Tier 1 Analysis Examination

January 1999

1. Prove that the function

$$
f(x)= \begin{cases}x+2 x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

satisfies $f^{\prime}(0)>0$, but that there is no open interval containing 0 on which f is increasing.
2. Let $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a mapping defined by $F(x, y)=(u, v)$ where

$$
\begin{aligned}
& u=u(x, y)=x \cos (y) \\
& v=v(x, y)=y \cos (x) .
\end{aligned}
$$

Note that $F(-\pi / 3, \pi / 3)=(-\pi / 6, \pi / 6)$.
(i) Show that there exist neighborhoods U of $(-\pi / 3, \pi / 3), V$ of $(-\pi / 6, \pi / 6)$, and a differentiable function $G: V \rightarrow U$ such that F restricted to U is one-to-one, $F(U)=V$ and $G(F(x, y))=(x, y)$ for every $(x, y) \in U$.
(ii) Let U, V and G be as in part (i), and write

$$
G(u, v)=(x, y), \text { with } x=x(u, v), y=y(u, v)
$$

Find

$$
\frac{\partial x}{\partial u}(-\pi / 6, \pi / 6) \quad \text { and } \quad \frac{\partial y}{\partial v}(-\pi / 6, \pi / 6)
$$

3. Beginning with $a_{1} \geq 2$, define a sequence recursively by $a_{n+1}=\sqrt{2+a_{n}}$. Show that the sequence is monotone and compute its limit.
4. Let $f: K \rightarrow \mathbf{R}^{n}$ be a one-to-one continuous mapping, where $K \subset \mathbf{R}^{n}$ is a compact set. Thus, the mapping f^{-1} is defined on $f(K)$. Prove that f^{-1} is continuous.
5. Let S denote the 2-dimensional surface in \mathbf{R}^{3} defined by $F: D \rightarrow \mathbf{R}^{3}$ where $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$ and $F(x, y)=\left(x, y, 6-\left(x^{2}+y^{2}\right)\right)$. Let ω be the differential 1-form in \mathbf{R}^{3} defined by $\omega=y z^{2} d x+x z d y+x^{2} y^{2} d z$. After choosing an orientation of S, evaluate the integral

$$
\int_{S} z d x \wedge d y+d \omega
$$

6. Let $f: U \rightarrow \mathbf{R}^{1}$ where $U:=(0,1) \times(0,1)$. Thus, $f=f(x, y)$ is a function of two variables. Assume for each fixed $x \in(0,1)$, that $f(x, \cdot)$ is a continuous function of y. Let \mathcal{F} denote the countable family of functions $f(\cdot, r)$ where $r \in(0,1)$ is a rational number. Thus, for each rational number $r \in(0,1), f(\cdot, r)$ is a function of x. Assume that the family \mathcal{F} is equicontinuous. Now prove that f is a continuous function of x and y; that is, prove that $f: U \rightarrow \mathbf{R}^{1}$ is a continuous function.
7. Let $f_{1} \geq f_{2} \geq f_{3} \geq \ldots$ be a sequence of real-valued continuous functions defined on the closed unit ball $B \subset \mathbf{R}^{n}$ such that $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for each $x \in B$. Prove that $f_{k} \rightarrow 0$ uniformly on B. This is a special case of Dini's theorem. You may not appeal to Dini's theorem to answer the problem.
8. Let $f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ be a nonnegative function satisfying the Lipschitz condition $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left|x_{1}-x_{2}\right|$ for all $x_{1}, x_{2} \in \mathbf{R}^{1}$ and where $K>0$. Suppose that

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

Prove that

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

9. Let F be a nonnegative, continuous real-valued function defined on the infinite strip $\left\{(x, y): 0 \leq x \leq 1, y \in \mathbf{R}^{1}\right\}$ with the property that $F(x, y) \leq 4$ for all $(x, y) \in[0,1] \times[0,2]$. Let f_{n} be a continuous piecewise-linear function from $[0,1]$ to \mathbf{R}^{1} such that $f_{n}(0)=0, f_{n}$ is linear on each interval of the form $\left[\frac{i}{n}, \frac{i+1}{n}\right]$, $i=0,1, \ldots, n-1$, and for $x \in\left(\frac{i}{n}, \frac{i+1}{n}\right), f_{n}^{\prime}(x)=F\left(\frac{i}{n}, f_{n}\left(\frac{i}{n}\right)\right)$. Prove that there is a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ such that $f_{n_{k}}$ converges uniformly to a function f on $[0,1 / 2]$.
