1. In the classical false position method to find roots of $f(x)=0$, one begins with two approximations x_{0}, x_{1} and generates a sequence of (hopefully) better approximations via

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{0}}{f\left(x_{n}\right)-f\left(x_{0}\right)} \quad \text { for } \quad n=1,2, \ldots
$$

Consider the following sketch in which the function $f(x)$ is to be increasing and convex:

Fig. 1.2
The sequence $\left\{x_{n}\right\}$ is constructed as follows. We begin with the two approximations $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)=(0, f(0))$ The chord is drawn between these two points; the point at which this chord crosses the x-axis is taken to be the next approximation x_{2}. One then draws the chord between the two points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$. The next approximation x_{3} is that point where this chord crosses the axis, as shown. For f strictly increasing and convex and for initial approximations $x_{0}>0, x_{1}=0$ with $f\left(x_{0}\right)>0$, $f\left(x_{1}\right)<0$, prove rigorously that this sequence must converge to the unique solution of $f(x)=0$ over $\left[x_{1}, x_{0}\right]$.
2. (a) Show that it is possible to solve the equations

$$
\begin{aligned}
x u^{2}+y z v+x^{2} z-3 & =0 \\
x y v^{3}+2 z u-u^{2} v^{2}-2 & =0
\end{aligned}
$$

for (u, v) in terms of (x, y, z) in a neighborhood of $(1,1,1,1,1)$.
(b) Given that the inverse of the matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right) \quad \text { is } \quad\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
0 & 1
\end{array}\right)
$$

find $\frac{\partial u}{\partial x}$ at $(1,1,1)$.
3. Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if it is closed.
4. Suppose $f: K \rightarrow \mathbb{R}^{1}$ is a continuous function defined on a compact set K with the property that $f(x)>0$ for all $x \in K$. Show that there exists a number $c>0$ such that $f(x) \geq c$ for all $x \in K$.

5 . Let $f(x)$ be a continuous function on $[0,1]$ which satisfies

$$
\int_{0}^{1} x^{n} f(x) d x=0 \quad \text { for all } \quad n=0,1, \ldots
$$

Prove that $f(x)=0$ for all $x \in[0,1]$.
6. Show that the Riemann integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ exists.
7. Let

$$
G(x, y)= \begin{cases}x(1-y) & \text { if } 0 \leq x \leq y \leq 1 \\ y(1-x) & \text { if } 0 \leq y \leq x \leq 1\end{cases}
$$

Let $\left\{f_{n}(x)\right\}$ be a uniformly bounded sequence of continuous functions on $[0,1]$ and consider the sequence

$$
u_{n}(x)=\int_{0}^{1} G(x, y) f_{n}(y) d y
$$

Show that the sequence $\left\{u_{n}(x)\right\}$ contains a uniformly convergent subsequence on $[0,1]$.
8. Let f be a real-valued function defined on an open set $U \subset \mathbb{R}^{2}$ whose partial derivatives exist everywhere on U and are bounded. Show that f is continuous on U.
9. For $x \in \mathbb{R}^{3}$ consider spherical coordinates $x=r \omega$ where $|\omega|=1$ and $|x|=r$. Let ω_{k} be the k 'th component of ω for any $k=1,2,3$. Use the divergence theorem to evaluate the surface integral

$$
\int_{|\omega|=1} \omega_{k} d S
$$

10. Let $\left\{f_{k}\right\}$ be a sequence of continuous functions defined on $[a, b]$. Show that if $\left\{f_{k}\right\}$ converges uniformly on (a, b), then it also converges uniformly on $[a, b]$.
11. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a continuous mapping. Show that $f(S)$ is bounded in \mathbb{R}^{k} if S is a bounded set in \mathbb{R}^{n}.
