Tier I Analysis Exam-August 2004

1. (A) Suppose A and B are nonempty, disjoint subsets of \mathbb{R}^n such that A is compact and B is closed. Prove that there exists a pair of points $a \in A$ and $b \in B$ such that
\[\forall x \in A, \forall y \in B, \quad \|x - y\| \geq \|a - b\|. \]
Prove this fact from basic principles and results; do not simply cite a similar or more general theorem. Here and in what follows, $\|\cdot\|$ denotes the usual Euclidean norm: for $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, $\|x\| = (x_1^2 + x_2^2 + \cdots + x_n^2)^{1/2}$.

(B) Suppose that in problem (A) above, the assumption that the set A is compact is replaced by the assumption that A is closed. Does the result still hold? Justify your answer with a proof or counterexample.

2. (A) Prove the following classic result of Cauchy: Suppose $r(1), r(2), r(3), \ldots$ is a monotonically decreasing sequence of positive numbers. Then $\sum_{k=1}^{\infty} r(k) < \infty$ if and only if $\sum_{n=1}^{\infty} 2^n r(2^n) < \infty$.

(B) Use the result in part (A) to prove the following theorem: Suppose a_1, a_2, a_3, \ldots is a monotonically decreasing sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = \infty$. For each $n \geq 1$, define the positive number $c_n = \min\{a_n, 1/n\}$. Then $\sum_{n=1}^{\infty} c_n = \infty$.

3. Suppose $g : [0, \infty) \to [0,1]$ is a continuous, monotonically increasing function such that $g(0) = 0$ and $\lim_{x \to \infty} g(x) = 1$.

Suppose that for each $n = 1, 2, 3, \ldots$, $f_n : [0, \infty) \to [0,1]$ is a monotonically increasing (but not necessarily continuous) function. Suppose that for all $x \in [0,\infty)$, $\lim_{n \to \infty} f_n(x) = g(x)$. Prove that $f_n \to g$ uniformly on $[0,\infty)$ as $n \to \infty$.

1
4. Let \(x \in \mathbb{R}^3 \) and let \(f(x) \in C^1(\mathbb{R}^3) \). Further let \(n = x/\|x\| \) for \(x \neq 0 \). Show that the surface integral
\[
I \equiv \int_{\|x\|=1} f(x) dS_x
\]
can be expressed in the form of a volume integral
\[
I = \int_{\|x\|<1} \left(\frac{2}{\|x\|} f(x) + n \cdot \nabla f(x) \right) dx .
\]
Hint: Write the integrand in \(I \) as \(n \cdot (nf) \).

5. Let \(x_0 \in \mathbb{R} \) and consider the sequence defined by
\[
x_{n+1} = \cos(x_n) \quad (n = 0, 1, \ldots)
\]
Prove that \(\{x_n\} \) converges for arbitrary \(x_0 \).

6. Let \(\alpha > 0 \) and consider the integral
\[
J_\alpha = \int_0^{\infty} \frac{e^{-x}}{1 + \alpha x} dx .
\]
Show that there is a constant \(c \) such that
\[
\alpha^{1/2} J_\alpha \leq c .
\]

7. Consider the infinite series
\[
\sum_{n=1}^{\infty} X_n(x)T_n(t)
\]
where \((x, t)\) varies over a rectangle \(\Omega = [a, b] \times [0, \tau] \) in \(\mathbb{R}^2 \). Assume that

(i) The series \(\sum_{n=1}^{\infty} X_n(x) \) converges uniformly with respect to \(x \in [a, b] \);
(ii) There exists a positive constant \(c \) such that \(|T_n(t)| \leq c \) for every positive integer \(n \) and every \(t \in [0, \tau] \);
(iii) For every \(t \) such that \(t \in [0, \tau] \), \(T_1(t) \leq T_2(t) \leq T_3(t) \leq \ldots \)
Prove that \(\sum_{n=1}^{\infty} X_n(x)T_n(t) \) converges uniformly with respect to both variables together on \(\Omega \).

Hint: Let \(S_N = \sum_{n=1}^{N} X_n(x)T_n(t) \), \(s_N = \sum_{n=1}^{N} X_n(x) \). For \(m > n \) find an expression for \(S_m - S_n \) involving \((s_k - s_n) \) for an appropriate range of values of \(k \).
8. Let \(v(x) \in C^\infty(\mathbb{R}) \) and assume that for each \(\gamma \) in a neighborhood of the origin there exists a function \(u(x, v, \gamma) \) which is \(C^\infty \) in \(x \) such that
\[
\gamma \frac{\partial}{\partial x}(u + v) = \sin(u - v).
\]
Assuming that
\[
u = u_0 + \gamma u_1 + \gamma^2 u_2 + \gamma^3 u_3 + \ldots
\]
where \(u_0(0) = v(0) \) and for all \(n \) the \(u_n \)'s are functions of \(v \) but are independent of \(\gamma \), find \(u_0, u_1, u_2 \) and \(u_3 \).

9. All partial derivatives \(\frac{\partial^{m+n}f}{\partial x^m \partial y^n} \) of a function \(f : \mathbb{R}^2 \to \mathbb{R} \) exist everywhere. Does it imply that \(f \) is continuous? Prove or give a counterexample.

10. Decide whether the two equations
\[
\sin(x + z) + \ln(yz^2) = 0, \quad e^{x+z} + yz = 0,
\]
implicitly define \((x, y) \) near \((1, 1) \) as a function of \(z \) near \(-1\).