Tier I Analysis Exam, August 2014

Try to work all questions. Providing justification for your answers is crucial.

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $f(0)=f(1)=0$ and

$$
\left\{x: f^{\prime}(x)=0\right\} \subset\{x: f(x)=0\} .
$$

Show that $f(x)=0$ for all $x \in[0,1]$.
2. Let $\left(a_{n}\right)$ be a bounded sequence for $n=1,2, \ldots$ such that

$$
a_{n} \geq(1 / 2)\left(a_{n-1}+a_{n+1}\right) \text { for } n \geq 2 .
$$

Show that $\left(a_{n}\right)$ converges.
3. Suppose $K \subset \mathbb{R}^{n}$ is a compact set and $f: K \rightarrow \mathbb{R}$ is continuous. Let $\varepsilon>0$ be given. Prove that there exists a positive number M such that for all x and y in K one has the inequality:

$$
|f(x)-f(y)| \leq M\|x-y\|+\varepsilon
$$

Here $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{n}. Then give a counter-example to show that the inequality is not in general true if one takes $\varepsilon=0$.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth function and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
g\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{5}+\ldots+x_{n}^{5} .
$$

Suppose $g \circ f \equiv 0$. Show that $\operatorname{det} D f \equiv 0$.
5. The point $(1,-1,2)$ lies on both the surface described by the equation

$$
x^{2}\left(y^{2}+z^{2}\right)=5
$$

and on the surface described by

$$
(x-z)^{2}+y^{2}=2
$$

Show that in a neighborhood of this point, the intersection of these two surfaces can be described as a smooth curve in the form $z=f(x), y=g(x)$. What is the direction of the tangent to this curve at $(1,-1,2)$?
6. For what smooth functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is there a smooth vector field $\boldsymbol{W}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{curl} \boldsymbol{W}=\boldsymbol{V}$, where

$$
\boldsymbol{V}(x, y, z)=(y, x, f(x, y, z)) ?
$$

For f in this class, find such a \mathbf{W}. Is it unique?
7. For each positive integer n let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a continuous function, differentiable on $(0,1]$, such that

$$
\left|f_{n}^{\prime}(x)\right| \leq \frac{1+|\ln x|}{\sqrt{x}} \quad \text { for } 0<x \leq 1
$$

and such that

$$
-10 \leq \int_{0}^{1} f_{n}(x) d x \leq 10
$$

Prove that $\left\{f_{n}\right\}$ has a uniformly convergent subsequence on $[0,1]$.
8. Define for $n \geq 2$ and $p>0$

$$
H_{n}(p)=\sum_{k=1}^{n}(\log k)^{p} \text { and } a_{n}(p)=\frac{1}{H_{n}(p)} .
$$

For which p does $\sum_{n} a_{n}(p)$ converge?
9. Given any continuous, piecewise smooth curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$, consider the following notion of its 'length' \tilde{L} defined through the line integral:

$$
\tilde{L}(\gamma):=\int_{\gamma}|x| d s=\int_{0}^{1}|x(t)| \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

where a point in \mathbb{R}^{2} is written as (x, y) and $\gamma(t)=(x(t), y(t))$.
(a) Suppose we define a notion of distance \tilde{d} between two points p_{1} and p_{2} in \mathbb{R}^{2} via

$$
\tilde{d}\left(p_{1}, p_{2}\right):=\inf \left\{\tilde{L}(\gamma): \gamma(0)=p_{1}, \gamma(1)=p_{2}\right\}
$$

Working through the definition of metric, determine which properties of a metric hold for \tilde{d}, and which, if any, do not.
(b) Determine the value of $\tilde{d}((1,1),(-1,-2))$ and determine a curve achieving this infimum.

