TIER 1 ANALYSIS EXAM, JANUARY 2011

- Solve the following 10 problems, justifying all answers.
- Write the solution of each problem on a separate, clearly identified page.
(1) In this problem we use the notation

$$
|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

for the Euclidean norm of a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Let f : $[0,1] \rightarrow \mathbb{R}^{n}$ be a continuous function. Show that

$$
\left|\int_{0}^{1} f(t) d t\right| \leq \int_{0}^{1}|f(t)| d t
$$

(2) A sequence

$$
A_{n}=\left[\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right], \quad n \geq 1
$$

of real matrices is said to converge if the sequences $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty},\left(c_{n}\right)_{n=1}^{\infty}$, $\left(d_{n}\right)_{n=1}^{\infty}$ converge. Fix a real matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and define

$$
A_{n}=A-\frac{1}{3!} A^{3}+\cdots+\frac{(-1)^{n}}{(2 n+1)!} A^{2 n+1}, \quad n \geq 1
$$

Show that the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converges. (The limit is denoted $\sin (A)$.)
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for every positive integer n, and every $x, y \in \mathbb{R}$ such that $|x|+|y|>n^{2}$ and $|x-y|<1 / n^{2}$, we have $|f(x)-f(y)|<1 / n$. Show that f is uniformly continuous.
(4) Determine the area enclosed by the curve

$$
c(t)=(3 \cos t-\cos (3 t), 3 \sin t-\sin (3 t)), \quad t \in[0,2 \pi]
$$

You can take it for granted that this is a simple curve.
(5) Determine the volume of the solid $\{(x, y, z): \sqrt{x}+\sqrt{y}+\sqrt{z} \leq 1, x, y, z \geq 0\}$.
(6) Consider a differentiable, strictly decreasing function $f:[0,1] \rightarrow[0,1]$, and let $a \in[0,1]$ satisfy $f(a)=a$. (There obviously exists exactly one such point.) Assume that $f^{\prime}(a)<-1$. Define a sequence $\left(x_{n}\right)_{n=0}^{\infty}$ by setting $x_{0}=0$ and $x_{n+1}=f\left(x_{n}\right)$ for $n \geq 0$. Show that the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ does not converge.
(7) Show that there exists a differentiable function $f(x)$ defined in a neighborhood of $x_{0}=\sqrt{2}$ such that $x^{f(x)}=f(x)$.
(8) Given a sequence $f_{n}:[0,1] \rightarrow[0,1]$ of continuous functions, define g_{n} : $[0,1] \rightarrow \mathbb{R}$ by setting

$$
g_{n}(x)=\int_{0}^{1} \frac{f_{n}(t)}{(t-x)^{1 / 3}} d t, \quad x \in[0,1] .
$$

(Observe that this is an improper Riemann integral.) Show that the sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.
(9) A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ satisfies the inequality $\left|\sum_{k=1}^{n} a_{k}\right| \leq \sqrt{n}$ for all $n \geq 1$. Show that the series

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{k}
$$

converges.
(10) Show that there does not exist a sequence $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$ of nonempty, pairwise disjoint intervals such that $\bigcup_{n} I_{n}=[0,1]$.

