- Be sure to fully justify all answers.
- Scoring: Each one of the 10 problems is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in correct order.
- (1) Let A and B be bounded sets of positive real numbers and let $AB = \{ab \mid a \in A, b \in B\}$. Prove that $\sup AB = (\sup A)(\sup B)$.
- (2) A function $f: \mathbb{R} \to \mathbb{R}$ is called *proper* if $f^{-1}(C)$ is compact for every compact set C. Prove or give a counterexample: if f and g are continuous and proper, then the product fg is proper.
- (3) (a) Prove or give a counterexample: If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and $f(x) > x^2$ for all x, then given any $M \in \mathbb{R}$ there is an x_0 such that $|f'(x_0)| > M$.
 - (b) Prove or give a counterexample: If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a differentiable function and $||f(x,y)|| > ||(x,y)||^2$ for all (x,y), then given any $M \in \mathbb{R}$ there is an $(x_0, y_0) \in \mathbb{R}^2$ such that $|\det(Df(x_0, y_0))| > M$.
- (4) Suppose that $\{f_n\}$ is a sequence of continuous functions defined on the interval [0,1] converging uniformly to a function f_0 . Let $\{x_n\}$ be a sequence of points converging to a point x_0 with the property that for each n, $f_n(x_n) \ge f_n(x)$ for all $x \in [0,1]$. Prove that $f_0(x_0) \ge f_0(x)$ for all $x \in [0,1]$.
- (5) Let f be continuous at x = 0, and assume

$$\lim_{x \to 0} \frac{f(2x) - f(x)}{x} = L.$$

Prove that f'(0) exists and f'(0) = L.

(6) Let $R = \{(x,y) \mid 0 \le x, 5|y| \le 3|x|, x^2 - y^2 \le 1\}$, a compact region in \mathbb{R}^2 . For some region $S \subset \mathbb{R}^2$, the function $F \colon S \to R$ given by $F(r,\theta) = (r \cosh \theta, r \sinh \theta)$ is one-to-one and onto. Determine S and use this change of variable to compute the integral

(Recall that
$$\cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2}$$
 and $\sinh \theta = \frac{e^{\theta} - e^{-\theta}}{2}$.)

- (7) Let $d(x) = \min_{n \in \mathbb{Z}} |x n|$, where \mathbb{Z} is the set of all integers.
 - (a) Prove that $f(x) = \sum_{n=0}^{\infty} \frac{d(10^n x)}{10^n}$ is a continuous function on \mathbb{R} .
 - (b) Compute explicitly the value of $\int_0^1 f(x) dx$.
- (8) Suppose f and φ are continuous real valued functions on \mathbb{R} . Suppose $\varphi(x) = 0$ whenever |x| > 5, and suppose that $\int_{\mathbb{R}} \varphi(x) dx = 1$. Show that

$$\lim_{h \to 0} \frac{1}{h} \int_{\mathbb{R}} f(x - y)\varphi\left(\frac{y}{h}\right) dy = f(x)$$

for all $x \in \mathbb{R}$.

- (9) Let f(x, y, z) and g(x, y, z) be continuously differentiable functions defined on \mathbb{R}^3 . Suppose that f(0,0,0) = g(0,0,0) = 0. Also, assume that the gradients $\nabla f(0,0,0)$ and $\nabla g(0,0,0)$ are linearly independent. Show that for some $\epsilon > 0$ there is a differentiable curve $\gamma: (-\epsilon, \epsilon) \to \mathbb{R}^3$ with nonvanishing derivative such that $\gamma(0) = (0,0,0)$ and $f(\gamma(t)) = g(\gamma(t)) = 0$ for all $t \in (-\epsilon, \epsilon)$.
- (10) Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \leq 1 \text{ and } z = e^{x^2 + 2y^2}\}$. So, S is that part of the surface described by $z = e^{x^2 + 2y^2}$ that lies inside the cylinder $x^2 + y^2 = 1$. Let the path $C = \partial S$. Choose (specify) an orientation for C and compute

$$\int_{C} (-y^{3} + xz)dx + (yz + x^{3})dy + z^{2}dz .$$