TIER I ANALYSIS EXAM August 2008

Do all 10 problems; they all count equally.

Problem 1. Suppose that I_1, \ldots, I_n are disjoint closed subintervals of \mathbb{R} . If f is uniformly continuous on each of the intervals, prove that f is uniformly continuous on $\bigcup_{i=1}^n I_i$.

Does this still hold if the intervals are open?

Problem 2. Suppose that f is a continuous function from [0, 1] into \mathbb{R} and that $\int_0^1 f(x) dx = 0$.

Prove that there is at least one point, x_0 , in [0, 1], where $f(x_0) = 0$. Does this still hold if f is Riemann integrable but not continuous?

Problem 3. Suppose that f is a continuous function from [a, b] into \mathbb{R} which has the property that, for any point $x \in [a, b]$, there is another point $x' \in [a, b]$ such that $|f(x')| \leq |f(x)|/2$.

Prove that there exists a point $x_0 \in [a, b]$ where f vanishes, that is, $f(x_0) = 0$.

Problem 4. Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ and $g : \mathbb{R}^2 \to \mathbb{R}^2$ by

 $f(x,y) = (\sin(y) - x, e^x - y), \quad g(x,y) = (xy, x^2 + y^2).$

Compute $(g \circ f)'(0, 0)$.

Problem 5. Prove that there exists a positive number θ_0 such that the following holds: For each $\theta \in [0, \theta_0]$, there exist real numbers x and y (with xy > -1) such that

 $2x + y + e^{xy} = \cos(\theta^3)$, and $\log(1 + xy) + \sin(x + y^2) = \sqrt{\theta}$.

(*Hint*: First evaluate the left side of each of these two equations for x = y = 0.)

Problem 6. If $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are absolutely convergent series of real numbers it is well-known that their *Cauchy product series* $\sum_{n=0}^{\infty} c_n$ also converges, where

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_0 b_n$$
, $n = 0, 1, \dots$

Show that this assertion is no longer true if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are merely conditionally convergent.

(a.) Let C be the line segment joining the points Problem 7. (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 .

Prove that $\int_C x \, dy - y \, dx = x_1 y_2 - x_2 y_1$.

(b.) Suppose further that $(x_1, y_1), \ldots, (x_n, y_n)$ are vertices of a polygon in \mathbb{R}^2 , in counterclockwise order.

Prove that the area of the polygon is equal to

$$\frac{1}{2}\left[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_ny_1 - x_1y_n)\right].$$

Problem 8. Prove that there exist a positive integer n and real numbers a_0, a_1, \ldots, a_n such that

$$\left| \left(\sum_{k=0}^{n} \frac{a_k}{x^k} \right) - \exp\left(\frac{\sin(e^x)}{\sqrt{x}}\right) \right| \le 10^{-6} \quad \text{for all } x \in [1, \infty).$$

Problem 9. Prove that the series $\sum_{n=1}^{\infty} n^{-x}$ can be differentiated term by term on its interval of convergence.

Problem 10. Suppose that, for each positive integer n,

$$f_n:[0,1]\to\mathbb{R}$$

is a continuous function that satisfies $f_n(0) = 0$ and has a continuous derivative f'_n on (0, 1) such that $|f'_n(x)| \leq 9000$ for all $x \in (0, 1)$. Prove that there exists a subsequence $f_{n_1}, f_{n_2}, f_{n_3}, \ldots$ such that the

following holds:

For every Riemann integrable function $g:[0,1] \to \mathbb{R}$, there exists a real number L (which may depend on the function g) such that

$$\lim_{k\to\infty}\int_0^1 g(x)\,f_{n_k}(x)\,dx = L \,.$$

(*Note*. You may take for granted and freely use standard basic facts about Riemann integrals, including, e.g. the fact that a Riemann integrable function is bounded, and that linear combinations, products, and absolute values of Riemann integrable functions are Riemann integrable.)