Department of Mathematics-Tier 1 Analysis Examination

January 7, 2010

Notation: In problems 2, 3, and 9 the notation ∇f denotes the *n*-tuple of first-order partial derivatives of a function f mapping an open set in \mathbf{R}^n into \mathbf{R} .

- 1. Let *E* be a closed and bounded set in \mathbb{R}^n and let $f: E \to \mathbb{R}$. Suppose that for each $x \in E$ there are positive numbers *r* and *M* depending on *x* such that $f(y) \ge -M$ for all $y \in E$ satisfying |y x| < r. Prove that there is a positive number \overline{M} such that $f(y) \ge -\overline{M}$ for all $y \in E$.
- 2. Let V be a convex open set in \mathbb{R}^2 and let $f: V \to \mathbb{R}$ be continuously differentiable in V. Show that if there is a positive number M such that $|\nabla f(x)| \leq M$ for all $x \in V$, then there is a positive number L such that

$$|f(x) - f(y)| \le L|x - y|$$

for all $x, y \in V$.

Is this result still true if V is instead assumed to be open and connected? Prove or disprove with a counterexample.

- 3. Let f be a C^2 mapping of a neighborhood of a point $x_0 \in \mathbf{R}^n$ into **R**. Assume that x_0 is a critical point of f and that the second derivative matrix $f''(x_0)$ is positive definite. Prove that there is a neighborhood V of x_0 such that zero is an interior point of the set $\{\nabla f(y) : y \in V\}$.
- 4. Suppose that F and G are differentiable maps of a neighborhood V of a point $x_0 \in \mathbb{R}^n$ into \mathbb{R} and that $F(x_0) = G(x_0)$. Next let $f: V \to \mathbb{R}$ and suppose that $F(x) \leq f(x) \leq G(x)$ for all $x \in V$. Prove that f is differentiable at $x = x_0$.
- 5. Let $\{g_k\}_{k=1}^{\infty}$ be a sequence of continuous real-valued functions on [0, 1]. Assume that there is a number M such that $|g_k(x)| \leq M$ for every k and every $x \in [0, 1]$ and also that there is a continuous real-valued function g on [0, 1] such that

$$\int_0^1 g_k(x)p(x)dx \to \int_0^1 g(x)p(x)dx \text{ as } k \to \infty$$

for every polynomial p. Prove that $|g(x)| \leq M$ for every $x \in [0,1]$ and that

$$\int_0^1 g_k(x) f(x) dx \to \int_0^1 g(x) f(x) dx$$

for every continuous f.

- 6. Let $\{a_k\}$ be a sequence of positive numbers converging to a positive number a. Prove that $(a_1a_2\cdots a_k)^{1/k}$ also converges to a.
- 7. Compute rigorously $\lim_{n \to \infty} \left[\frac{1}{n + \sqrt{n}} \sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \right].$
- 8. Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of numbers satisfying $|a_k| \leq k^2/2^k$ for all k and let $f: [0,1] \times \mathbf{R} \to \mathbf{R}$ be continuous. Prove that the following limit exists:

$$\lim_{n \to \infty} \int_0^1 f\left(x, \sum_{k=1}^n a_k x^k\right) dx \; .$$

9. Let $g : \mathbf{R}^2 \to (0, \infty)$ be C^2 and define $\Sigma \subset \mathbf{R}^3$ by $\Sigma = \{(x_1, x_2, g(x_1, x_2)) : x_1^2 + x_2^2 \leq 1\}$. Assume that Σ is contained in the ball B of radius R centered at the origin in \mathbf{R}^3 and that each ray through the origin intersects Σ at most once. Let E be the set of points $x \in \partial B$ such that the ray joining the origin to x intersects Σ exactly once. Derive an equation relating the area of E, R, and the integral

$$\int_{\Sigma} \nabla \Gamma(x) \cdot N(x) dS$$

where $\Gamma(x) = 1/|x|$, N(x) is a unit normal vector on Σ , and dS represents surface area.