Tier 1 Analysis Exam: August 2011

Do all nine problems. They all count equally. Show all computations.

1. Let (X, d) be a compact metric space. Let $f: X \rightarrow X$ be continuous. Fix a point $x_{0} \in X$, and assume that $d\left(f(x), x_{0}\right) \geq 1$ whenever $x \in X$ is such that $d\left(x, x_{0}\right)=1$. Prove that $U \backslash f(U)$ is an open set in X, where $U=\left\{x \in X: d\left(x, x_{0}\right)<1\right\}$.
2. Let $f_{1}:[a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function. Define the sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ by

$$
f_{n+1}(x)=\int_{a}^{x} f_{n}(t) d t
$$

for each $n \geq 1$ and each $x \in[a, b]$. Prove that the sequence of functions

$$
g_{n}(x)=\sum_{m=1}^{n} f_{m}(x)
$$

converges uniformly on $[a, b]$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable everywhere. Assume $f(-\sqrt{2},-\sqrt{2})=0$, and also that

$$
\begin{aligned}
& \left|\frac{\partial f}{\partial x}(x, y)\right| \leq\left|\sin \left(x^{2}+y^{2}\right)\right| \\
& \left|\frac{\partial f}{\partial y}(x, y)\right| \leq\left|\cos \left(x^{2}+y^{2}\right)\right|
\end{aligned}
$$

for each $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Prove that

$$
|f(\sqrt{2}, \sqrt{2})| \leq 4
$$

4. Let q_{1}, q_{2}, \ldots be an indexing of the rational numbers in the interval $(0,1)$. Define the function $f(x):(0,1) \longrightarrow(0,1)$, by

$$
f(x)=\sum_{j: q_{j}<x} 2^{-j}
$$

(Here the sum is over all positive integers j such that $q_{j}<x$.)
a. Show that f is discontinuous at every rational number in $(0,1)$.
b. Show that f is continuous at every irrational number in $(0,1)$.
5. Show that the map $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
\Phi(\theta, \phi)=(\sin \phi \cdot \cos \theta, \quad \sin \phi \cdot \sin \theta)
$$

is invertible in a neighborhood of $\left(\theta_{0}, \phi_{0}\right)=\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ and find the partial derivatives of the inverse at the point $\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right)$.
6. Let A be a domain in \mathbf{R}^{2} whose boundary γ is a smooth, positively oriented curve.
a. Find a particular pair of functions $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so that $\int_{\gamma} P d x+Q d y$ equals the area of the domain A.
b. Let $|A|$ be the area of A. Find a function $R: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so that

$$
\frac{1}{|A|} \int_{\gamma} R d x+R d y
$$

equals the average value of the square of the distance from the origin to a point of A.
7. Let C be a smooth simple closed curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

depends only on the orientation of C and on the area of the region enclosed by C but not on the shape of C or its location in the plane.
8. For each $\mathbf{x}=(x, y, z) \in \mathbb{R}^{3}$ define $|\mathbf{x}|=\sqrt{x^{2}+y^{2}+z^{2}}$. Consider

$$
F(\mathbf{x})=\frac{\mathbf{x}}{|\mathbf{x}|^{\lambda}}, \quad \mathbf{x} \neq 0, \lambda>0
$$

(i) Is there a value of λ for which F is divergence free?
(ii) Let $E: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
E(\mathbf{y})=q \frac{\mathbf{y}}{|\mathbf{y}|^{3}}
$$

where q is a positive real number. Let $S(\mathbf{x}, a)$ denote the sphere of radius $a>0$ centered at \mathbf{x}. Assume $|\mathbf{x}| \neq a$. Compute

$$
\int_{S(\mathbf{x}, a)} E \cdot n d A
$$

where $d A$ is the surface area element and n is the unit outward normal on $S(\mathbf{x}, a)$.
9. Let $x_{1} \in \mathbb{R}$. Define the sequence $\left(x_{n}\right)_{n \geq 2}$ by

$$
x_{n+1}=x_{n}+\frac{\sqrt{\left|x_{n}\right|}}{n^{2}}
$$

for each $n \geq 1$. Show that x_{n} is convergent.

