Tier I Analysis

January 3, 2012

Solve all 10 problems, justifying all answers.

1. For $(x, y) \in \mathbb{R}^{2}$, let

$$
f(x, y)=\left\{\begin{array}{c}
{\left[\left(2 x^{2}-y\right)\left(y-x^{2}\right)\right]^{1 / 4}, \quad \text { for } x^{2} \leq y \leq 2 x^{2}} \\
0, \text { otherwise } .
\end{array}\right.
$$

Show that all directional derivatives of f exist at $(0,0)$, but f is not differentiable at $(0,0)$.
2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a monotonically decreasing sequence of positive real numbers and assume $\sum_{n=1}^{\infty} a_{n}<\infty$. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
3. For $(x, y) \in \mathbb{R}^{2}$, let $f(x, y)=5 x^{2}+x y^{3}-3 x^{2} y$. Find the critical points for f, and for each critical point determine whether it is a local maximum, local minimum or a saddle point.
4. Establish the convergence or divergence of the improper integral

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x
$$

5. Let $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ be sequences of functions from \mathbb{R} to \mathbb{R}. Assume that
(a) the partial sums $F_{n}=\sum_{k=1}^{n} f_{k}$ are uniformly bounded,
(b) $g_{n} \rightarrow 0$ uniformly,
(c) $g_{1}(x) \geq g_{2}(x) \geq g_{3}(x) \geq \cdots$, for all $x \in \mathbb{R}$.

Prove that $\sum_{n=1}^{\infty} f_{n} g_{n}$ converges uniformly. Hint: Use the fact that

$$
\sum_{p}^{q} f_{n} g_{n}=\sum_{p}^{q-1} F_{n}\left(g_{n}-g_{n+1}\right)+F_{q} g_{q}-F_{p-1} g_{p}
$$

(If you make use of this fact, you are required to prove it.)
6. Let
$X=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=64\right.$ and $\left.x_{1}+x_{2}+x_{3}+x_{4}=8\right\}$.
For which points $p \in X$ is it possible to find a product of open intervals $V=I_{1} \times I_{2} \times I_{3} \times I_{4}$ containing p such that $X \cap V$ is the graph of a function expressing two of the variables $x_{1}, x_{2}, x_{3}, x_{4}$ in terms of the other two? If there are any points in X where this is not possible, explain why not.
7. Let $\mathbf{F}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$ be given by

$$
\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

and suppose for $j=1,2$ we have one-to-one C^{1} maps $\gamma_{j}:[0,1] \rightarrow \mathbb{R}^{2}$, such that $\gamma_{j}(0)=p$ and $\gamma_{j}(1)=q$ for some $p, q \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Assume furthermore that $\gamma_{j}(t) \neq(0,0)$ and $\gamma_{j}^{\prime}(t) \neq 0$ for all $t \in[0,1]$, and $\gamma_{1}((0,1)) \cap \gamma_{2}((0,1))=\emptyset$. Carefully demonstrate that

$$
\int_{\Gamma_{1}} \mathbf{F} \cdot \mathbf{T}_{1} d s=\int_{\Gamma_{2}} \mathbf{F} \cdot \mathbf{T}_{2} d s+2 \pi k, \text { for either } k=0,1 \text { or }-1,
$$

where $\Gamma_{j}:=\gamma_{j}([0,1]), \mathbf{T}_{j}$ denotes the unit tangent vector to γ_{j} and s is the arc length parameter.
8. Suppose $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is any C^{1} function, and let $g: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ be given by $g(x, y):=\ln \left(\sqrt{x^{2}+y^{2}}\right)$. Prove that

$$
\lim _{\epsilon \rightarrow 0} \int_{\partial B_{\epsilon}}(\phi \nabla g \cdot \mathbf{n}-g \nabla \phi \cdot \mathbf{n}) d s=2 \pi \phi(0,0)
$$

where B_{ϵ} denotes the disk centered at $(0,0)$ of radius ϵ and \mathbf{n} denotes the outer unit normal to the circle ∂B_{ϵ}.
9. Let $\alpha \in(0,1]$. A function $f:[0,1] \rightarrow \mathbb{R}$ is defined to be α-Hölder continuous if

$$
N_{\alpha}(f):=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}: x, y \in[0,1], x \neq y\right\}<\infty .
$$

(a) Suppose $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of functions from $[0,1]$ to \mathbb{R} such that for all $n=1,2, \ldots$ we have $N_{\alpha}\left(f_{n}\right) \leq 1$ and $\left|f_{n}(x)\right| \leq 1$ for all $x \in[0,1]$. Show that $\left(f_{n}\right)_{n=1}^{\infty}$ has a uniformly convergent subsequence.
(b) Show that (a) is false if the condition " $N_{\alpha}\left(f_{n}\right) \leq 1$ " is replaced by " $N_{\alpha}\left(f_{n}\right)<\infty$."
10. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function such that
(a) there exist points x_{0} and $x_{1} \in \mathbb{R}^{n}$ with $f\left(x_{0}\right)=0$ and $f\left(x_{1}\right)=3$,
(b) there exist positive constants C_{1} and C_{2} such that $f(x) \geq C_{1}|x|-C_{2}$ for all $x \in \mathbb{R}^{n}$.

Let $S:=\left\{x \in \mathbb{R}^{n}: f(x)<2\right\}$ and let $K:=\left\{x \in \mathbb{R}^{n}: f(x) \leq 1\right\}$. Define the distance from K to ∂S (the boundary of S) by the formula

$$
\operatorname{dist}(K, \partial S):=\inf _{p \in K, q \in \partial S}|p-q|
$$

Prove that $\operatorname{dist}(K, \partial S)>0$. Then give an example of a continuous function f satisfying (a), but $\operatorname{dist}(K, \partial S)=0$.

