Tier I Analysis Exam
August, 2005

Justify your answers. All problems carry equal weight.

1. Let $p > 0$. Evaluate

$$\lim_{n \to \infty} \frac{1^p + 3^p + \ldots + (2n-1)^p}{n^{p+1}}.$$

2. For $x > 0$, define

$$\phi(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \end{cases}$$

where p, q have no common factor and $q \geq 1$.

(a) Where is ϕ continuous?
(b) Where is ϕ differentiable?

3. Let a, b be real with $|b| > \max\{1, |a|\}$. For $x \in \mathbb{R}$, define

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(a^n x)}{b^n}.$$

(a) Show that f is uniformly continuous on all of \mathbb{R}.
(b) Let

$$\gamma = \{(x, y) : y = f(x), \ 0 \leq x \leq 1 \}$$

be the graph of f over the unit interval. Show that γ has finite length.

4. Let M_2 denote the set of 2-by-2 matrices with real entries, and for $A \in M_2$, define $S(A) = A^2$. Does the mapping $S : M_2 \to M_2$ have a local inverse near the identity matrix?

5. Fix $a > 0$. Let x_1, \ldots, x_n be non-negative numbers with

$$\sum_{i=1}^{n} x_i = na.$$

Show that

$$\sum_{i<j} x_i x_j \leq \frac{1}{2} n(n-1)a^2.$$

Please turn over.
6. Let \(p \) be real. Suppose \(f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R} \) is continuously differentiable, and satisfies
\[
 f(\lambda x) = \lambda^p f(x), \quad \text{for all } x \neq 0 \text{ and for all } \lambda > 0.
\]
Let \(\nabla f(x) \) denote the gradient of \(f \) at \(x \) and \(\cdot \) the Euclidean inner product. Prove that
\[
x \cdot \nabla f(x) = pf(x), \quad x \neq 0.
\]

7. A family \(\mathcal{F} \) of continuous real-valued functions of a real variable is called equicontinuous at \(x \) if for every \(\epsilon > 0 \), there is a \(\delta > 0 \) such that for every \(f \in \mathcal{F}, \)
\[
 |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.
\]
\(\mathcal{F} \) is called equicontinuous on the set \(E \) if it is equicontinuous at each point \(x \) of \(E \). (Note: the constant \(\delta \) may depend on both \(\epsilon \) and \(x \).

Now suppose \(\mathcal{F} \) is a family of continuous real-valued functions defined on an open interval \(I \subseteq \mathbb{R} \), and let \(x_0 \in I \).

(a) Suppose \(\mathcal{F} \) is equicontinuous at every point of \(I \setminus \{x_0\} \). Must \(\mathcal{F} \) also be equicontinuous at \(x_0 \)?

(b) Suppose \(\mathcal{F} \) is equicontinuous at \(x_0 \). Must \(\mathcal{F} \) also be equicontinuous at every point in some neighborhood \(J \) of \(x_0 \)?

8. Let \(U \) be an open subset of \(\mathbb{R}^n \) and \(f : U \to \mathbb{R}^n \) be differentiable. Suppose there exists \(C > 0 \) such that
\[
 |f(x) - f(y)| \geq C|x - y|
\]
for all \(x, y \in U \). Let \(df(x) \) denote the Jacobian derivative of \(f \) at \(x \) (that is, the linear mapping given by the \(n \) by \(n \) matrix of partial derivatives). Show that \(\det df(x) \neq 0 \) for all \(x \in U \).

9. Let \(m > 0 \) be a real number, let \(r = (x^2 + y^2 + z^2)^{1/2} \), and consider the vector field on \(\mathbb{R}^3 \) given by \(\vec{F} = r^m \cdot (x, y, z) = (x^2 + y^2 + z^2)^{m/2}(x, y, z). \)

(a) Compute the divergence \(\text{div}(\vec{F}) \).

(b) Using part (a) and the Divergence Theorem, calculate
\[
 \iiint_B r^m \, dV
\]
where \(B^3 = \{(x, y, z) : r \leq 1\} \) is the closed unit ball centered at the origin and \(dV = dx \, dy \, dz \) is the Euclidean volume.

End of exam.