Tier 1 Analysis Exam

January 2003

1. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$. Which of the following statements is equivalent to the continuity of f at 0 ? (Provide justification for each of your answers.)
a) For every $\varepsilon \geq 0$ there exists $\delta>0$ such that $|x|<\delta$ implies $|f(x)-f(0)| \leq \varepsilon$.
b) For every $\varepsilon>0$ there exists $\delta \geq 0$ such that $|x|<\delta$ implies $|f(x)-f(0)| \leq \varepsilon$.
c) For every $\varepsilon>0$ there exists $\delta>0$ such that $|x| \leq \delta$ implies $|f(x)-f(0)| \leq \varepsilon$.
2. Consider a uniformly continuous real-valued function f defined on the interval $[0,1)$. Show that $\lim _{t \rightarrow 1^{-}} f(t)$ exists. Is a similar statement true if $[0,1)$ is replaced by $[0, \infty)$?
3. Let f be a real-valued continuous function on $[0,1]$ such that $f(0)=f(1)$. Show that there exists $x \in[0,1 / 2]$ such that $f(x)=f(x+1 / 2)$.
4. If f is differentiable on $[0,1]$ with continuous derivative f^{\prime}, show that

$$
\int_{0}^{1}|f(x)| d x \leq \max \left\{\left|\int_{0}^{1} f(x) d x\right|, \int_{0}^{1}\left|f^{\prime}(x)\right| d x\right\}
$$

5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous and with compact support, i.e. there exists $R>0$ such that $f(x, y)=0$ if $x^{2}+y^{2} \geq R^{2}$.
a) Show that the integral

$$
g(u, v)=\iint_{\mathbb{R}^{2}} \frac{f(x, y)}{\sqrt{(x-u)^{2}+(y-v)^{2}}} d x d y
$$

converges for all $(u, v) \in \mathbb{R}^{2}$, and show that $g(u, v)$ is continuous in (u, v).
b) Show that, if in addition f has continuous first order partial derivatives, then so does g and

$$
\frac{\partial g}{\partial u}(u, v)=\iint_{\mathbb{R}^{2}} \frac{\frac{\partial f}{\partial x}(x, y)}{\sqrt{(x-u)^{2}+(y-v)^{2}}} d x d y
$$

6. Show that for any two functions f, g which have continuous second order partial derivatives, defined in a neighborhood of the sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=\right.$ $1\}$ in \mathbb{R}^{3}, one has

$$
\int_{S}(\nabla f \times \nabla g) \cdot \mathbf{d S}=0
$$

where $\nabla f, \nabla g$ are the gradient of f, g respectively.
7. Show that if $\left\{x_{n}\right\}$ is a bounded sequence of real numbers such that $2 x_{n} \leq x_{n+1}+x_{n-1}$ for all n, then $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0$.
8. For a non-empty set X, let \mathbb{R}^{X} be the set of all maps from X to \mathbb{R}. For $f, g \in \mathbb{R}^{X}$, define

$$
d(f, g)=\sup _{x \in X} \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}
$$

a) Show that $\left(\mathbb{R}^{X}, d\right)$ is a metric space.
b) Show that $f_{n} \rightarrow f$ in $\left(\mathbb{R}^{X}, d\right)$ if and only if f_{n} converges uniformly to f.
9. Show that if $f:[0,1] \rightarrow \mathbb{R}$ is continuous, and $\int_{0}^{1} f(x) x^{2 n} d x=0, n=0,1,2, \cdots$ then $f(x)=0$ for all $x \in[0,1]$.
10. a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. Show that for any $x, y \in \mathbb{R}^{n}$, there exists $z \in \mathbb{R}^{n}$ such that

$$
f(x)-f(y)=D f(z) \cdot(x-y)
$$

where $D f(z)$ denotes the derivative matrix of f (in this case it is the same as the gradient of f) at z, and "." denotes the usual dot product in \mathbb{R}^{n}.
b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable map. Show that if f has the property that $\|D f(z)-I\|<\frac{1}{2 n}$ for all $z \in \mathbb{R}^{n}$, where I is the $n \times n$ identity matrix, then f is a diffeomorphism, i.e. f is one-to-one, onto and f^{-1} is also differentiable. (For a $\left.\operatorname{matrix} A=\left(a_{i j}\right),\|A\|=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2}.\right)$

