Instruction: Solve as many of these problems as you can. Be sure to justify all your answers.

1. Let $\left\{p_{n}\right\}_{n=0}^{\infty}$ and $\left\{q_{n}\right\}_{n=0}^{\infty}$ be strictly increasing, integer valued, sequences. Show that if for each integer $n \geq 1$,

$$
p_{n} \cdot q_{n-1}-p_{n-1} \cdot q_{n}=1,
$$

then the sequence of quotients p_{n} / q_{n} converges.
2. Consider the following system of equations

$$
\begin{aligned}
& x \cdot e^{y}=u \\
& y \cdot e^{x}=v
\end{aligned}
$$

(a) Show that there exists an $\epsilon>0$ such that given any u and v with $|u|<\epsilon$ and $|v|<\epsilon$, the above system has a unique solution $(x, y) \in \mathbb{R}^{2}$.
(b) Exhibit a pair $(u, v) \in \mathbb{R}^{2}$ such that there exist two distinct solutions to this system. Justify your answer.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(a)<f^{\prime}(b)$ for some $a<b$. Prove that for any $z \in\left(f^{\prime}(a), f^{\prime}(b)\right)$, there is a $c \in(a, b)$ such that $f^{\prime}(c)=z$. Note: The derivative function f^{\prime} may not be continuous.
4. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be continuously differentiable. Let $D f(x)$ denote the differential (or derivative) of f at the point $x \in \mathbb{R}^{4}$. Prove or provide a counter-example: The set of points x where $D f(x)$ has a null space of dimension 2 or greater is closed in \mathbb{R}^{4}.
5. Let $C([0,1])$ denote the collection of continuous real valued functions on $[0,1]$. Define $\Phi: C([0,1]) \rightarrow C([0,1])$ by

$$
[\Phi(f)](t)=1+\int_{0}^{t} s^{2} e^{-f(s)} d s \quad t \in[0,1]
$$

for $f \in C([0,1])$. Define $f_{0} \in C([0,1])$ by $f_{0} \equiv 1$ (i.e. the function of constant value 1$)$. Let $f_{n}=\Phi\left(f_{n-1}\right)$ for $n=1,2, \ldots$.
(a) Prove that $1 \leq f_{n}(t) \leq 1+1 / 3$ for all $t \in[0,1]$ and $n=1,2, \ldots$..
(b) Prove that

$$
\left|f_{n+1}(x)-f_{n}(x)\right|<\frac{1}{3} \sup _{t \in[0,1]}\left|f_{n}(t)-f_{n-1}(t)\right|
$$

for all $x \in[0,1]$ and for $n=1,2, \ldots$. Hint: Show that $\mid e^{-(x+\delta)}-$ $e^{-x} \mid<\delta$ for $x>0$ and $\delta 0$.
(c) Show that the sequence of functions $\left\{f_{n}\right\}$ converges uniformly to some function $f \in C([0,1])$. Be sure to indicate any theorems that you use.
6. Let I be a closed interval in \mathbb{R}, and let f be a differentiable real valued function on I, with $f(I) \subset I$. Suppose $\left|f^{\prime}(t)\right|<3 / 4$ for all $t \in I$. Let x_{0} be any point in I and define a sequence x_{n} by $x_{n+1}=f\left(x_{n}\right)$ for every $n>0$. Show that there exists $x \in I$ with $f(x)=x$ and $\lim x_{n}=x$.
7. Let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y} & \text { if } x^{2}+y \neq 0 \\ 0 & \text { if } x^{2}+y=0\end{cases}
$$

(a) Show that f has a directional derivative (in every direction) at $(0,0)$, and show that f is not continuous at $(0,0)$.
(b) Prove or provide a counterexample: If $P_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $P_{2}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} are any two functions such that $P_{1}(0,0)=(0,0)=P_{2}(0,0)$, and such that $f \circ P_{i}$ is differentiable at $(0,0)$, with nonvanishing derivative at $(0,0)$ for $i=1,2$, then $f \circ\left(P_{1}+P_{2}\right)$ is differentiable at $(0,0)$.
8. Let $B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$ be the unit ball. Let $v=$ $\left(v_{1}, v_{2}, v_{3}\right)$ be a smooth vector field on B, which vanishes on the boundary ∂B of B and satisfies

$$
\operatorname{div} v(x, y, z)=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}=0, \quad \forall(x, y, z) \in B
$$

Prove that

$$
\int_{B} x^{n} v_{1}(x, y, z) d x d y d z=0, \quad \forall n=0,1,2, \cdots, .
$$

9. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function on $[0,1]$ with

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} f(x)\left(x^{n}+x^{n+2}\right) d x
$$

for all $n=0,1,2, \ldots$. Show that $f \equiv 0$.
10. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous second derivative, $f(0)=$ $f(1)=0$, and $f(x)>0$ for all $x \in(0,1)$. Prove that

$$
\int_{0}^{1}\left|\frac{f^{\prime \prime}(x)}{f(x)}\right| d x>4
$$

