Algebra Tier 1

August 2019
All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

1. Suppose H_{1} and H_{2} are subgroups of a finite group G. Prove that

$$
\left[G: H_{1} \cap H_{2}\right] \leq\left[G: H_{1}\right]\left[G: H_{2}\right]
$$

with equality if and only if every element of G can be written $h_{1} h_{2}$ for some $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$. Do not assume that G is abelian.
2. Let G be a group and $G^{2}<G$ the subgroup generated by all elements in G of the form g^{2}. Show that G^{2} is normal in G and G / G^{2} is an abelian group in which every element other than the identity has order 2.
3. Let p and q be two distinct prime numbers. Find the minimal polynomial of $\sqrt{p}+\sqrt{q}$ over \mathbb{Q}, and prove that it is indeed the minimal polynomial of $\sqrt{p}+\sqrt{q}$.
4. a. Show that $\mathbb{Z}[x] /\left(x^{2}+x+1,5\right)$ is a field. How many elements does it have?
b. Show that $\mathbb{Z}[x, y] /(x y-1)$ and $\mathbb{Z}[t]$ are not isomorphic rings.
5. Prove that there is an isomorphism of rings

$$
\mathbb{C}[x, y] /\left(x-x^{3} y\right) \rightarrow \mathbb{C}[y] \oplus \mathbb{C}[u, 1 / u]
$$

where $\mathbb{C}[u, 1 / u]$ is the ring of Laurent polynomials $\sum_{i=-m}^{n} a_{i} u^{i}(m, n \geq 0)$ with complex coefficients.
6. Let F be a field of characteristic $p>0, n$ a positive integer, and N a nilpotent $n \times n$ matrix with entries in F (this means $N^{k}=0$ for some positive integer k). Prove that $I+N$ is invertible, that it is of finite order in $\mathrm{GL}_{n}(F)$, and that the order is a power of p.
7. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ a linear transformation. Prove that

$$
\operatorname{dim} \operatorname{ker} T^{2} \geq \frac{\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{ker} T^{3}}{2}
$$

8. Let \mathbb{F}_{q} be a field with q elements. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{4} \mid x_{1}+x_{2}+x_{3}+x_{4}=0\right\}
$$

How many vector subspaces of dimension 2 of V contain the vector $(1,1,-1,-1)$?
9. Give an explicit formula for

$$
\left(\begin{array}{cc}
3 & 1 \\
-2 & 0
\end{array}\right)^{n}
$$

in terms of the positive integer n.

