Do all nine problems. They all count equally. Show your work and justify your answers.

1. Define a subset X of \mathbb{R}^n to have property C if every sequence with exactly one accumulation point in X converges in X. (Recall that x is an accumulation point of a sequence (x_n) if every neighborhood of x contains infinitely many x_n.)

(a) Give an example of a subset $X \subset \mathbb{R}^n$, for some $n \geq 1$, that does not have property C, together with an example of a non-converging sequence in X with exactly one accumulation point.

(b) Show that any subset X of \mathbb{R}^n satisfying property C is compact.

2. Prove that the sequence

$$a_1 = 1, \quad a_2 = \sqrt{7}, \quad a_3 = \sqrt{7\sqrt{7}}, \quad a_4 = \sqrt{7\sqrt{7\sqrt{7}}}, \quad a_5 = \sqrt{7\sqrt{7\sqrt{7\sqrt{7}}}}, \ldots$$

converges, then find its limit.

3. Given any metric space (X, d) show that $\frac{d}{1+d}$ is also a metric on X, and show that $(X, \frac{d}{1+d})$ shares the same family of metric balls as (X, d).

4. Suppose that a function $f(x)$ is defined as the sum of series

$$f(x) = \sum_{n \geq 3} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \sin(nx).$$

(a) Explain why $f(x)$ is continuous.

(b) Evaluate

$$\int_0^\pi f(x) \, dx.$$

5. Let $h : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function with $h(0) = 0$, and consider the following system of equations:

$$e^x + h(y) = u^2,$$
$$e^y - h(x) = v^2.$$

Show that there exists a neighborhood $V \subset \mathbb{R}^2$ of $(1, 1)$ such that for each $(u, v) \in V$ there is a solution $(x, y) \in \mathbb{R}^2$ to this system.

6. Let n be a positive integer. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Assume that $f(\bar{x}) \to 0$ whenever $\|\bar{x}\| \to \infty$. Show that f is uniformly continuous on \mathbb{R}^n.
7. Let \(f_n(x) \) and \(f(x) \) be continuous functions on \([0, 1]\) such that \(\lim_{n \to \infty} f_n(x) = f(x) \) for all \(x \in [0, 1] \). Answer each of the following questions. If your answer is “yes”, then provide an explanation. If your answer is “no”, then give a counterexample.

(a) Can we conclude that
\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.
\]

(b) If in addition we assume \(|f_n(x)| \leq 2017 \) for all \(n \) and for all \(x \in [0, 1] \), can we conclude that
\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.
\]

8. Evaluate the flux integral
\[
\iint_{\partial V} \vec{F} \cdot \vec{n} \, dS,
\]
where the field \(\vec{F} \) is
\[
\vec{F}(x, y, z) = (xe^{xy} - 2xz + 2xy \cos^2 z) \hat{i} + (y^2 \sin^2 z - ye^{xy} + y) \hat{j} + (x^2 + y^2 + z^2) \hat{k},
\]
and \(V \) is the (bounded) solid in \(\mathbb{R}^3 \) bounded by the \(xy \)-plane and the surface \(z = 9 - x^2 - y^2 \), \(\partial V \) is the boundary surface of \(V \), and \(\vec{n} \) is the outward pointing unit normal vector on \(\partial V \).

9. A continuously differentiable function \(f \) from \([0, 1]\) to \([0, 1]\) has the properties

(a) \(f(0) = f(1) = 0 \);

(b) \(f'(x) \) is a non-increasing function of \(x \).

Prove that the arclength of the graph of \(f \) does not exceed 3.