All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

1. Suppose \(H_1 \) and \(H_2 \) are subgroups of a finite group \(G \). Prove that

\[
[G : H_1 \cap H_2] \leq [G : H_1][G : H_2],
\]

with equality if and only if every element of \(G \) can be written \(h_1h_2 \) for some \(h_1 \in H_1 \) and \(h_2 \in H_2 \). Do not assume that \(G \) is abelian.

2. Let \(G \) be a group and \(G^2 < G \) the subgroup generated by all elements in \(G \) of the form \(g^2 \). Show that \(G^2 \) is normal in \(G \) and \(G/G^2 \) is an abelian group in which every element other than the identity has order 2.

3. Let \(p \) and \(q \) be two distinct prime numbers. Find the minimal polynomial of \(\sqrt{p} + \sqrt{q} \) over \(\mathbb{Q} \), and prove that it is indeed the minimal polynomial of \(\sqrt{p} + \sqrt{q} \).

4. a. Show that \(\mathbb{Z}[x]/(x^2 + x + 1, 5) \) is a field. How many elements does it have?

 b. Show that \(\mathbb{C}[x, y]/(xy - 1) \) and \(\mathbb{C}[t] \) are not isomorphic rings.

5. Prove that there is an isomorphism of rings

\[
\mathbb{C}[x, y]/(x - x^3y) \to \mathbb{C}[y] \oplus \mathbb{C}[u, 1/u],
\]

where \(\mathbb{C}[u, 1/u] \) is the ring of Laurent polynomials \(\sum_{i=-m}^{n} a_i u^i \) \((m, n \geq 0) \) with complex coefficients.

6. Let \(F \) be a field of characteristic \(p > 0 \), \(n \) a positive integer, and \(N \) a nilpotent \(n \times n \) matrix with entries in \(F \) (this means \(N^k = 0 \) for some positive integer \(k \)). Prove that \(I + N \) is invertible, that it is of finite order in \(\text{GL}_n(F) \), and that the order is a power of \(p \).

7. Let \(V \) be a finite-dimensional vector space and \(T : V \to V \) a linear transformation. Prove that

\[
\dim \ker T^2 \geq \frac{\dim \ker T + \dim \ker T^3}{2}.
\]

8. Let \(\mathbb{F}_q \) be a field with \(q \) elements. Let

\[
V = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}_q^4 \mid x_1 + x_2 + x_3 + x_4 = 0\}.
\]

How many vector subspaces of dimension 2 of \(V \) contain the vector \((1, 1, -1, -1) \)?

9. Give an explicit formula for

\[
\begin{pmatrix}
3 & 1 \\
-2 & 0
\end{pmatrix}^n
\]

in terms of the positive integer \(n \).