Tier I Analysis Exam August, 2005

Justify your answers. All problems carry equal weight.

1. Let p > 0. Evaluate

$$\lim_{n \to \infty} \frac{1^p + 3^p + \ldots + (2n-1)^p}{n^{p+1}}.$$

2. For x > 0, define

$$\phi(x) = \left\{ egin{array}{ll} 0 & ext{if} & x ext{ is irrational} \ rac{1}{q} & ext{if} & x = rac{p}{q} \end{array}
ight.$$

where p, q have no common factor and $q \ge 1$.

- (a) Where is ϕ continuous?
- (b) Where is ϕ differentiable?

3. Let a, b be real with $|b| > \max\{1, |a|\}$. For $x \in \mathbb{R}$, define

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(a^n x)}{b^n}.$$

- (a) Show that f is uniformly continuous on all of R.
- (b) Let

$$\gamma = \{(x,y) : y = f(x), \ 0 \le x \le 1 \}$$

be the graph of f over the unit interval. Show that γ has finite length.

- 4. Let M_2 denote the set of 2-by-2 matrices with real entries, and for $A \in M_2$, define $S(A) = A^2$. Does the mapping $S: M_2 \to M_2$ have a local inverse near the identity matrix?
- 5. Fix a > 0. Let x_1, \ldots, x_n be non-negative numbers with

$$\sum_{i=1}^{n} x_i = na.$$

Show that

$$\sum_{i < j} x_i x_j \leq \frac{1}{2} n(n-1)a^2.$$

Please turn over.

6. Let p be real. Suppose $f: \mathbb{R}^n - \{0\} \to \mathbb{R}$ is continuously differentiable, and satisfies

$$f(\lambda x) = \lambda^p f(x)$$
, for all $x \neq 0$ and for all $\lambda > 0$.

Let $\nabla f(x)$ denote the gradient of f at x and \cdot the Euclidean inner product. Prove that

$$x \cdot \nabla f(x) = pf(x), \ x \neq 0.$$

7. A family \mathcal{F} of continuous real-valued functions of a real variable is called equicontinuous at x if for every $\epsilon > 0$, there is a $\delta > 0$ such that for every $f \in \mathcal{F}$,

$$|x-y|<\delta \Rightarrow |f(x)-f(y)|<\epsilon.$$

 \mathcal{F} is called *equicontinuous on the set* E if it is equicontinuous at each point x of E. (Note: the constant δ may depend on both ϵ and x.)

Now suppose \mathcal{F} is a family of continuous real-valued functions defined on an open interval $I \subseteq \mathbb{R}$, and let $x_0 \in I$.

- (a) Suppose \mathcal{F} is equicontinuous at every point of $I \setminus \{x_0\}$. Must \mathcal{F} also be equicontinuous at x_0 ?
- (b) Suppose \mathcal{F} is equicontinuous at x_0 . Must \mathcal{F} also be equicontinuous at every point in some neighborhood J of x_0 ?
- 8. Let U be an open subset of \mathbb{R}^n and $f:U\to\mathbb{R}^n$ be differentiable. Suppose there exists C>0 such that

$$|f(x)-f(y)|\geq C|x-y|$$

for all $x, y \in U$. Let df(x) denote the Jacobian derivative of f at x (that is, the linear mapping given by the n by n matrix of partial derivatives). Show that $\det df(x) \neq 0$ for all $x \in U$.

- 9. Let m>0 be a real number, let $r=(x^2+y^2+z^2)^{1/2}$, and consider the vector field on \mathbf{R}^3 given by $\vec{F}=r^m\cdot(x,y,z)=(x^2+y^2+z^2)^{m/2}(x,y,z)$.
 - (a) Compute the divergence $\operatorname{div}(\vec{F})$.
 - (b) Using part (a) and the Divergence Theorem, calculate

$$\iiint_{B^3} r^m \ dV$$

where $B^3 = \{(x, y, z) : r \leq 1\}$ is the closed unit ball centered at the origin and $dV = dx \, dy \, dz$ is the Euclidean volume.

End of exam.