Tier I Analysis Exam

January 2009

Try to work all questions. They all are worth the same amount.

1. Assume f and g are uniformly continuous functions from $\mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$. If both f and g are also bounded, show that $f g$ is also uniformly continuous. Then give an example to show that in general, if f and g are both uniformly continuous but not both bounded, then the product is not necessarily uniformly continuous. (Verify clearly that your counter-example is not uniformly continuous.)
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are \mathcal{C}^{2} functions, $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a \mathcal{C}^{1} function and assume

$$
f(0)=g(0)=0, \quad f^{\prime}(0)=g^{\prime}(0)=h(0,0)=1
$$

Show that the function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
H(x, y):=\int_{0}^{f(x)} \int_{0}^{g(y)} h(s, t) d s d t+\frac{1}{2} x^{2}+b y^{2}
$$

has a local minimum at the origin provided that $b>\frac{1}{2}$ while it has a saddle at the origin if $b<\frac{1}{2}$.
3. Let $H=\left\{(x, y, z) \mid z>0\right.$ and $\left.x^{2}+y^{2}+z^{2}=R^{2}\right\}$, i.e. the upper hemisphere of the sphere of radius R centered at 0 in \mathbb{R}^{3}. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the vector field

$$
F(x, y, z)=\left\{x^{2}\left(y^{2}-z^{3}\right), x z y^{4}+e^{-x^{2}} y^{4}+y, x^{2} y\left(y^{2} x^{3}+3\right) z+e^{-x^{2}-y^{2}}\right\}
$$

Find $\int_{H} F \cdot \hat{n} d S$ where \hat{n} is the outward (upward) pointing unit surface normal and $d S$ is the area element.
4. Let D be the square with vertices $(2,2),(3,3),(2,4),(1,3)$. Calculate the improper integral

$$
\iint_{D} \ln \left(y^{2}-x^{2}\right) d x d y
$$

5. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ is a \mathcal{C}^{4} function with the property that at some point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ all of the first and second order partial derivatives of f vanish. Suppose also that at least one partial derivative of third order does not vanish at $\left(x_{0}, y_{0}\right)$. Prove that f can have neither a local maximum nor a local minimum at this critical point.
6. Prove that the series $\sum_{n=1}^{\infty} \frac{n x}{1+n^{2} \log ^{2}(n) x^{2}}$ converges uniformly on $[\varepsilon, \infty)$ for any $\varepsilon>0$.
7. Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is of class \mathcal{C}^{1}, that $f(0,0,0)=0$, and

$$
f_{2}(0,0,0) \neq 0, \quad f_{3}(0,0,0) \neq 0, \quad \text { and } \quad f_{2}(0,0,0)+f_{3}(0,0,0) \neq-1
$$

where $f_{k}=\frac{\partial f}{\partial x_{k}}$. Show that the system

$$
\begin{aligned}
& f\left(x_{1}, f\left(x_{1}, x_{2}, x_{3}\right), x_{3}\right)=0 \\
& f\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}, x_{3}\right)\right)=0
\end{aligned}
$$

defines \mathcal{C}^{1} functions $x_{2}=\varphi\left(x_{1}\right)$, and $x_{3}=\psi\left(x_{1}\right)$ for x_{1} in a neighborhood of 0 satisfying

$$
\begin{aligned}
& f\left(x_{1}, f\left(x_{1}, \varphi\left(x_{1}\right), \psi\left(x_{1}\right)\right), \psi\left(x_{1}\right)\right)=0 \\
& f\left(x_{1}, \varphi\left(x_{1}\right), f\left(x_{1}, \varphi\left(x_{1}\right), \psi\left(x_{1}\right)\right)\right)=0 .
\end{aligned}
$$

8. For each $b \in[1, e]$, consider the sequence of real numbers governed by the recurrence relation
$a_{n+1}=(\sqrt[b]{b})^{a_{n}} \quad$ for $n=0,1,2 \ldots \quad$ with $a_{0}=\sqrt[b]{b} \quad$ i.e. $\quad\left\{\sqrt[b]{b}_{b} \sqrt[b]{b} \sqrt[b]{b}, \sqrt[b]{b}^{\sqrt[b]{b}}, \sqrt[b]{b} \sqrt[b]{b}^{\frac{b}{b}} \sqrt{\sqrt[b]{b}}, \ldots\right\}$.
Show that this sequence converges and find the limit.
9. For each positive integer n, define $x_{n}:[-1,1] \rightarrow \mathbb{R}$ by

$$
x_{n}(t)= \begin{cases}-1 & \text { if }-1 \leq t \leq-1 / n \\ n t & \text { if }-1 / n<t<1 / n \\ 1 & \text { if } 1 / n \leq t \leq 1\end{cases}
$$

(a) Show that $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $(\mathcal{C}([-1,1]), d)$, where $\mathcal{C}([-1,1])$ denotes the set of continuous functions defined on $[-1,1]$ and d denotes the metric given by

$$
d(x, y)=\int_{-1}^{1}|x(t)-y(t)| d t
$$

(b) Show that $(\mathcal{C}([-1,1]), d)$ is not complete.

