TIER 1 ANALYSIS EXAM AUGUST 2007

(1) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}
$$

for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that is differentiable at all points $(x, y) \in \mathbb{R}^{2}$ except $(0,0)$. Show that f is not differentiable at $(0,0)$.
(2) Given $\lambda \in \mathbb{R}$, define $h_{\lambda}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
h_{\lambda}(x, y)=-x^{4}+x^{2}+y^{2}+\lambda \cdot \sin (x \cdot y) .
$$

For which values of λ does h_{λ} have a local minimum at $(0,0)$? Justify your answer.
(3) Let $\gamma \subset \mathbb{R}^{2}$ be the simple closed curve described in polar coordinates by $r=\cos (2 \theta)$ where $\theta \in[-\pi / 4, \pi / 4]$. Suppose that γ is positively oriented. Compute the line integral

$$
\int_{\gamma} 3 y d x+x d y
$$

Provide the details of your computation.
(4) Let X be a metric space such that $d(x, y) \leq 1$ for every $x, y \in X$, and let $f: X \rightarrow \mathbb{R}$ be a uniformly continuous function. Does it follow that f must be bounded? Justify your answer with either a proof or a counterexample.
(5) Let

$$
f(x, y)=\left(x+e^{2 y}-1, \sin \left(x^{2}+y\right)\right)
$$

and let

$$
h(x, y)=(1+x)^{5}-e^{4 y} .
$$

Show that there exists a continuously differentiable function $g(x, y)$ defined in a neighborhood of $(0,0)$ such that $g(0,0)=0$ and $g \circ f=h$. Compute $\frac{\partial g}{\partial y}(0,0)$.
(6) Let c_{1}, c_{2}, \ldots be an infinite sequence of distinct points in the interval $[0,1]$. Define $f:[0,1] \rightarrow \mathbb{R}$ by setting $f(x)=1 / n$ if $x=c_{n}$ and $f(x)=0$ if $x \notin\left\{c_{n}\right\}$. State the definition of a Riemann integrable function, and directly use this definition to show that

$$
\int_{0}^{1} f(x) d x
$$

exists.
(7) Show that the formula

$$
g(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} e^{\int_{0}^{x} t \sin \left(\frac{n}{t}\right) d t}
$$

defines a function $g: \mathbb{R} \rightarrow \mathbb{R}$. Prove that g is continuously differentiable.
(8) Consider an unbounded sequence $0<a_{1}<a_{2}<\cdots$, and set

$$
s=\limsup _{n \rightarrow \infty} \frac{\log n}{\log a_{n}} .
$$

Show that the series

$$
\sum_{n=1}^{\infty} a_{n}^{-t}
$$

converges for $t>s$ and diverges for $t<s$.
(9) Define a sequence $\left\{a_{n}\right\}$ by setting $a_{1}=1 / 2$ and $a_{n+1}=\sqrt{1-a_{n}}$ for $n \geq 2$. Does the sequence a_{n} converge? If so, what is the limit? Justify your answer with a proof.

