Tier I Analysis Exam
 August, 2010

- Be sure to fully justify all answers.
- Scoring: Each one of the 10 problems is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in correct order.
(1) Let A and B be bounded sets of positive real numbers and let $A B=\{a b \mid a \in A, b \in B\}$. Prove that $\sup A B=(\sup A)(\sup B)$.
(2) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called proper if $f^{-1}(C)$ is compact for every compact set C. Prove or give a counterexample: if f and g are continuous and proper, then the product $f g$ is proper.
(3) (a) Prove or give a counterexample: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function and $f(x)>x^{2}$ for all x, then given any $M \in \mathbb{R}$ there is an x_{0} such that $\left|f^{\prime}\left(x_{0}\right)\right|>M$.
(b) Prove or give a counterexample: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a differentiable function and $\|f(x, y)\|>\|(x, y)\|^{2}$ for all (x, y), then given any $M \in \mathbb{R}$ there is an $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that $\left|\operatorname{det}\left(D f\left(x_{0}, y_{0}\right)\right)\right|>M$.
(4) Suppose that $\left\{f_{n}\right\}$ is a sequence of continuous functions defined on the interval $[0,1]$ converging uniformly to a function f_{0}. Let $\left\{x_{n}\right\}$ be a sequence of points converging to a point x_{0} with the property that for each $n, f_{n}\left(x_{n}\right) \geq f_{n}(x)$ for all $x \in[0,1]$. Prove that $f_{0}\left(x_{0}\right) \geq f_{0}(x)$ for all $x \in[0,1]$.
(5) Let f be continuous at $x=0$, and assume

$$
\lim _{x \rightarrow 0} \frac{f(2 x)-f(x)}{x}=L .
$$

Prove that $f^{\prime}(0)$ exists and $f^{\prime}(0)=L$.
(6) Let $R=\left\{(x, y)|0 \leq x, 5| y|\leq 3| x \mid, x^{2}-y^{2} \leq 1\right\}$, a compact region in \mathbb{R}^{2}. For some region $S \subset \mathbb{R}^{2}$, the function $F: S \rightarrow R$ given by $F(r, \theta)=(r \cosh \theta, r \sinh \theta)$ is one-to-one and onto. Determine S and use this change of variable to compute the integral

$$
\iint_{R} \frac{d x d y}{1+x^{2}-y^{2}} .
$$

(Recall that $\cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2}$ and $\sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}$.)
(7) Let $d(x)=\min _{n \in \mathbb{Z}}|x-n|$, where \mathbb{Z} is the set of all integers.
(a) Prove that $f(x)=\sum_{n=0}^{\infty} \frac{d\left(10^{n} x\right)}{10^{n}}$ is a continuous function on \mathbb{R}.
(b) Compute explicitly the value of $\int_{0}^{1} f(x) d x$.
(8) Suppose f and φ are continuous real valued functions on \mathbb{R}. Suppose $\varphi(x)=0$ whenever $|x|>5$, and suppose that $\int_{\mathbb{R}} \varphi(x) d x=1$. Show that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{\mathbb{R}} f(x-y) \varphi\left(\frac{y}{h}\right) d y=f(x)
$$

for all $x \in \mathbb{R}$.
(9) Let $f(x, y, z)$ and $g(x, y, z)$ be continuously differentiable functions defined on \mathbb{R}^{3}. Suppose that $f(0,0,0)=g(0,0,0)=0$. Also, assume that the gradients $\nabla f(0,0,0)$ and $\nabla g(0,0,0)$ are linearly independent. Show that for some $\epsilon>0$ there is a differentiable curve $\gamma:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{3}$ with nonvanishing derivative such that $\gamma(0)=(0,0,0)$ and $f(\gamma(t))=g(\gamma(t))=0$ for all $t \in(-\epsilon, \epsilon)$.
(10) Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1\right.$ and $\left.z=e^{x^{2}+2 y^{2}}\right\}$. So, S is that part of the surface described by $z=e^{x^{2}+2 y^{2}}$ that lies inside the cylinder $x^{2}+y^{2}=1$. Let the path $C=\partial S$. Choose (specify) an orientation for C and compute

$$
\int_{C}\left(-y^{3}+x z\right) d x+\left(y z+x^{3}\right) d y+z^{2} d z .
$$

