TIER I ANALYSIS EXAM
 AUGUST 2013

Solve each of the following nine problems on a separate and clearly labeled sheet of paper. Fully justify your answers.

Notation:

- \mathbb{R} is the set of real numbers
- \mathbb{R}^{n} is Euclidean space
- $|x|$ is the Euclidean length of a vector $x \in \mathbb{R}^{n}$; absolute value when $n=1$.
(1) Fix positive integers n, N and a bounded set $A \subset \mathbb{R}^{n}$. We use the notation

$$
\bar{B}(a, r)=\left\{x \in \mathbb{R}^{n}:|x-a| \leq r\right\}, \quad a \in \mathbb{R}^{n}, r \geq 0
$$

Show that there exist $a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{R}^{n}$ and numbers $r_{1}, \ldots, r_{N} \in[0,+\infty)$ such that

$$
A \subset \bigcup_{k=1}^{N} \bar{B}\left(a_{k}, r_{k}\right)
$$

and the sum $\sum_{k=1}^{N} r_{k}^{2}$ is as small as possible. In other words, the set $\left\{\sum_{k=1}^{N} r_{k}^{2}: A\right.$ can be covered with a collection $\left.\left(\bar{B}\left(a_{k}, r_{k}\right)\right)_{k=1}^{N}\right\}$ has a smallest element.
(2) Is the sequence $\left(\cos \left(\pi \sqrt{n^{2}+n}\right)\right)_{n=1}^{\infty}$ convergent?
(3) For which values of $x \in \mathbb{R}$ does the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{x+n}
$$

converge? Is the convergence uniform on the interval $(-1,1)$?
(4) Consider the functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\left(1-x^{n}\right)^{2^{n}}$ for $x \in[0,1]$ and $n \in \mathbb{N}$. Prove that the limit $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in[0,1]$. Is the convergence uniform on $[0,1]$?
(5) Let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function and let $\varepsilon>0$. Show that there exist continuous functions $g, h:[0,1] \rightarrow \mathbb{R}$ such that $g(x) \leq$ $f(x) \leq h(x)$ for all $x \in[0,1]$, and

$$
\int_{0}^{1}(h(x)-g(x)) d x<\varepsilon .
$$

Is the converse statement true?
(6) Assume the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the property

$$
f(x+t) \geq f(x)-t^{2}
$$

for all real values of x and all positive values of t. Prove that f must be nondecreasing.
(7) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be everywhere differentiable, and assume that the Jacobian of f is not singular at any point $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Assume that $|f(x)| \leq 1$ whenever $|x|=1$, and prove that in fact $|f(x)| \leq 1$ whenever $|x| \leq 1$.
(8) Compute

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-|x-y|^{2}}}{1+|x+y|^{2}} d x d y
$$

(9) Given a positive number $r \neq 1$, set $C_{r}=\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+y^{2}=r\right\}$. Calculate the line integral

$$
\int_{C_{r}} \frac{x d y-y d x}{x^{2}+y^{2}},
$$

where C_{r} is oriented counterclockwise relative to $(1,0)$.

