Tier 1 Algebra Exam

August 2020
All your answers should be justified (except where specifically indicated otherwise): A correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. Each problem is worth 10 points.

1. Let $T: V \rightarrow W$ be a linear transformation between finite dimensional vector spaces. Show that there are bases \mathcal{B} of V and \mathcal{C} of W so that the matrix M of T relative to these bases has $M_{i i}=1$ for $1 \leq i \leq \operatorname{dim} T(V)$ and all other entries zero.
2. Let H be the subgroup of \mathbb{Z}^{2} generated by $\{(5,15),(10,5)\}$. Find an explicit isomorphism between \mathbb{Z}^{2} / H and the product of cyclic groups.
3. Let $\alpha, \beta \in \mathbb{C}$ be complex numbers with $[\mathbb{Q}(\alpha): \mathbb{Q}]=3=[\mathbb{Q}(\beta): \mathbb{Q}]$. Determine the possibilities for $[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]$. Give an example, without proof, of each case.
4. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$.
(a) Find a 2×2 matrix P such that $P A P^{-1}$ is upper triangular.
(b) Find a formula for A^{n}.
5. Let H be a proper subgroup of a finite group G. Show that G cannot be the union of the conjugates of H, i.e., $G \neq \cup_{g \in G} g H g^{-1}$.
6. Let $R \subset S$ be commutative rings with 1 . An element $u \in S$ is said to be integral over R if there is a monic polynomial $f(x)=x^{d}+c_{d-1} x^{d-1}+$ $\cdots+c_{0} \in R[x]$ such that $f(u)=0$. Show that if S is a field and every element of S is integral over R, then R is a field.
7.

(a) Find a 2×2 real matrix so that $A^{5}=I$ but $A \neq I$.
(b) Show that there is no 2×2 integral matrix so that $A^{5}=I$ but $A \neq I$.
(c) Find a 4×4 integral matrix so that $A^{5}=I$ but $A \neq I$.
8. Identify all isomorphism classes of groups of order 20 having a unique subgroup of order 5 and an element of order 4.
9. Let R be a commutative ring with 1 . Let $U \subset R$ be a subset containing 1 such that $u \cdot v \in U$ for all $u, v \in U$. Let J be an ideal of R such that
(a) $J \cap U=\emptyset$, and
(b) if I is an ideal of R strictly containing J, then $I \cap U \neq \emptyset$.

Show that J is a prime ideal.
10. Prove or give a counterexample.
(a) Every element of a finite field is the sum of two squares.
(b) Every element of a finite field is the sum of two cubes.

