TIER I ANALYSIS EXAM

August 2008
Do all 10 problems; they all count equally.

Problem 1. Suppose that I_{1}, \ldots, I_{n} are disjoint closed subintervals of \mathbb{R}. If f is uniformly continuous on each of the intervals, prove that f is uniformly continuous on $\bigcup_{j=1}^{n} I_{j}$.

Does this still hold if the intervals are open?

Problem 2. Suppose that f is a continuous function from $[0,1]$ into \mathbb{R} and that $\int_{0}^{1} f(x) d x=0$.

Prove that there is at least one point, x_{0}, in $[0,1]$, where $f\left(x_{0}\right)=0$.
Does this still hold if f is Riemann integrable but not continuous?
Problem 3. Suppose that f is a continuous function from $[a, b]$ into \mathbb{R} which has the property that, for any point $x \in[a, b]$, there is another point $x^{\prime} \in[a, b]$ such that $\left|f\left(x^{\prime}\right)\right| \leq|f(x)| / 2$.

Prove that there exists a point $x_{0} \in[a, b]$ where f vanishes, that is, $f\left(x_{0}\right)=0$.

Problem 4. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(\sin (y)-x, e^{x}-y\right), \quad g(x, y)=\left(x y, x^{2}+y^{2}\right) .
$$

Compute $(g \circ f)^{\prime}(0,0)$.

Problem 5. Prove that there exists a positive number θ_{0} such that the following holds: For each $\theta \in\left[0, \theta_{0}\right]$, there exist real numbers x and y (with $x y>-1$) such that

$$
2 x+y+e^{x y}=\cos \left(\theta^{3}\right), \quad \text { and } \quad \log (1+x y)+\sin \left(x+y^{2}\right)=\sqrt{\theta} .
$$

(Hint: First evaluate the left side of each of these two equations for $x=y=0$.)

Problem 6. If $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are absolutely convergent series of real numbers it is well-known that their Cauchy product series $\sum_{n=0}^{\infty} c_{n}$ also converges, where

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{0} b_{n}, \quad n=0,1, \ldots .
$$

Show that this assertion is no longer true if $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are merely conditionally convergent.

Problem 7. (a.) Let C be the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2}.

Prove that $\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}$.
(b.) Suppose further that $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are vertices of a polygon in \mathbb{R}^{2}, in counterclockwise order.

Prove that the area of the polygon is equal to

$$
\frac{1}{2}\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right] .
$$

Problem 8. Prove that there exist a positive integer n and real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that

$$
\left|\left(\sum_{k=0}^{n} \frac{a_{k}}{x^{k}}\right)-\exp \left(\frac{\sin \left(e^{x}\right)}{\sqrt{x}}\right)\right| \leq 10^{-6} \quad \text { for all } x \in[1, \infty)
$$

Problem 9. Prove that the series $\sum_{n=1}^{\infty} n^{-x}$ can be differentiated term by term on its interval of convergence.

Problem 10. Suppose that, for each positive integer n,

$$
f_{n}:[0,1] \rightarrow \mathbb{R}
$$

is a continuous function that satisfies $f_{n}(0)=0$ and has a continuous derivative f_{n}^{\prime} on $(0,1)$ such that $\left|f_{n}^{\prime}(x)\right| \leq 9000$ for all $x \in(0,1)$.

Prove that there exists a subsequence $f_{n_{1}}, f_{n_{2}}, f_{n_{3}}, \ldots$ such that the following holds:

For every Riemann integrable function $g:[0,1] \rightarrow \mathbb{R}$, there exists a real number L (which may depend on the function g) such that

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} g(x) f_{n_{k}}(x) d x=L
$$

(Note. You may take for granted and freely use standard basic facts about Riemann integrals, including, e.g. the fact that a Riemann integrable function is bounded, and that linear combinations, products, and absolute values of Riemann integrable functions are Riemann integrable.)

