Tier I Analysis Exam-August 2004

1. (A) Suppose A and B are nonempty, disjoint subsets of \mathbb{R}^{n} such that A is compact and B is closed. Prove that there exists a pair of points $a \in A$ and $b \in B$ such that

$$
\forall x \in A, \quad \forall y \in B, \quad\|x-y\| \geq\|a-b\|
$$

Prove this fact from basic principles and results; do not simply cite a similar or more general theorem. Here and in what follows, \|.\| denotes the usual Euclidean norm: for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, $\|x\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
(B) Suppose that in problem (A) above, the assumption that the set A is compact is replaced by the assumption that A is closed. Does the result still hold? Justify your answer with a proof or counterexample.
2. (A) Prove the following classic result of Cauchy: Suppose $r(1), r(2)$, $r(3), \ldots$ is a monotonically decreasing sequence of positive numbers. Then $\sum_{k=1}^{\infty} r(k)<\infty$ if and only if $\sum_{n=1}^{\infty} 2^{n} r\left(2^{n}\right)<\infty$.
(B) Use the result in part (A) to prove the following theorem: Suppose $a_{1}, a_{2}, a_{3}, \ldots$ is a monotonically decreasing sequence of positive numbers such that $\sum_{n=1}^{\infty} a_{n}=\infty$. For each $n \geq 1$, define the positive number $c_{n}=\min \left\{a_{n}, 1 / n\right\}$. Then $\sum_{n=1}^{\infty} c_{n}=\infty$.
3. Suppose $g:[0, \infty) \rightarrow[0,1]$ is a continuous, monotonically increasing function such that $g(0)=0$ and $\lim _{x \rightarrow \infty} g(x)=1$.

Suppose that for each $n=1,2,3, \ldots, f_{n}:[0, \infty) \rightarrow[0,1]$ is a monotonically increasing (but not necessarily continuous) function. Suppose that for all $x \in[0, \infty), \lim _{n \rightarrow \infty} f_{n}(x)=g(x)$. Prove that $f_{n} \rightarrow g$ uniformly on $[0, \infty)$ as $n \rightarrow \infty$.
4. Let $x \in \mathbb{R}^{3}$ and let $f(x) \in C^{1}\left(\mathbb{R}^{3}\right)$. Further let $n=x /\|x\|$ for $x \neq 0$. Show that the surface integral

$$
I \equiv \int_{\|x\|=1} f(x) d S_{x}
$$

can be expressed in the form of a volume integral

$$
I=\int_{\|x\|<1}\left(\frac{2}{\|x\|} f(x)+n \cdot \nabla f(x)\right) d x .
$$

Hint: Write the integrand in I as $n \cdot(n f)$.
5. Let $x_{0} \in \mathbb{R}$ and consider the sequence defined by

$$
x_{n+1}=\cos \left(x_{n}\right) \quad(n=0,1, \ldots)
$$

Prove that $\left\{x_{n}\right\}$ converges for arbitrary x_{0}.
6. Let $\alpha>0$ and consider the integral

$$
J_{\alpha}=\int_{0}^{\infty} \frac{e^{-x}}{1+\alpha x} d x
$$

Show that there is a constant c such that

$$
\alpha^{1 / 2} J_{\alpha} \leq c .
$$

7. Consider the infinite series

$$
\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)
$$

where (x, t) varies over a rectangle $\Omega=[a, b] \times[0, \tau]$ in \mathbb{R}^{2}. Assume that
(i) The series $\sum_{n=1}^{\infty} X_{n}(x)$ converges uniformly with respect to $x \in$ [a,b];
(ii) There exists a positive constant c such that $\left|T_{n}(t)\right| \leq c$ for every positive integer n and every $t \in[0, \tau]$;
(iii) For every t such that $t \in[0, \tau], T_{1}(t) \leq T_{2}(t) \leq T_{3}(t) \leq \ldots$

Prove that $\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)$ converges uniformly with respect to both variables together on Ω.

Hint: Let $S_{N}=\sum_{n=1}^{N} X_{n}(x) T_{n}(t), s_{N}=\sum_{n=1}^{N} X_{n}(x)$. For $m>n$ find an expression for $S_{m}-S_{n}$ involving $\left(s_{k}-s_{n}\right)$ for an appropriate range of values of k.
8. Let $v(x) \in C^{\infty}(\mathbb{R})$ and assume that for each γ in a neighborhood of the origin there exists a function $u(x, v, \gamma)$ which is C^{∞} in x such that

$$
\gamma \frac{\partial}{\partial x}(u+v)=\sin (u-v) .
$$

Assuming that

$$
u=u_{0}+\gamma u_{1}+\gamma^{2} u_{2}+\gamma^{3} u_{3}+\ldots
$$

where $u_{0}(0)=v(0)$ and for all n the u_{n} 's are functions of v but are independent of γ, find u_{0}, u_{1}, u_{2} and u_{3}.
9. All partial derivatives $\partial^{m+n} f / \partial x^{m} \partial y^{n}$ of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist everywhere. Does it imply that f is continuous? Prove or give a counterexample.
10. Decide whether the two equations

$$
\sin (x+z)+\ln \left(y z^{2}\right)=0, \quad e^{x+z}+y z=0,
$$

implicitly define (x, y) near $(1,1)$ as a function of z near -1 .

