Tier 1 Analysis Exam

August, 2009

Show all work, and justify all answers.
This exam has 9 problems.
\mathbf{R} will denote the real numbers, and $\|\cdot\|$ will denote the usual Euclidean norm.

1. Define the statement: " $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is differentiable at $(0,0)$," and show that the function $f(x, y)=x|y|^{\frac{1}{2}}$ is differentiable at $(0,0)$.
2. Show that the series

$$
2 \sin \frac{1}{3 x}+4 \sin \frac{1}{9 x}+\cdots+2^{n} \sin \frac{1}{3^{n} x}+\cdots
$$

converges absolutely for $x \neq 0$ but does not converge uniformly on any interval $(0, \epsilon)$ with $\epsilon>0$.
3. Let $V(n, r)$ be the volume of the ball $\left\{x \in \mathbf{R}^{n}:\|x\| \leq r\right\}$.
(a) Show that $V(n, r)=c_{n} r^{n}$ for some constant c_{n} depending only on n.
(b) Find $\lim _{n \rightarrow \infty} c_{n}$.
4. Suppose that $x \neq 0$. Show that

$$
\lim _{n \rightarrow \infty} \frac{1+\cos (x / n)+\cos (2 x / n)+\cdots+\cos ((n-1) x / n)}{n}=\frac{\sin (x)}{x}
$$

5. Let $X=\left\{x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}=2\right.$, and $\left.x_{1}+x_{2}+x_{3}+x_{4}=2\right\}$. For which points $p \in X$ is it possible to find a product of open intervals $V=I_{1} \times I_{2} \times I_{3} \times I_{4}$ containing p such that $X \cap V$ is the graph of a function expressing some of the variables x_{1}, x_{2}, x_{3}, x_{4} in terms of the others? If there are any points in X where this is not possible, explain why not.
6. Let a and b be two points of \mathbf{R}^{2}. Let $\sigma_{n}:[0,1] \rightarrow \mathbf{R}^{2}$ be a sequence of continuously differentiable constant speed curves with $\left\|\sigma_{n}^{\prime}(t)\right\|=L_{n}$ for all $t \in[0,1]$ and $\sigma_{n}(0)=a$ and $\sigma_{n}(1)=b$ for all n. Suppose that $\lim _{n \rightarrow \infty} L_{n}=\|b-a\|$. Show that σ_{n} converges uniformly to σ, where $\sigma(t)=a+t(b-a)$ for $t \in[0,1]$.
7. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function; and let its n-th derivative, denoted $f^{(n)}$, exist for all n. Suppose that the sequence $f^{(n)}, n=1,2,3, \ldots$ converges uniformly on compact subsets to a function g. Show that there is a constant c such that $g(x)=c e^{x}$.
8. Let $M=\left\{(x, y, z) \in \mathbf{R}^{3}: y=9-x^{2}, y \geq 0\right.$, and $\left.0 \leq z \leq 1\right\}$. Orient M so that the unit normal \vec{n} is in the positive y-direction along the line $x=0, y=3$. Let \vec{F} be the vector field on \mathbf{R}^{3} given by $\vec{F}=\left(2 x^{3} y z, y+3 x^{2} y^{2} z,-6 x^{2} y z^{2}\right)$.
(a) What is $\operatorname{div} \vec{F}$?
(b) Use the Divergence Theorem to express the flux of \vec{F} across M (that is, $\int_{M} \vec{F} \cdot \vec{n} d S$, where $d S$ is the surface area element) in terms of some other (easier) integrals.
(c) Calculate $\int_{M} \vec{F} \cdot \vec{n} d S$ by evaluating the integrals in part (b).
9. Let (X, d) be a compact metric space. Suppose that $h: X \rightarrow Y \subset X$ is a map which preserves d, or in other words, $d\left(h\left(x_{1}\right), h\left(x_{2}\right)\right)=d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$. Show that $Y=X$.
