Tier I exam in analysis - January 2005

Solve all problems. Justify your answers in detail. The exam's duration is 3 hours

1. Define

$$
S=\left\{(x, y, z) \in R^{3}, \quad x^{2}+2 y^{2}+3 z^{2}=1\right\}, \quad f(x, y, z)=x+y+z
$$

a. Prove that S is a compact set.
b. Find the maximum and minimum of f on S.
2. Let $g:[0,1] \times[0,1] \rightarrow R$ be a continuous function, and define functions f_{n} : $[0,1] \rightarrow R$ by

$$
f_{n}(x)=\int_{0}^{1} g(x, y) y^{n} d y \quad x \in[0,1], n=1,2, \ldots
$$

Show that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ has a subsequence which converges uniformly on [0, 1].
3. Consider the subset $H=\{(a, b, c, d, e)\}$ of R^{5} such that the polynomial

$$
a x^{4}+b x^{3}+c x^{2}+d x+e
$$

has at least one real root.
a. Prove that $(1,2,-4,3,-2)$ is an interior point of H
b. Find a point in H that is not an interior point. Justify your claim.
4. Consider a twice differentiable function $f: R \rightarrow R$, a number $a \in R$, and $h>0$. Show that there exists a point $c \in R$ such that

$$
f(a)-2 f(a+h)+f(a+2 h)=h^{2} f^{\prime \prime}(c) .
$$

5. Prove or give a counterexample: If $f(x)$ is differentiable for every $x \in R$, and if $f^{\prime}(0)=1$, then there exists $\delta>0$ such that $f(x)$ is increasing on $(-\delta, \delta)$.
6. Let $f(x)$ be a bounded function on (0,2). Suppose that for every $x, y \in(0,2), x \neq$ y, there exists $z \in(0,2)$ such that

$$
f(x)-f(y)=f(z)(x-y) .
$$

a. Show that f need not be a differentiable function.
b. Suppose that such a z can always be found between x and y. Show that f is twice differentiable.
7. Consider the torus

$$
\begin{gathered}
T=\{x=(a+r \sin u) \cos v, y=(a+r \sin u) \sin v, z=r \cos u, \\
0 \leq r \leq b, 0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi\}
\end{gathered}
$$

where $a>b$. Find the volume and surface area of T.
8. Let Ω be a bounded subset of R^{n}, and $f: \Omega \rightarrow R^{n}$ a uniformly continuous function. Show that f must be bounded.

Outline of Solutions:

1. a. It suffices to show that S is closed and bounded. Closeness follows since $S=\left\{h^{-1}(1)\right\}$, for a continuous function h. Boundedness follows since clearly S is contained in the cube $[-1,1]^{3}$.
b. Both maximum and minimum are obtained at internal points on S, and can therefore be found by the Lagrange method. The Lagrange equations imply at once that $\lambda \neq 0$, and $\frac{1}{2 \lambda}=x=2 y=3 z$. Solving from S we find that the maximal value is $\sqrt{11 / 6}$, and the minimal value is its negative.
2. $f_{n}(0)=0$, and the functions f_{n} are equicontinuous because

$$
\left|f_{n}(x)-f_{n}\left(x^{\prime}\right)\right| \leq \sup _{y}\left|g(x, y)-g\left(x^{\prime}, y\right)\right|,
$$

and this quantity tends to zero as $\left|x-x^{\prime}\right| \rightarrow 0$ by the continuity of g. This Arzela-Ascoli applies.
3. Write the polynomial $x^{4}+2 x^{3}-4 x^{2}+3 x-2$. Obviously $x=1$ is a root, so the triplet is indeed in H.
Define the function $F(a, b, c, d, e, f, x)=a x^{4}+b x^{3}+c x^{2}+e d+f$. Clearly $F(1,2,-4,3,-2,1)=0$, while $F_{x}=5 \neq=0$ at that point. Therefore there exists an open neighborhood U of $(1,2,-4,3,-2)$ and a C^{1} function g such that for all points (a, b, c, d, e) in U we have $F(a, b, c, d, e, g(a, b, c, d, e))=0$.
Clearly $(0,0,1,0,0)$ is in H. But the the points $\left(0,0,1,0, \mu^{2}\right)$ are not in the set for $\mu \neq 0$ (Since $x^{2}+\mu^{2}$ has no real root).
4. Apply the mean-value theorem to the function $F(x)=f(x+h)-f(x)$ to get
$f(a)-2 f(a+h)+f(a+2 h)=F(a+h)-F(a)=h F^{\prime}(d)=h\left(f^{\prime}(d+h)-f^{\prime}(d)\right)$ for some d, then apply MVT again to the right-hand side.
5. Counterexmaple - $f(x)=x+2 x^{2} \sin (1 / x)$.
6. a. Let $f=x$ for $0 \leq x \leq 1$, and $f=1$ for $1 \leq x \leq 2$.

Since f is bounded, $\lim _{y \rightarrow x} f(y)=f(x)$. Furthermore, $\lim _{x \rightarrow y} \frac{f(y)-f(x)}{x-y}=f(y)$. Therefore f is differentiable. Also, the last identity implies $f^{\prime}=f$, thus $f(x)=$ $c e^{x}$.
7. The Jacobian is given by $J=r(a+\sin u)$, and hence $V=2 \pi^{2} a b^{2}$. Observing that the boundary is given by $r=b$, a simple computation gives $\|N\|=\left\|T_{u} \times T_{v}\right\|=$ $b(a+b \sin u)$. Therefore $S=4 \pi^{2} a b$. Of course, it is also possible to solve with the slice method.
8. Choose $\delta>0$ such that $|f(x)-f(y)|<1$ whenever $|x-y|<\delta$. Assume that f is not bounded, and choose $x_{k} \in \Omega$ such that $\left|f\left(x_{k+1}\right)\right|>\left|f\left(x_{k}\right)\right|+1$ for all k. Observe that $\left|f\left(x_{j}\right)-f\left(x_{k}\right)\right|>1$ whenever $j \neq k$. However, by Bolzano-Weierstrass, we must have $\left|x_{j}-x_{k}\right|<\delta$ for some $j \neq k$, which gives a contradiction.

