1. Compute
\[\int_S \text{curl} \, F \cdot N \, dA , \]
where \(S \) is that part of the surface \(y = x^2 + z^2 \) in \(\mathbb{R}^3 \) for which \(0 \leq y \leq 1 \), \(N \) is the unit normal to \(S \) pointing toward the \(y \)-axis, \(dA \) is the area element, and \(F : \mathbb{R}^3 \to \mathbb{R}^3 \) is the mapping
\[F(x, y, z) = e^{x^2+z^2}(z, y, -x) \].

2. Suppose that \(f : [0, \infty) \to \mathbb{R}^1 \) is a nonnegative, uniformly continuous function and that
\[\int_0^\infty f(x) \, dx < \infty . \]
Prove that \(\lim_{x \to \infty} f(x) = 0 \).

3. Let \(f : \mathbb{R}^2 \to \mathbb{R}^1 \) be continuous, and define
\[g(y) = \int_0^1 f(x, y) \, dx . \]
Assume that \(\frac{\partial f}{\partial y} \) is continuous on \(\mathbb{R}^2 \), and compute \(g'(y) \). Prove your result.

4. The function \(\frac{1}{32} x^4 + x^2 y^2 - x^3 - y^3 - xy^3 \) has critical points at \((24, 0)\) and \((0, 0)\). By a careful analysis, determine whether each point is a local maximum, local minimum or a point which is neither a local maximum nor a local minimum.

5. Let \(f : B \to \mathbb{R}^1 \) be a uniformly continuous function, where \(B \subset \mathbb{R}^n \) is an open ball. Prove that there is a uniformly continuous function \(F \) defined on the closure of \(B \) such that \(F \) restricted to \(B \) is equal to \(f \).
6. Let \(g: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined for points \(x = (x, y) \) by
\[
g(x, y) = (x^2 + y^2 - |x^2 - y^2|, x^2 + y^2 + |x^2 - y^2|).
\]
(a) Give the definition of the differential of \(g \) at \(x_0 \), denoted by \(dg(x_0) \).
(b) Determine those points \(x_0 \in \mathbb{R}^2 \) where \(dg(x_0) \) exists and where it does not exist. In both cases, justify your answer. Be sure to analyze the case \(x_0 = 0 \).
(c) Find those points \(x_0 \in \mathbb{R}^2 \) where \(g \) locally has a differentiable inverse and where it does not. In both cases, justify your answer.

7. Let \(n \) be an integer greater than 1, and consider the following statement: If \(\omega \) is a differential 2-form on \(\mathbb{R}^n \) with the property that \(\omega \wedge \lambda = 0 \) for every differential 1-form \(\lambda \), then \(\omega \) must be the zero form. For what \(n \) is the above statement true? For what \(n \) is it false? Prove your answers.

8. (a) Let \(F: \mathbb{R}^3 \to \mathbb{R}^2 \) be defined by
\[
F(x, y, z) = (x^2 + xy - 1, z^2 + x^2 - y^2 - 2)
\]
and observe that \(F(a) = (0, 0) \) where \(a = (-1, 0, 1) \). Prove that there exist an open interval \((a, b) \), a \(C^1 \) curve of the form \(\gamma(t) = (f(t), g(t), h(t)) \) with \(a < t < b \), and an open set \(U \subset \mathbb{R}^3 \) containing \(a \) such that
\[
U \cap F^{-1}(0, 0) = \{ \gamma(t) : a < t < b \}
\]
(b) Compute \(\gamma'(t_0) = (f'(t_0), g'(t_0), h'(t_0)) \) where \(\gamma(t_0) = a \).

9. Let \(f: [0, 1] \to \mathbb{R}^1 \) be defined by
\[
f(x) = \begin{cases}
\frac{1}{k} & \text{if } \frac{1}{k+1} < x \leq \frac{1}{k}, \ k = 1, 2, \ldots \\
0 & \text{for } x = 0
\end{cases}
\]
(a) For any given \(\varepsilon > 0 \), show how to construct a partition \(P \) of the interval \([0, 1]\) such that
\[
U(P, f) - L(P, f) < \varepsilon.
\]
(\(U(P, f) \) and \(L(P, f) \) are the upper and lower Riemann sums for \(f \) over the partition \(P \)).
(b) Find an expression for
\[
\int_0^1 f(x) \, dx
\]
and justify your answer.