
Tier I Analysis Exam-August 2004

1. (A) Suppose A and B are nonempty, disjoint subsets of R
n such

that A is compact and B is closed. Prove that there exists a pair of
points a ∈ A and b ∈ B such that

∀x ∈ A, ∀y ∈ B, ‖x − y‖ ≥ ‖a − b‖ .

Prove this fact from basic principles and results; do not simply cite
a similar or more general theorem. Here and in what follows, ‖.‖
denotes the usual Euclidean norm: for x = (x1, x2, . . . , xn) ∈ R

n,
‖x‖ = (x2

1 + x2
2 + · · ·+ x2

n)1/2.

(B) Suppose that in problem (A) above, the assumption that the set
A is compact is replaced by the assumption that A is closed. Does the
result still hold? Justify your answer with a proof or counterexample.

2. (A) Prove the following classic result of Cauchy: Suppose r(1), r(2),
r(3), . . . is a monotonically decreasing sequence of positive numbers.

Then
∑∞

k=1
r(k) < ∞ if and only if

∑∞
n=1

2nr(2n) < ∞.

(B) Use the result in part (A) to prove the following theorem: Sup-

pose a1, a2, a3, . . . is a monotonically decreasing sequence of positive

numbers such that
∑∞

n=1
an = ∞. For each n ≥ 1, define the positive

number cn = min{an, 1/n}. Then
∑∞

n=1
cn = ∞.

3. Suppose g : [0,∞) → [0, 1] is a continuous, monotonically in-
creasing function such that g(0) = 0 and limx→∞ g(x) = 1.

Suppose that for each n = 1, 2, 3, . . . , fn : [0,∞) → [0, 1] is a mono-
tonically increasing (but not necessarily continuous) function. Suppose
that for all x ∈ [0,∞), limn→∞ fn(x) = g(x). Prove that fn → g uni-
formly on [0,∞) as n → ∞.
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4. Let x ∈ R
3 and let f(x) ∈ C1(R3). Further let n = x/‖x‖ for

x 6= 0. Show that the surface integral

I ≡

∫

‖x‖=1

f(x) dSx

can be expressed in the form of a volume integral

I =

∫

‖x‖<1

(

2

‖x‖
f(x) + n · ∇f(x)

)

dx .

Hint: Write the integrand in I as n · (nf).

5. Let x0 ∈ R and consider the sequence defined by

xn+1 = cos(xn) (n = 0, 1, . . .)

Prove that {xn} converges for arbitrary x0.

6. Let α > 0 and consider the integral

Jα =

∫ ∞

0

e−x

1 + αx
dx .

Show that there is a constant c such that

α1/2Jα ≤ c .

7. Consider the infinite series
∞

∑

n=1

Xn(x)Tn(t)

where (x, t) varies over a rectangle Ω = [a, b] × [0, τ ] in R
2. Assume

that

(i) The series
∑∞

n=1
Xn(x) converges uniformly with respect to x ∈

[a, b];
(ii) There exists a positive constant c such that |Tn(t)| ≤ c for every

positive integer n and every t ∈ [0, τ ];
(iii) For every t such that t ∈ [0, τ ], T1(t) ≤ T2(t) ≤ T3(t) ≤ . . .

Prove that
∑∞

n=1
Xn(x)Tn(t) converges uniformly with respect to both

variables together on Ω.
Hint: Let SN =

∑N
n=1

Xn(x)Tn(t), sN =
∑N

n=1
Xn(x). For m > n

find an expression for Sm − Sn involving (sk − sn) for an appropriate
range of values of k.
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8. Let v(x) ∈ C∞(R) and assume that for each γ in a neighborhood
of the origin there exists a function u(x, v, γ) which is C∞ in x such
that

γ
∂

∂x
(u + v) = sin(u − v) .

Assuming that

u = u0 + γu1 + γ2u2 + γ3u3 + . . .

where u0(0) = v(0) and for all n the un’s are functions of v but are
independent of γ, find u0, u1, u2 and u3.

9. All partial derivatives ∂m+nf/∂xm∂yn of a function f : R
2 → R

exist everywhere. Does it imply that f is continuous? Prove or give a
counterexample.

10. Decide whether the two equations

sin(x + z) + ln(yz2) = 0 , ex+z + yz = 0 ,

implicitly define (x, y) near (1, 1) as a function of z near −1.


