1. Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) be a function.

 (1) Prove that if \(f \) is uniformly continuous, and if \(\{p_k\} \) is a Cauchy sequence in \(A \),
 then \(\{f(p_k)\} \) is a Cauchy sequence in \(\mathbb{R}^m \).

 (2) Give an example of continuous \(f \) and a Cauchy sequence \(\{p_k\} \) in some \(A \) (you may take \(n = m = 1 \)) for which \(\{f(p_k)\} \) is not a Cauchy sequence.

2. Let \(f : (a, b) \subset \mathbb{R} \to \mathbb{R} \) be a continuous function. Assume \(f \) is differentiable everywhere in \((a, b) \), except possibly at a point \(c \). Show that, if \(\lim_{x \to c} f'(x) \) exists and is equal to \(L \),
 then \(f \) is differentiable at \(c \) and \(f'(c) = L \).

3. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be a \(C^1 \) function with \(g(\frac{1}{2}, \frac{2}{3}) = 3 \), \(\frac{\partial g}{\partial x}(\frac{1}{2}, \frac{2}{3}) = -1 \), and \(\frac{\partial g}{\partial y}(\frac{1}{2}, \frac{2}{3}) = -4 \),
 where \((r, s) \) are the coordinates for the \(\mathbb{R}^2 \). Define \(f : \mathbb{R}^3 \to \mathbb{R} \) by

 \[
 f(x, y, z) = g\left(\frac{x}{z}, \frac{y}{z}\right),
 \]

 for \(z \neq 0 \). Show that the level surface \(f^{-1}(3) \) has a tangent plane at the point \((1, 2, 3)\)
 and find a linear equation for it.

4. For which positive integers \(k \) does the series

 \[
 \sum_{n=1}^{\infty} \frac{\sin(n\pi/k)}{n}
 \]

 converge? Justify your answer with a proof.

5. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function. Let \(x \in \mathbb{R} \) and define the sequence \(\{x_n\} \)
 inductively by setting \(x_0 = x \) and \(x_{n+1} = f(x_n) \). Suppose that \(\{x_n\} \) is bounded. Prove
 that there exists \(y \in \mathbb{R} \) such that \(f(y) = y \).

6. Decide whether or not the function \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) defined by

 \[
 f(x, y) = \begin{cases}
 \frac{x}{q}, & \text{if } x \notin \mathbb{Q} \text{ and } y = \frac{p}{q} \in \mathbb{Q} \\
 \frac{y}{q}, & \text{if } y \notin \mathbb{Q} \text{ and } x = \frac{p}{q} \in \mathbb{Q} \\
 0, & \text{if } (x, y) \in \mathbb{Q} \times \mathbb{Q} \text{ or } (x, y) \in \mathbb{R} \setminus \mathbb{Q} \times \mathbb{R} \setminus \mathbb{Q}
 \end{cases}
 \]

 is Riemann integrable on \([0, 1] \times [0, 1]\). Prove your decision from the definition without
 invoking any theorems about integrable functions. (Here all fractions \(\frac{p}{q} \) are assumed
to be reduced.)
7. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a \(C^2 \) function (i.e. \(f \) has continuous second order partial derivatives). Suppose \(p_0 \in \mathbb{R}^n \) is a critical point of \(f \). If
\[
\det \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(p_0) \right] \neq 0,
\]
show that \(p_0 \) is isolated, i.e. there is a neighborhood of \(p_0 \) in which \(p_0 \) is the only critical point of \(f \).

8. Prove that \(\sum_{n=1}^{\infty} \frac{x^n}{1+n^2x^2} \) converges pointwise but not uniformly on \(\mathbb{R} \). Let \(f(x) = \sum_{n=1}^{\infty} \frac{x^n}{1+n^2x^2} \). Is it true that the Riemann integral \(\int_0^1 f(x)dx = \sum_{n=1}^{\infty} \int_0^1 \frac{x^n}{1+n^2x^2}dx \)? Justify.

9. Let \(\{a_n\} \) be a sequence. Show that
\[
\limsup_{n \to \infty} \frac{a_n}{n} \leq \limsup_{n \to \infty} (a_n - a_{n-1}) .
\]

10. Let \(Q \subset \mathbb{R}^3 \) be any solid rectangular box with one vertex at the origin. Show that
\[
\int_{\partial Q} \frac{x \cdot \hat{n}}{\|x\|^2} dS = \frac{\pi}{2}.
\]
Here \(\hat{n} \) is the unit outer normal on \(\partial Q \) and \(dS \) is the area element. (You should notice that this integral is not an improper integral.)