Department of Mathematics-Tier 1 Analysis Examination

January 7, 2010

Notation: In problems 2,3 , and 9 the notation ∇f denotes the n-tuple of first-order partial derivatives of a function f mapping an open set in \mathbf{R}^{n} into \mathbf{R}.

1. Let E be a closed and bounded set in \mathbf{R}^{n} and let $f: E \rightarrow \mathbf{R}$. Suppose that for each $x \in E$ there are positive numbers r and M depending on x such that $f(y) \geq-M$ for all $y \in E$ satisfying $|y-x|<r$. Prove that there is a positive number \bar{M} such that $f(y) \geq-\bar{M}$ for all $y \in E$.
2. Let V be a convex open set in \mathbf{R}^{2} and let $f: V \rightarrow \mathbf{R}$ be continuously differentiable in V. Show that if there is a positive number M such that $|\nabla f(x)| \leq M$ for all $x \in V$, then there is a a positive number L such that

$$
|f(x)-f(y)| \leq L|x-y|
$$

for all $x, y \in V$.
Is this result still true if V is instead assumed to be open and connected? Prove or disprove with a counterexample.
3. Let f be a C^{2} mapping of a neighborhood of a point $x_{0} \in \mathbf{R}^{n}$ into \mathbf{R}. Assume that x_{0} is a critical point of f and that the second derivative matrix $f^{\prime \prime}\left(x_{0}\right)$ is positive definite. Prove that there is a neighborhood V of x_{0} such that zero is an interior point of the set $\{\nabla f(y): y \in V\}$.
4. Suppose that F and G are differentiable maps of a neighborhood V of a point $x_{0} \in \mathbf{R}^{n}$ into \mathbf{R} and that $F\left(x_{0}\right)=G\left(x_{0}\right)$. Next let $f: V \rightarrow \mathbf{R}$ and suppose that $F(x) \leq f(x) \leq G(x)$ for all $x \in V$. Prove that f is differentiable at $x=x_{0}$.
5. Let $\left\{g_{k}\right\}_{k=1}^{\infty}$ be a sequence of continuous real-valued functions on $[0,1]$. Assume that there is a number M such that $\left|g_{k}(x)\right| \leq M$ for every k and every $x \in[0,1]$ and also that there is a continuous real-valued function g on $[0,1]$ such that

$$
\int_{0}^{1} g_{k}(x) p(x) d x \rightarrow \int_{0}^{1} g(x) p(x) d x \quad \text { as } k \rightarrow \infty
$$

for every polynomial p. Prove that $|g(x)| \leq M$ for every $x \in[0,1]$ and that

$$
\int_{0}^{1} g_{k}(x) f(x) d x \rightarrow \int_{0}^{1} g(x) f(x) d x
$$

for every continuous f.
6. Let $\left\{a_{k}\right\}$ be a sequence of positive numbers converging to a positive number a. Prove that $\left(a_{1} a_{2} \cdots a_{k}\right)^{1 / k}$ also converges to a.
7. Compute rigorously $\lim _{n \rightarrow \infty}\left[\frac{1}{n+\sqrt{n}} \sum_{k=1}^{n} \sin \left(\frac{k}{n}\right)\right]$.
8. Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be a sequence of numbers satisfying $\left|a_{k}\right| \leq k^{2} / 2^{k}$ for all k and let $f:[0,1] \times \mathbf{R} \rightarrow \mathbf{R}$ be continuous. Prove that the following limit exists:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x, \sum_{k=1}^{n} a_{k} x^{k}\right) d x
$$

9. Let $g: \mathbf{R}^{2} \rightarrow(0, \infty)$ be C^{2} and define $\Sigma \subset \mathbf{R}^{3}$ by $\Sigma=\left\{\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right): x_{1}^{2}+x_{2}^{2} \leq 1\right\}$. Assume that Σ is contained in the ball B of radius R centered at the origin in \mathbf{R}^{3} and that each ray through the origin intersects Σ at most once. Let E be the set of points $x \in \partial B$ such that the ray joining the origin to x intersects Σ exactly once. Derive an equation relating the area of E, R, and the integral

$$
\int_{\Sigma} \nabla \Gamma(x) \cdot N(x) d S
$$

where $\Gamma(x)=1 /|x|, N(x)$ is a unit normal vector on Σ, and $d S$ represents surface area.

