{2} such that

- For any fixed x, the function $y \mapsto f(x, y)$ is a polynomial in y;
- For any fixed y, the function $x \mapsto f(x, y)$ is a polynomial in x.

Show that f is a polynomial, i.e.

$$
f(x, y)=\sum_{i, j=0}^{N} a_{i j} x^{i} y^{j}
$$

with suitable $a_{i, j} \in \mathbb{R}, i, j=0, \ldots, N$.

