Tier 1 Analysis Examination

August 1998

1. Consider the sequence of functions $f_{k}(x):=\{\sin (k x)\}, k=1,2, \ldots$, and observe that $\sin (k x)=0$ if $x=m \pi / k$ for all integers m. Given an arbitrary interval $[a, b]$, show that $\left\{f_{k}\right\}$ has no subsequence that converges uniformly on $[a, b]$.
2.

(a) Given a sequence of functions f_{k} defined on $[0,1]$, define what it means for $\left\{f_{k}\right\}$ to be equicontinuous.
(b) Let $G(x, y)$ be a continuous function on \mathbf{R}^{2} and suppose for each positive integer k, that g_{k} is a continuous function defined on $[0,1]$ with the property that $\left|g_{k}(y)\right| \leq 1$ for all $y \in[0,1]$. Now define

$$
f_{k}(x):=\int_{0}^{1} g_{k}(y) G(x, y) d y
$$

Prove that the sequence $\left\{f_{k}\right\}$ is equicontinuous on $[0,1]$.
3. Let $\Omega \subset \mathbf{R}^{n}$ be an open connected set and let $\Omega \xrightarrow{f} \Omega$ be a C^{1} transformation with the property that determinant of its Jacobian matrix, $|J f|$, never vanishes. That is, $|J f(x)| \neq 0$ for each $x \in \Omega$. Assume also that $f^{-1}(K)$ is compact whenever $K \subset \Omega$ is a compact set. Prove that $f(\Omega)=\Omega$.
4. Let $G(x, y)$ be a continuous function defined on \mathbf{R}^{2}. Consider the function f defined for each $t>0$ by

$$
f(t):=\iint_{x^{2}+y^{2}<t^{2}} \frac{G(x, y)}{\sqrt{t^{2}-x^{2}-y^{2}}} d x d y
$$

Prove that

$$
\lim _{t \rightarrow 0^{+}} f(t)=0
$$

5. Let (X, \boldsymbol{d}) be a compact metric space and let \mathcal{G} be an arbitrary family of open sets in X. Prove that there is a number $\lambda>0$ with the property that if $x, y \in X$ are points with $\boldsymbol{d}(x, y)<\lambda$, then there exists an open set $U \in \mathcal{G}$ such that both x and y belong to U.
6. Let $\Gamma:=\left\{(x, y, z) \in \mathbf{R}^{3}: e^{x y}=x, x^{2}+y^{2}+z^{2}=10\right\}$. The Implicit Function theorem ensures that Γ is a curve in some neighborhood of the point $p=\left(e, \frac{1}{e}, \sqrt{10-e^{2}-\frac{1}{e^{2}}}\right)$. That is, there is open interval $I \subset \mathbf{R}^{1}$ and a C^{1} mapping $I \xrightarrow{\gamma} \Gamma$ such that $\gamma(0)=p$. Find a unit vector v such that $v= \pm \frac{\gamma^{\prime}(0)}{\left|\gamma^{\prime}(0)\right|}$.
7. Suppose that a hill is described as $\left\{(x, y, z) \in \mathbf{R}^{3}:(x, y, f(x, y))\right\}$ where $f(x, y)=x^{3}+x-4 x y-2 y^{2}$. Suppose that a climber is located at $p=(1,2,-14)$ on the hill and wants to move from p to another location on the hill without changing elevation. In which direction should the climber proceed from p ? Express your answer in terms of a vector and completely justify your answer.
8. Suppose g and $f_{k}(k=1,2, \ldots)$ are defined on $(0, \infty)$, are Riemann integrable on $[t, T]$ whenever $0<t<T<\infty,\left|f_{k}\right| \leq g, f_{k} \rightarrow f$ uniformly on every compact subset of $(0, \infty)$, and

$$
\int_{0}^{\infty} g(x) d x<\infty
$$

Prove that

$$
\lim _{k \rightarrow \infty} \int_{0}^{\infty} f_{k}(x) d x=\int_{0}^{\infty} f(x) d x
$$

