Tier I Analysis Exam
 August, 2017

- Be sure to fully justify all answers.

- Scoring: Each problem is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in correct order.
(1) Let X be the set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$, taking only two values 0 and 1. Define the metric d on X by

$$
d(f, g)= \begin{cases}0 & \text { if } f=g \\ \frac{1}{2^{m}} & \text { if } m=\min \{n \mid f(n) \neq g(n)\}\end{cases}
$$

(a) Prove that (X, d) is compact.
(b) Prove that no point in (X, d) is isolated.
(2) Let $C[0,1]$ be the space of all real continuous functions defined on the interval $[0,1]$. Define the distance on $C[0,1]$ by

$$
d(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|
$$

Prove that the following set $\mathcal{S} \subset C[0,1]$ is not compact:

$$
\mathcal{S}=\{f \in C[0,1] \mid d(f, 0)=1\}
$$

where $0 \in C[0,1]$ stands for the constant function with value 0 .
(3) Let $F(x, y)=\sum_{n=1}^{\infty} \sin (n y) \cdot e^{-n(x+y)}$. Prove that there are a $\delta>0$ and a unique differentiable function $y=\varphi(x)$ defined on $(1-\delta, 1+\delta)$, such that

$$
\varphi(1)=0, \quad F(x, \varphi(x))=0 \quad \forall x \in(1-\delta, 1+\delta)
$$

(4) Prove or find a counterexample: if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable with $f(0)=0$, then there exist continuous functions $g_{1}, \ldots, g_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
f(x)=x_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+\cdots+x_{n} g_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

(5) Let $\left\{f_{n}\right\}$ be a sequence of real-valued, concave functions defined on an open interval interval $(-a, a)\left(-f_{n}\right.$ is convex). Let $g:(-a, a) \rightarrow \mathbb{R}$. Suppose f_{n} and g are differentiable at 0 ,

$$
\liminf f_{n}(t) \geq g(t) \text { for all } t, \text { and } \lim f_{n}(0)=g(0)
$$

Show that $\lim f_{n}^{\prime}(0)=g^{\prime}(0)$.
(6) Let $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ for $(x, y) \neq(0,0)$.
(a) Can f be defined at $(0,0)$ so that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist? Justify your answer.
(b) Can f be defined at $(0,0)$ so that f is differentiable at $(0,0)$? Justify your answer.
(7) Let $f:[-1,1] \rightarrow \mathbb{R}$ with $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ being continuous. Show that

$$
\sum_{n=2}^{\infty}\left\{n\left[f\left(\frac{1}{n}\right)-f\left(-\frac{1}{n}\right)\right]-2 f^{\prime}(0)\right\}
$$

converges absolutely.
(8) Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of continuous real-valued functions on a closed interval $[a, b]$, and let $g_{n}(x)=\int_{a}^{x} f_{n}(t) d t$ for each $x \in[a, b]$. Show that the sequence of functions $\left\{g_{n}\right\}$ contains a uniformly convergent subsequence on $[a, b]$.
(9) Compute $\int_{D} x d x d y$, where $D \subset \mathbb{R}^{2}$ is the region bounded by the curves $x=-y^{2}, x=2 y-y^{2}$, and $x=2-2 y-y^{2}$. Show your work.
(10) Let

$$
x_{0}>0, \quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{4}{x_{n}}\right), \quad n=0,1,2,3, \ldots
$$

Show that $x=\lim _{n \rightarrow \infty} x_{n}$ exists, and find x.

