Tier I Analysis

January 3, 2012

Solve all 10 problems, justifying all answers.

1. For \((x, y) \in \mathbb{R}^2\), let
 \[
 f(x, y) = \begin{cases}
 [(2x^2 - y)(y - x^2)]^{1/4}, & \text{for } x^2 \leq y \leq 2x^2; \\
 0, & \text{otherwise.}
 \end{cases}
 \]
 Show that all directional derivatives of \(f\) exist at \((0, 0)\), but \(f\) is not differentiable at \((0, 0)\).

2. Let \((a_n)_{n=1}^{\infty}\) be a monotonically decreasing sequence of positive real numbers and assume \(\sum_{n=1}^{\infty} a_n < \infty\). Show that \(\lim_{n \to \infty} n a_n = 0\).

3. For \((x, y) \in \mathbb{R}^2\), let \(f(x, y) = 5x^2 + xy^3 - 3x^2y\). Find the critical points for \(f\), and for each critical point determine whether it is a local maximum, local minimum or a saddle point.

4. Establish the convergence or divergence of the improper integral
 \[
 \int_{0}^{\infty} \sin(x^2) \, dx.
 \]

5. Let \((f_n)_{n=1}^{\infty}\) and \((g_n)_{n=1}^{\infty}\) be sequences of functions from \(\mathbb{R}\) to \(\mathbb{R}\). Assume that
 (a) the partial sums \(F_n = \sum_{k=1}^{n} f_k\) are uniformly bounded,
 (b) \(g_n \to 0\) uniformly,
 (c) \(g_1(x) \geq g_2(x) \geq g_3(x) \geq \ldots\), for all \(x \in \mathbb{R}\).
 Prove that \(\sum_{n=1}^{\infty} f_n g_n\) converges uniformly. \textbf{Hint:} Use the fact that
 \[
 \sum_{p=q}^{q-1} f_p g_{n+1} + F_q g_q - F_{q-1} g_p.
 \]
 (If you make use of this fact, you are required to prove it.)
6. Let

\[X = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^4 + x_2^4 + x_3^4 + x_4^4 = 64 \text{ and } x_1 + x_2 + x_3 + x_4 = 8\}. \]

For which points \(p \in X \) is it possible to find a product of open intervals \(V = I_1 \times I_2 \times I_3 \times I_4 \) containing \(p \) such that \(X \cap V \) is the graph of a function expressing two of the variables \(x_1, x_2, x_3, x_4 \) in terms of the other two? If there are any points in \(X \) where this is not possible, explain why not.

7. Let \(F : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \) be given by

\[F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \]

and suppose for \(j = 1, 2 \) we have one-to-one \(C^1 \) maps \(\gamma_j : [0,1] \to \mathbb{R}^2 \), such that \(\gamma_j(0) = p \) and \(\gamma_j(1) = q \) for some \(p, q \in \mathbb{R}^2 \setminus \{(0,0)\} \). Assume furthermore that \(\gamma_j(t) \neq (0,0) \) and \(\gamma_j'(t) \neq 0 \) for all \(t \in [0,1], \) and \(\gamma_1((0,1)) \cap \gamma_2((0,1)) = \emptyset \). Carefully demonstrate that

\[\int_{\Gamma_1} F \cdot T_1 \, ds = \int_{\Gamma_2} F \cdot T_2 \, ds + 2\pi k, \text{ for either } k = 0, 1 \text{ or } -1, \]

where \(\Gamma_j := \gamma_j([0,1]) \), \(T_j \) denotes the unit tangent vector to \(\gamma_j \) and \(s \) is the arc length parameter.

8. Suppose \(\phi : \mathbb{R}^2 \to \mathbb{R} \) is any \(C^1 \) function, and let \(g : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R} \) be given by \(g(x,y) := \ln(\sqrt{x^2 + y^2}) \). Prove that

\[\lim_{\epsilon \to 0} \int_{\partial B_\epsilon} (\phi \nabla g \cdot \mathbf{n} - g \nabla \phi \cdot \mathbf{n}) \, ds = 2\pi \phi(0,0), \]

where \(B_\epsilon \) denotes the disk centered at \((0,0)\) of radius \(\epsilon \) and \(\mathbf{n} \) denotes the outer unit normal to the circle \(\partial B_\epsilon \).

9. Let \(\alpha \in (0,1] \). A function \(f : [0,1] \to \mathbb{R} \) is defined to be \(\alpha \)-Hölder continuous if

\[N_\alpha(f) := \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|^\alpha} : x, y \in [0,1], x \neq y \right\} < \infty. \]

(a) Suppose \((f_n)_{n=1}^\infty \) is a sequence of functions from \([0,1]\) to \(\mathbb{R} \) such that for all \(n = 1, 2, \ldots \) we have \(N_\alpha(f_n) \leq 1 \) and \(|f_n(x)| \leq 1 \) for all \(x \in [0,1] \). Show that \((f_n)_{n=1}^\infty \) has a uniformly convergent subsequence.

(b) Show that (a) is false if the condition “\(N_\alpha(f_n) \leq 1 \)” is replaced by “\(N_\alpha(f_n) < \infty \)”.
10. Assume \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuous function such that

(a) there exist points \(x_0 \) and \(x_1 \in \mathbb{R}^n \) with \(f(x_0) = 0 \) and \(f(x_1) = 3 \),
(b) there exist positive constants \(C_1 \) and \(C_2 \) such that \(f(x) \geq C_1|x| - C_2 \) for all \(x \in \mathbb{R}^n \).

Let \(S := \{ x \in \mathbb{R}^n : f(x) < 2 \} \) and let \(K := \{ x \in \mathbb{R}^n : f(x) \leq 1 \} \). Define the distance from \(K \) to \(\partial S \) (the boundary of \(S \)) by the formula

\[
\text{dist}(K, \partial S) := \inf_{p \in K, q \in \partial S} |p-q|.
\]

Prove that \(\text{dist}(K, \partial S) > 0 \). Then give an example of a continuous function \(f \) satisfying (a), but \(\text{dist}(K, \partial S) = 0 \).