Tier 1 Analysis Exam
 January 2017

Do all nine problems. They all count equally. Show your work and justify your answers.

1. Define a subset X of \mathbb{R}^{n} to have property \mathcal{C} if every sequence with exactly one accumulation point in X converges in X. (Recall that x is an accumulation point of a sequence $\left(x_{n}\right)$ if every neighborhood of x contains infinitely many x_{n}.)
(a) Give an example of a subset $X \subset \mathbb{R}^{n}$, for some $n \geq 1$, that does not have property \mathcal{C}, together with an example of a non-converging sequence in X with exactly one accumulation point.
(b) Show that any subset X of \mathbb{R}^{n} satisfying property \mathcal{C} is compact.
2. Prove that the sequence

$$
a_{1}=1, \quad a_{2}=\sqrt{7}, \quad a_{3}=\sqrt{7 \sqrt{7}}, \quad a_{4}=\sqrt{7 \sqrt{7 \sqrt{7}}}, \quad a_{5}=\sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7}}}}, \quad \ldots
$$

converges, then find its limit.
3. Given any metric space (X, d) show that $\frac{d}{1+d}$ is also a metric on X, and show that $\left(X, \frac{d}{1+d}\right)$ shares the same family of metric balls as (X, d).
4. Suppose that a function $f(x)$ is defined as the sum of series

$$
f(x)=\sum_{n \geq 3}\left(\frac{1}{n-1}-\frac{1}{n+1}\right) \sin (n x) .
$$

(a) Explain why $f(x)$ is continuous.
(b) Evaluate

$$
\int_{0}^{\pi} f(x) d x
$$

5. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function with $h(0)=0$, and consider the following system of equations:

$$
\begin{aligned}
& e^{x}+h(y)=u^{2}, \\
& e^{y}-h(x)=v^{2} .
\end{aligned}
$$

Show that there exists a neighborhood $V \subset \mathbb{R}^{2}$ of $(1,1)$ such that for each $(u, v) \in V$ there is a solution $(x, y) \in \mathbb{R}^{2}$ to this system.
6. Let n be a positive integer. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. Assume that $f(\vec{x}) \rightarrow 0$ whenever $\|\vec{x}\| \rightarrow \infty$. Show that f is uniformly continuous on \mathbb{R}^{n}.
7. Let $f_{n}(x)$ and $f(x)$ be continuous functions on $[0,1]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in[0,1]$. Answer each of the following questions. If your answer is "yes", then provide an explanation. If your answer is "no", then give a counterexample.
(a) Can we conclude that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x ?
$$

(b) If in addition we assume $\left|f_{n}(x)\right| \leq 2017$ for all n and for all $x \in[0,1]$, can we conclude that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x ?
$$

8. Evaluate the flux integral $\iint_{\partial V} \vec{F} \cdot \vec{n} d S$, where the field \vec{F} is

$$
\vec{F}(x, y, z)=\left(x e^{x y}-2 x z+2 x y \cos ^{2} z\right) \vec{\imath}+\left(y^{2} \sin ^{2} z-y e^{x y}+y\right) \vec{\jmath}+\left(x^{2}+y^{2}+z^{2}\right) \vec{k}
$$

and V is the (bounded) solid in \mathbb{R}^{3} bounded by the $x y$-plane and the surface $z=$ $9-x^{2}-y^{2}, \partial V$ is the boundary surface of V, and \vec{n} is the outward pointing unit normal vector on ∂V.
9. A continuously differentiable function f from $[0,1]$ to $[0,1]$ has the properties
(a) $f(0)=f(1)=0$;
(b) $f^{\prime}(x)$ is a non-increasing function of x.

Prove that the arclength of the graph of f does not exceed 3 .

