TIER I ANALYSIS EXAM, JANUARY 2016

Solve all nine problems. They all count equally. Show all computations.

1. Let $a>0$ and let x_{n} be a sequence of real numbers. Assume the sequence

$$
y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n^{a}}
$$

is bounded. Show that for each $b>a$, the series

$$
\sum_{n=1}^{\infty} \frac{x_{n}}{n^{b}}
$$

is convergent.
2. (a) Show that for each integer $n \geq 1$ there exists exactly one $x>0$ such that

$$
\frac{1}{\sqrt{n x+1}}+\frac{1}{\sqrt{n x+2}}+\ldots+\frac{1}{\sqrt{n x+n}}=\sqrt{n}
$$

(b) Call x_{n} the solution from (a). Find

$$
\lim _{n \rightarrow \infty} x_{n}
$$

3. Let (X, d) be a compact metric space and let ρ be another metric on X such that

$$
\rho\left(x, x^{\prime}\right) \leq d\left(x, x^{\prime}\right), \text { for all } x, x^{\prime} \in X
$$

Show that for all $\epsilon>0$ there exists $\delta>0$ such that

$$
\rho\left(x, x^{\prime}\right)<\delta \Longrightarrow d\left(x, x^{\prime}\right)<\epsilon
$$

4. Prove that for each $x \in \mathbb{R}$ there is a choice of signs $s_{n} \in\{-1,1\}$ such that the series

$$
\sum_{n=1}^{\infty} \frac{s_{n}}{\sqrt{n}}
$$

converges to x.
5. Assume the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the property

$$
f(x+t, y+s) \geq f(x, y)-s^{2}-t^{2}
$$

for each $(x, y) \in \mathbb{R}^{2}$ and each $(s, t) \in \mathbb{R}^{2}$. Prove that f must be constant.
6. Assume $f:[0,1] \rightarrow \mathbb{R}$ is continuous and $f(0)=2016$. Find

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) d x
$$

7. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two differentiable functions with $f(x, y, z)=g(x y, y z)$ and suppose that $g(u, v)$ satisfies

$$
g(2,6)=2, \quad \frac{\partial g}{\partial u}(2,6)=-1, \quad \text { and } \frac{\partial g}{\partial v}(2,6)=3
$$

Show that the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=2\right\}$ admits a tangent plane at the point $(1,2,3)$, and find an equation for it.
8. Let \mathcal{C} be the collection of all positively oriented (i.e. counter-clockwise) simple closed curves C in the plane. Find

$$
\sup \left\{\int_{C}\left(y^{3}-y\right) d x-2 x^{3} d y: C \in \mathcal{C}\right\}
$$

Is the supremum attained?
9. Let

$$
H=\left\{(x, y, z) \mid z>0 \text { and } x^{2}+y^{2}+z^{2}=R^{2}\right\}
$$

be the upper hemisphere of the sphere of radius R centered at the origin in \mathbb{R}^{3}. Let F : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the vector field

$$
F(x, y, z)=\left(x^{2} \sin \left(y^{2}-z^{3}\right), x y^{4} z+y, e^{-x^{2}-y^{2}}+y z\right)
$$

Find $\int_{H} F \cdot \hat{n} d S$ where \hat{n} is the outward pointing unit surface normal and $d S$ is the area element.

