August 2012 Tier 1 Analysis Exam

- Be sure to fully justify all answers.
- Scoring: Each one of the 10 problems is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write the problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in the correct order.

1. Let

$$
f_{n}(x)=\sum_{k=1}^{n}\left(x^{k}-x^{2 k}\right)
$$

(a) Show that f_{n} converges pointwise to a function f on $[0,1]$.
(b) Show that f_{n} does not converge uniformly to f on $[0,1]$.
2. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\frac{y^{3}-\sin ^{3} x}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$.
(a) Compute the directional derivative of f at $(0,0)$ for an arbitrary direction (u, v).
(b) Determine whether f is differentiable at $(0,0)$ and prove your answer.
3. Let E be a nonempty subset of a metric space and let $f: E \rightarrow \mathbb{R}$ be uniformly continuous on E. Prove that f has a unique continuous extension to the closure of E. That is, there exists a unique continuous function $g: \bar{E} \rightarrow \mathbb{R}$ such that $g(x)=f(x)$ for $x \in E$.
4. Let B_{r} denote the ball $B_{r}=\left\{\mathbf{x} \in \mathbb{R}^{2}:|\mathbf{x}|<r\right\}$ and let $f: B_{1} \rightarrow \mathbb{R}$ be a continuously differentiable function which is zero in the complement of a compact subset of B_{1}. Show that

$$
\lim _{\varepsilon \rightarrow 0+} \int_{B_{1} \backslash B_{\varepsilon}} \frac{x_{1} f_{x_{1}}+x_{2} f_{x_{2}}}{|\mathbf{x}|^{2}} d x_{1} d x_{2}
$$

exists and equals $C f(\mathbf{0})$ for a constant C which you are to determine.
5. Let E be a nonempty subset of a metric space and assume that for every $\varepsilon>0$ E is contained in the union of finitely many balls of radius ε. Prove that every sequence in E has a subsequence which is Cauchy.
6. For which exponents $r>0$ is the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n^{2}} \frac{n^{r-1}}{n^{r}+k^{r}}
$$

finite? Prove your answer.
7. Let V be a neighborhood of the origin in \mathbb{R}^{2}, and $f: V \rightarrow \mathbb{R}$ be continuously differentiable. Assume that $f(0,0)=0$ and $f(x, y) \geq-3 x+4 y$ for $(x, y) \in V$. Prove that there is a neighborhood U of the origin in \mathbb{R}^{2} and a positive number ε such that, if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in U$ and $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=0$, then

$$
\left|y_{2}-y_{1}\right| \geq \varepsilon\left|x_{2}-x_{1}\right|
$$

8.

(a) Find necessary and sufficient conditions on functions $h, k: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that, given any smooth $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $\mathbf{F}=\left(F_{1}(y, z), F_{2}(x, z), 0\right)$ and whose divergence is zero, there is a smooth $\mathbf{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $\mathbf{G}=\left(G_{1}, G_{2}, 0\right)$ such that $\nabla \times \mathbf{G}=\mathbf{F}$ in \mathbb{R}^{3} and $\mathbf{G}=(h, k, 0)$ on $z=0$. $(\nabla \times G$ is the curl of the vector field G.)
(b) Let \mathbf{F} be as in (a) and evaluate the surface integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d A
$$

where S is the hemisphere

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1,0 \leq z \leq 1\right\}
$$

\mathbf{N} is the unit normal on S in the positive z-direction, and $d A$ is the surface area element.
9. Let $f=\left(f^{1}, \ldots, f^{n}\right)$ map an open set U in \mathbb{R}^{n} into \mathbb{R}^{n} be C^{1} and suppose that, for some $\bar{x} \in U$ the matrix $f^{\prime}(\bar{x})$ is negative definite (an $n \times n$ matrix A is negative definite if $\xi \cdot A \xi<0$ for all nonzero $\xi \in \mathbb{R}^{n}$). Show that there is a positive number ε and a neighborhood V of \bar{x} such that, if y_{1}, \ldots, y_{n} are any n points in V and if A is the $n \times n$ matrix whose i-th row is $\nabla f^{i}\left(y_{i}\right)$, then $\xi \cdot A \xi \leq-\varepsilon|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$.
10. Let f be a C^{1} mapping of an open set $U \subset \mathbb{R}^{n}$ into \mathbb{R}^{n} and suppose that $f(\bar{x})=0$ for some $\bar{x} \in U$ and that $f^{\prime}(\bar{x})$ is negative definite. Show that there is a neighborhood W of \bar{x} and a positive number δ such that, if a sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ is generated from the recursion

$$
x_{k+1}=x_{k}+\delta f\left(x_{k}\right)
$$

with $x_{0} \in W$, then each x_{k} is in W and $x_{k} \rightarrow \bar{x}$ as $k \rightarrow \infty$. You may use here the result stated in problem 9 without having solved problem 9 .

