Tier 1 Analysis Exam
 January 2000

1. Let Ω be an open set in \mathbb{R}^{2}. Let u be a real-valued function on Ω. Suppose that for each point $a \in \Omega$ the partial derivatives $u_{x}(a)$ and $u_{y}(a)$ exist and are equal to zero.
(i) Prove that u is locally constant, i.e. for every point in Ω there is a neighborhood on which u is a constant function.
(ii) Prove that if Ω is connected, then u is a constant function on Ω.
2. Let S be the surface in the Euclidean space \mathbb{R}^{3} given by the equation $x^{2}+y^{2}-z^{2}=$ $1,0 \leq z \leq 1$, oriented so that the normal vector points away from the z-axis. Find $\int_{S} \mathbf{F} \cdot \mathbf{d S}$, where \mathbf{F} is the vector field defined by

$$
\mathbf{F}(x, y, z)=\left(-x y^{2}+z^{5},-x^{2} y,\left(x^{2}+y^{2}\right) z\right) .
$$

3. Let $f(x)=e^{x}-\cos x$ for $x \in \mathbb{R}$.
(i) Show that on a neighborhood around $x=0, f$ has an inverse function g with $g(0)=0$.
(ii) Compute $g^{\prime \prime}(0)$.
(iii) Show that there exists $a>0$ such that $f:(-a, \infty) \rightarrow(f(-a), \infty)$ is a homeomorphism.
4. For positive numbers $k_{1}, k_{2}, k_{3}, \ldots$ we define $\left[k_{1}\right]=\frac{1}{k_{1}}, \quad\left[k_{1}, k_{2}\right]=\frac{1}{k_{1}+\left[k_{2}\right]}$, $\left[k_{1}, k_{2}, k_{3}\right]=\frac{1}{k_{1}+\left[k_{2}, k_{3}\right]}$, and inductively, $\left[k_{1}, \ldots, k_{n+1}\right]=\frac{1}{k_{1}+\left[k_{2}, \ldots, k_{n+1}\right]}$. Prove that $\lim _{n \rightarrow \infty}\left[k_{1}, \ldots, k_{n}\right]$ exists if $k_{n} \geq 2$ for all n.
5. Two circular holes of radius 1 in are drilled from the centers of two faces of a solid cube of volume $64 \mathrm{in}^{3}$. Compute the volume of the remaining solid.
6. Let $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ be non-negative continuous functions on $[-1,1]$ such that
(i) $\int_{-1}^{1} \varphi_{k}(t) d t=1$ for $k=1,2,3, \ldots$;
(ii) for every $\delta \in(0,1) \lim _{k \rightarrow \infty} \varphi_{k}=0$ uniformly on $[-1,-\delta] \cup[\delta, 1]$.

Prove that for every continuous function $f:[-1,1] \rightarrow \mathbb{R}$ we have

$$
\lim _{k \rightarrow \infty} \int_{-1}^{1} f(t) \varphi_{k}(t) d t=f(0)
$$

7. Suppose $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$, and let

$$
c_{n}=\frac{a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}}{n}
$$

Prove that $\lim _{n \rightarrow \infty} c_{n}=a b$.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous function on \mathbb{R}. Prove that there exist positive constants A and B such that

$$
|f(x)| \leq A|x|+B \quad \text { for all } x \in \mathbb{R}
$$

9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Suppose $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1$. Prove that there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} x_{n}=\infty$ and $\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=1$.
