Tier 1 Algebra Exam August 2020

All your answers should be justified (except where specifically indicated otherwise): A correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. Each problem is worth 10 points.

- 1. Let $T: V \to W$ be a linear transformation between finite dimensional vector spaces. Show that there are bases \mathcal{B} of V and \mathcal{C} of W so that the matrix M of T relative to these bases has $M_{ii} = 1$ for $1 \leq i \leq \dim T(V)$ and all other entries zero.
- 2. Let *H* be the subgroup of \mathbb{Z}^2 generated by $\{(5, 15), (10, 5)\}$. Find an explicit isomorphism between \mathbb{Z}^2/H and the product of cyclic groups.
- 3. Let $\alpha, \beta \in \mathbb{C}$ be complex numbers with $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3 = [\mathbb{Q}(\beta) : \mathbb{Q}]$. Determine the possibilities for $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$. Give an example, without proof, of each case.
- 4. Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.
 - (a) Find a 2×2 matrix P such that PAP^{-1} is upper triangular.
 - (b) Find a formula for A^n .
- 5. Let *H* be a proper subgroup of a finite group *G*. Show that *G* cannot be the union of the conjugates of *H*, i.e., $G \neq \bigcup_{q \in G} gHg^{-1}$.
- 6. Let $R \subset S$ be commutative rings with 1. An element $u \in S$ is said to be integral over R if there is a monic polynomial $f(x) = x^d + c_{d-1}x^{d-1} + \cdots + c_0 \in R[x]$ such that f(u) = 0. Show that if S is a field and every element of S is integral over R, then R is a field.
- 7.
- (a) Find a 2×2 real matrix so that $A^5 = I$ but $A \neq I$.
- (b) Show that there is no 2×2 integral matrix so that $A^5 = I$ but $A \neq I$.

- (c) Find a 4×4 integral matrix so that $A^5 = I$ but $A \neq I$.
- 8. Identify all isomorphism classes of groups of order 20 having a unique subgroup of order 5 and an element of order 4.
- 9. Let R be a commutative ring with 1. Let $U \subset R$ be a subset containing 1 such that $u \cdot v \in U$ for all $u, v \in U$. Let J be an ideal of R such that
 - (a) $J \cap U = \emptyset$, and
 - (b) if I is an ideal of R strictly containing J, then $I \cap U \neq \emptyset$.

Show that J is a prime ideal.

- 10. Prove or give a counterexample.
 - (a) Every element of a finite field is the sum of two squares.
 - (b) Every element of a finite field is the sum of two cubes.